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Abstract : Let R be a commutative ring and n be a positive integer. A
proper ideal I of R is called an n-absorbing ideal if whenever x1 · · ·xn+1 ∈ I
for x1, . . . , xn+1 ∈ R, then there are n of the xi’s whose product is in I. We give
a generalization of Prime Avoidance Theorem. Also, an n-Absorbing Avoidance
Theorem is proved. Moreover, we introduce the notions of quasi-n-absorbing ideals
and of semi-n-absorbing ideals. We say that a proper ideal I of R is a quasi-n-
absorbing ideal if whenever anb ∈ I for a, b ∈ R, then an ∈ I or an−1b ∈ I. A
proper ideal I of R is said to be a semi-n-absorbing ideal if whenever an+1 ∈ I for
a ∈ R, then an ∈ I.
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als.
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1 Introduction

Throughout this paper R denotes a commutative ring with 1 6= 0. Recall that a
proper ideal I of a ring R is said to be a semiprime ideal if whenever a2 ∈ I for some
a ∈ R, then a ∈ I. Clearly, I is a semiprime ideal of R if and only if J2 ⊆ I implies
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that J ⊆ I for every ideal J of R. Badawi [1] said that a proper ideal I of R is a
2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or
bc ∈ I. He proved that I is a 2-absorbing ideal of R if and only if whenever I1, I2, I3
are ideals of R with I1I2I3 ⊆ I, then I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I. Anderson
and Badawi [2] generalized the notion of 2-absorbing ideals to n-absorbing ideals.
A proper ideal I of R is called an n-absorbing (resp. a strongly n-absorbing) ideal
if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R (resp. I1 · · · In+1 ⊆ I for ideals
I1, . . . , In+1 of R), then there are n of the xi’s (resp. n of the Ii’s) whose product
is in I. Clearly, every strongly n-absorbing ideal is an n-absorbing ideal, but for
n > 2 the converse may not be holds. For more studies concerning 2-absorbing
(submodules) ideals we refer to [3–12]. These concepts motivate us to introduce
some generalizations of semiprime ideals. We say that a proper ideal I ofR is called
a quasi-n-absorbing (resp. strongly quasi-n-absorbing) ideal if whenever anb ∈ I
for a, b ∈ R (resp. In1 I2 ⊆ I for ideals I1, I2 of R), then an ∈ I or an−1b ∈ I (resp.
In1 ⊆ I or In−1

1 I2 ⊆ I). It is obvious that every strongly quasi-n-absorbing ideal is
a quasi-n-absorbing ideal. Also, a quasi-1-absorbing ideal is just a prime ideal. A
proper ideal I of R is called a semi-n-absorbing (resp. strongly semi-n-absorbing)
ideal if whenever an+1 ∈ I for a ∈ R (resp. Jn+1 ⊆ I for ideal J of R), then an ∈ I
(resp. Jn ⊆ I). With these definitions a semiprime ideal is just a semi-1-absorbing
(strongly semi-1-absorbing) ideal. Let M be a nonzero R-module. We say that M
is secondary precisely when, for each r ∈ R, either rM = M or there exists n ∈ N
such that rnM = 0. When this is the case, P :=

√
(0 :R M) is a prime ideal of R:

in these circumstances, we say that M is a P -secondary R-module. A secondary
ideal of R is just a secondary submodule of the R-module R (see [13]). A domain
V with the quotient field K is said to be a valuation domain if for every x ∈ K,
x ∈ V or x−1 ∈ V . A von-Neumann regular ring is a ring R such that for every a
in R there exists an x in R such that a = axa.

We recall from [14] the Prime Avoidance Theorem: Let P1, P2, . . . , Pn, n ≥ 2,
be ideals of R such that at most two of P1, P2, . . . , Pn are not prime. Let I be an
ideal of R such that I ⊆ P1∪P2∪· · ·∪Pn. Then I ⊆ Pi for some i with 1 ≤ i ≤ n.
In [8], Payrovi and Babaei stated the 2-Absorbing Avoidance Theorem.

In section 2, we generalize the Prime Avoidance Theorem. Let I be an ideal
of a ring R. We prove that if

I ⊆ J ∪K ∪ (∪n1

i=1P
(1)
i,1 ) ∪ (∪n2

i=1(P
(1)
i,2 ∩ P

(2)
i,2 )) ∪ · · · ∪ (∪nm

i=1(P
(1)
i,m ∩ · · · ∩ P

(m)
i,m ))

where J, K are ideals of R and P
(k)
i,j ’s are prime ideals of R, then either I ⊆ J or

I ⊆ K or I ⊆ P
(1)
i,j ∩ · · · ∩ P

(j)
i,j for some 1 ≤ j ≤ m and some 1 ≤ i ≤ nj.

We prove an n-Absorbing Avoidance Theorem as follows: Let I1, I2, . . . , Im
(m ≥ 2) be ideals of R such that Ii be an ni-absorbing ideal of R for every
3 ≤ i ≤ m. Suppose that Ii * (Ij :R xnj−1) ⊂ R for every x ∈

√
Ij\Ij with

i 6= j. If I is an ideal of R such that I ⊆ I1 ∪ I2 ∪ · · · ∪ Im, then I ⊆ Ii for
some 1 ≤ i ≤ m. Moreover, let I1, I2, . . . , Im (m ≥ 2) be ideals of R and Ii be an
ni-absorbing ideal of R for every 2 ≤ i ≤ m. Suppose that Ii * (Ij :R xnj−1) ⊂ R
for every x ∈

√
Ij\Ij with i 6= j. If I is an ideal of R and e is an idempotent
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element of R such that I + e ⊆ I1 ∪ I2 ∪ · · · ∪ Im, then we show that (I, e) ⊆ Ii for
some 1 ≤ i ≤ m.

In section 3, we give many properties of quasi-n-absorbing ideals, for example
we show that if Ii is a quasi-ni-absorbing ideal of a ring R for every 1 ≤ i ≤ k,
then I1∩I2∩· · ·∩Ik is a quasi-n-absorbing ideal for n = n1+ · · ·+nk. It is proved
that for ideals I1, I2, . . . , It of a ring R:

1. If I1 is quasi-n-absorbing and I2 is quasi-m-absorbing for m < n, then I1∩I2
is quasi-(n+ 1)-absorbing.

2. If I1, I2, . . . , It are quasi-n-absorbing, then I1 ∩ I2 ∩ · · · ∩ It is quasi-(n+ t)-
absorbing.

3. If Ii is quasi-ni-absorbing for every 1 ≤ i ≤ t with n1 < n2 < · · · < nt and
t > 2, then I1 ∩ I2 ∩ · · · ∩ It is quasi-(nt + 2)-absorbing.

Also, it is shown that if I is a secondary ideal of a ring R and J is a quasi-n-
absorbing ideal of R, then I ∩ J is secondary. For an ideal I of a Prüfer domain
R we show that the following assertions hold:

1. If I is a strongly quasi-n-absorbing ideal of R, then I[X ] is a quasi-n-
absorbing ideal of R[X ].

2. If I[X ] is a quasi-n-absorbing ideal of R[X ], then I is a quasi-n-absorbing
ideal of R.

In section 4, it is shown that if I is a semiprime ideal of a ring R, then I is a
semi-i-absorbing (resp. quasi-j-absorbing) ideal of R for every i ≥ 1 (resp. j > 1).
Let R = R1 ×R2 be a decomposable ring and L be a proper ideal of R. Then we
prove that the following statements are equivalent:

1. L is a quasi-2-absorbing ideal of R;

2. Either L = I1×R2 where I1 is a quasi-2-absorbing ideal of R1 or L = R1×I2
where I2 is a quasi-2-absorbing ideal of R2 or L = I1 × I2 where I1 is a
semiprime ideal of R1 and I2 is a semiprime ideal of R2.

2 Properties of n-Absorbing Ideals

First, we give a generalization of the Prime Avoidance Theorem.

Theorem 2.1 (Generalized prime avoidance theorem). Let I be an ideal of a ring
R. If

I ⊆ J ∪K ∪ (∪n1

i=1P
(1)
i,1 ) ∪ (∪n2

i=1(P
(1)
i,2 ∩ P

(2)
i,2 )) ∪ · · · ∪ (∪nm

i=1(P
(1)
i,m ∩ · · · ∩ P

(m)
i,m ))

where J, K are ideals of R and P
(k)
i,j ’s are prime ideals of R, then either I ⊆ J or

I ⊆ K or I ⊆ P
(1)
i,j ∩ · · · ∩ P

(j)
i,j for some 1 ≤ j ≤ m and some 1 ≤ i ≤ nj.
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Proof. We use induction on m. The case when m = 1 is just the Prime Avoidance
Theorem. Let m > 1 and assume that the claim holds for all positive integers less
than m. Let

I ⊆ J ∪K ∪ (∪n1

i=1P
(1)
i,1 ) ∪ (∪n2

i=1(P
(1)
i,2 ∩ P

(2)
i,2 )) ∪ · · · ∪ (∪nm

i=1(P
(1)
i,m ∩ · · · ∩ P

(m)
i,m ))

where J, K are ideals of R and P
(k)
i,j ’s are prime ideals of R. If

I ⊆ J ∪K∪(∪n1

i=1P
(1)
i,1 )∪(∪n2

i=1(P
(1)
i,2 ∩P

(2)
i,2 ))∪· · ·∪(∪nm−1

i=1 (P
(1)
i,m−1∩· · ·∩P

(m−1)
i,m−1 )),

then by the induction hypothesis we are done. Suppose that

I * J ∪K∪(∪n1

i=1P
(1)
i,1 )∪(∪n2

i=1(P
(1)
i,2 ∩P

(2)
i,2 ))∪· · ·∪(∪nm−1

i=1 (P
(1)
i,m−1∩· · ·∩P

(m−1)
i,m−1 )),

Since
I ⊆ J ∪K ∪ (∪n1

i=1P
(1)
i,1 ) ∪ (∪n2

i=1(P
(1)
i,2 ∩ P

(2)
i,2 )) ∪ · · ·

∪(∪nm−1

i=1 (P
(1)
i,m−1 ∩ · · · ∩ P

(m−1)
i,m−1 )) ∪ (∪nm

i=1(P
(1)
i,m ∩ · · · ∩ P

(m−1)
i,m )),

the induction hypothesis implies that I ⊆ P
(1)
i,m∩· · ·∩P

(m−1)
i,m for some 1 ≤ i ≤ nm.

There are two cases:
Case 1. Let I ⊆ P

(1)
i,m ∩ · · · ∩ P

(m−1)
i,m for every 1 ≤ i ≤ nm. Notice that

I ⊆ J ∪K ∪ (∪n1

i=1P
(1)
i,1 ) ∪ (∪n2

i=1(P
(1)
i,2 ∩ P

(2)
i,2 )) ∪ · · ·

∪(∪nm−1

i=1 (P
(1)
i,m−1 ∩ · · · ∩ P

(m−1)
i,m−1 )) ∪ (∪nm

i=1P
(m)
i,m ),

so we have that I ⊆ P
(m)
j,m for some 1 ≤ j ≤ nm. Thus I ⊆ P

(1)
j,m ∩ · · · ∩ P

(m)
j,m .

Case 2. Assume that there exists 1 ≤ t < nm such that I ⊆ P
(1)
i,m ∩ · · · ∩ P

(m−1)
i,m

for every 1 ≤ i ≤ t and I * ∪nm

i=t+1(P
(1)
i,m ∩ · · · ∩ P

(m−1)
i,m ). Because

I ⊆ J ∪K ∪ (∪n1

i=1P
(1)
i,1 )∪ (∪n2

i=1(P
(1)
i,2 ∩P

(2)
i,2 ))∪· · ·∪ (∪nm−1

i=1 (P
(1)
i,m−1∩· · ·∩P

(m−1)
i,m−1 ))

∪(∪t
i=1P

(m)
i,m ) ∪ (∪nm

i=t+1(P
(1)
i,m ∩ · · · ∩ P

(m−1)
i,m )),

by the induction hypothesis we deduce that I ⊆ P
(m)
k,m for some 1 ≤ k ≤ t, whence

I ⊆ P
(1)
k,m ∩ · · · ∩ P

(m)
k,m .

Theorem 2.2 ([2, Theorem 2.5]). Let I be an n-absorbing ideal of a ring R. Then
there are at most n prime ideals of R minimal over I.

Theorem 2.3 ([2, Theorem 2.14]). Let I be an n-absorbing ideal of a ring R such
that I has exactly n minimal prime ideals, say P1, . . . , Pn. Then P1 · · ·Pn ⊆ I.

Corollary 2.4. Let I be an n-absorbing ideal of a ring R such that I has exactly
n minimal prime ideals. Then (

√
I)n ⊆ I.
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Proposition 2.5 ([2, Corollary 3.6]). Let n ≥ 2 and I ⊂
√
I be an n-absorbing

ideal of a ring R. Suppose that x ∈
√
I\I and xn ∈ I, but xn−1 /∈ I. Then

(I :R xn−1) is a prime ideal of R.

Theorem 2.6. Let I be an n-absorbing ideal of a ring R with distinct minimal
prime ideals P1, . . . , Pn. Suppose that x1, . . . , xn−1 ∈ R be such that xi ∈ Pi\Pn

for i = 1, . . . , n−1. Then (I :R x1 · · ·xn−1) = Pn. In particular, if x is an element
of R such that x ∈ (P1 ∩ · · · ∩ Pn−1)\Pn, then (I :R xn−1) = Pn.

Proof. Assume that x1, . . . , xn−1 ∈ R be such that xi ∈ Pi\Pn for i = 1, . . . , n−1.
Since x1 · · ·xn−1 /∈ Pn, then (I :R x1 · · ·xn−1) ⊆ Pn. Let y ∈ Pn. By Theorem 2.3
we have that x1 · · ·xn−1y ∈ P1 · · ·Pn−1Pn ⊆ I. Hence y ∈ (I :R x1 · · ·xn−1) and
so the equality holds.

Theorem 2.7. Let I be a strongly n-absorbing ideal of a ring R with distinct
minimal prime ideals P1, . . . , Pm (m ≤ n). Suppose that x1, . . . , xm−1 ∈ R be such
that xi ∈ Pi\Pm for i = 1, . . . ,m− 1. Then (I :R xn1

1 · · ·xnm−1

m−1 ) = Pm for positive
integers n1, . . . , nm−1 with n− 1 = n1 + · · ·+ nm−1.

Proof. Regarding [2, Theorem 6.2] the proof is similar to that of Theorem 2.6.

Definition 2.8. Suppose that m, n are positive integers with m > n. A proper
ideal I of a ring R is called (m,n)-absorbing if whenever a1a2 · · ·am ∈ I for
a1, a2, . . . , am ∈ R, then the product of n of the ai’s is in I.

Theorem 2.9. Let I be a proper ideal of a ring R and m > n. Then I is (m,n)-
absorbing if and only if I is n-absorbing.

Proof. The “if” part has a routin verification. For the converse, let I be (m,n)-
absorbing and let a1, a2, . . . , an+1 ∈ R be such that a1a2 . . . an+1 ∈ I. Then

a1a2 . . . an+1

m−n−1 times︷ ︸︸ ︷
1.1 . . . 1 ∈ I. Since I is proper, then the product of n of a1, a2, . . . ,

an+1 is in I. Consequently I is n-absorbing.

Proposition 2.10. Let V be a valuation domain with the quotient field K and let I
be a proper ideal of V . Then I is an n-absorbing ideal of V if and only if whenever
x1x2 · · ·xn+1 ∈ I with x1, x2, . . . , xn+1 ∈ K, then there are n of x1, x2, . . . , xn+1

whose product is in I.

Proof. Assume that I is an n-absorbing ideal of V . Let x1x2 · · ·xn+1 ∈ I for some
x1, x2, . . . , xn+1 ∈ K such that x1x2 · · ·xn /∈ I. If xn+1 /∈ V , then x−1

n+1 ∈ V ,

since V is valuation. So x1 · · ·xnxn+1x
−1
n+1 = x1 · · ·xn ∈ I, a contradiction. Hence

xn+1 ∈ V . If xi ∈ V for every 1 ≤ i ≤ n, then there is nothing to prove. If xi /∈ V
for some 1 ≤ i ≤ n, then x1 · · ·xi−1xi+1 · · ·xn+1 ∈ I.

Proposition 2.11. Let R be a von-Neumann regular ring. Then I is an n-
absorbing ideal of R if and only if e1e2 · · · en+1 ∈ I for some idempotent elements
e1, e2, . . . , en+1 ∈ R implies that the product of n of e1, e2, . . . , en+1 is in I.
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Proof. Notice the fact that any finitely generated ideal of a von-Neumann regular
ring R is generated by an idempotent element.

Theorem 2.12. Let R be a ring. Suppose that J, K are ideals of R and Ii is
an ni-absorbing ideal of R for every 1 ≤ i ≤ m. If I is an ideal of R such that
I ⊆ J ∪K ∪ I1 ∪ I2 ∪ · · · ∪ Im, then either I ⊆ J or I ⊆ K or I ⊆ √

Ii for some
1 ≤ i ≤ m.

Proof. Assume that I is an ideal of R such that I ⊆ J ∪K ∪ I1 ∪ I2 ∪ · · · ∪ Im.
Then I ⊆ J ∪K ∪√

I1 ∪
√
I2 ∪ · · · ∪ √

Im. Now apply Theorem 2.2 and Theorem
2.1.

Corollary 2.13. Let Ii be an ni-absorbing ideal of a ring R for every 1 ≤ i ≤ m
(m ≥ 2). Suppose that for every 1 ≤ i ≤ m, Ii has exactly ni minimal prime
ideals. If I is an ideal of R such that I ⊆ I1 ∪ I2 ∪ · · ·∪ Im, then Ini ⊆ Ii for some
1 ≤ i ≤ m.

Proof. By Theorem 2.12 and Corollary 2.4.

Corollary 2.14. Let Ii be a strongly ni-absorbing ideal of a ring R for every
1 ≤ i ≤ m (m ≥ 2). If I is an ideal of R such that I ⊆ I1 ∪ I2 ∪ · · · ∪ Im, then
Ini ⊆ Ii for some 1 ≤ i ≤ m.

Proof. By Theorem 2.12 and [2, Theorem 6.1].

Theorem 2.15 (n-Absorbing avoidance theorem). Let I1, I2, . . . , Im (m ≥ 2) be
ideals of R such that Ii be an ni-absorbing ideal of R for every 3 ≤ i ≤ m. Suppose
that Ii * (Ij :R xnj−1) ⊂ R for every x ∈

√
Ij\Ij with i 6= j. If I is an ideal of R

such that I ⊆ I1 ∪ I2 ∪ · · · ∪ Im, then I ⊆ Ii for some 1 ≤ i ≤ m.

Proof. Suppose that I is an ideal of R such that I ⊆ I1 ∪ I2 ∪ · · · ∪ Im. By
Theorem 2.12, either I ⊆ I1 or I ⊆ I2 or I ⊆ √

Ii for some 3 ≤ i ≤ m. If I ⊆ I1 or
I ⊆ I2, then we are done. So, we assume that I ⊆

√
Ij for some 3 ≤ j ≤ m. Let

I * Ij . Hence there exists x ∈ I\Ij , and so x ∈
√
Ij\Ij . Then we may assume that

I ⊆ I1∪I2∪· · ·∪Im is an efficient covering of ideals of R. Therefore I = ∪m
i=1(Ii∩I)

is an efficient union. So, [15, Lemma 2.1] implies that (∩i6=kIi)∩ I ⊆ Ik ∩ I. Thus
by hypothesis, Ii * (Ij :R xnj−1) ⊂ R for every i 6= j. Then, for every i 6= j there
exists ri ∈ Ii\(Ij :R xnj−1). Set r =

∏
i6=j ri. Thus rx ∈ (∩i6=jIi) ∩ I ⊆ Ij ∩ I.

Therefore r ∈ (Ij :R xnj−1) which is a contradiction, because by Proposition 2.5,
(Ij :R xnj−1) is a prime ideal of R. Consequently I ⊆ Ii for some 1 ≤ i ≤ m.

Theorem 2.16. Let I be an ideal of a ring R and let a ∈ R. If

I + a ⊆ J ∪ (∪n1

i=1P
(1)
i,1 ) ∪ (∪n2

i=1(P
(1)
i,2 ∩ P

(2)
i,2 )) ∪ · · · ∪ (∪nm

i=1(P
(1)
i,m ∩ · · · ∩ P

(m)
i,m ))

where J is an ideal of R and P
(k)
i,j ’s are prime ideals of R, then either (I, a) ⊆ J

or (I, a) ⊆ P
(1)
i,j ∩ · · · ∩ P

(j)
i,j for some 1 ≤ j ≤ m and some 1 ≤ i ≤ nj.
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Proof. By using [16, Theorem 12] and by a similar manner to that of Theorem
2.1.

Corollary 2.17. Let R be a ring, J be an ideal of R and Ii be an ni-absorbing
ideal of R for every 1 ≤ i ≤ m (m ≥ 1). If I is an ideal of R and a is an element
of R such that I + a ⊆ J ∪ I1 ∪ I2 ∪ · · · ∪ Im, then either (I, a) ⊆ J or (I, a) ⊆ √

Ii
for some 1 ≤ i ≤ m.

Corollary 2.18. Let Ii be an ni-absorbing ideal of a ring R for every 1 ≤ i ≤ m
(m ≥ 2). Suppose that for every 1 ≤ i ≤ m, Ii has exactly ni minimal prime
ideals. If I is an ideal of R and a ∈ R such that I + a ⊆ I1 ∪ I2 ∪ · · · ∪ Im, then
(I, a)ni ⊆ Ii for some 1 ≤ i ≤ m.

Corollary 2.19. Let Ii be a strongly ni-absorbing ideal of a ring R for every 1 ≤
i ≤ m (m ≥ 2). If I is an ideal of R and a ∈ R such that I+a ⊆ I1∪I2 ∪· · ·∪Im,
then (I, a)ni ⊆ Ii for some 1 ≤ i ≤ m.

Theorem 2.20. Let I1, I2, . . . , Im (m ≥ 2) be ideals of R and Ii be an ni-absorbing
ideal of R for every 2 ≤ i ≤ m. Suppose that Ii * (Ij :R xnj−1) ⊂ R for every
x ∈

√
Ij\Ij with i 6= j. If I is an ideal of R and e is an idempotent element of R

such that I + e ⊆ I1 ∪ I2 ∪ · · · ∪ Im, then (I, e) ⊆ Ii for some 1 ≤ i ≤ m.

Proof. By Corollary 2.17, we deduce that either (I, e) ⊆ I1 or (I, e) ⊆
√
Ij for

some 2 ≤ j ≤ m. The first case leads us to the claim. In the second case we
have I ⊆

√
Ij and e ∈ Ij . If I ⊆ Ij , then there is nothing to prove. So, we

assume that I * Ij . Hence, there exists x ∈ I\Ij and then x ∈
√
Ij\Ij . If

I + e ⊆ I1 ∪ I2 ∪ · · · ∪ Im is an efficient covering of I, then (∩i6=jIi) ∩ I ⊆ Ij ∩ I.
On the other hand, by our hypothesis we have that for every i 6= j there exists
ri ∈ Ii\(Ij :R xnj−1). Set r =

∏
i6=j ri. Thus rx ∈ (∩i6=jIi) ∩ I ⊆ Ij . Therefore

r ∈ (Ij :R xnj−1) which is a contradiction, since (Ij :R xnj−1) is a prime ideal of
R. Consequently I + e ⊆ Ii for some 1 ≤ i ≤ m, and so (I, e) ⊆ Ii.

3 Quasi-n-Absorbing Ideals

We begin this section with the following proposition.

Proposition 3.1. Let I be an ideal of a ring R. Then the following statements
are equivalent:

1. I is quasi-n-absorbing;

2. For each a ∈ R with an /∈ I, (I :R an) = (I :R an−1);

3. For every a ∈ R and every ideal J of R with anJ ⊆ I, either an ∈ I or
an−1J ⊆ I.

Proof. The proof is easy.
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Corollary 3.2. Let R be a ring. Then 0 is a quasi-n-absorbing ideal of R if and
only if for each a ∈ R, either an = 0 or annR(a

n) = annR(a
n−1).

Proof. By Proposition 3.1.

Proposition 3.3. Let f : R → R′ be a homomorphism of rings.

1. If I ′ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R′, then f−1(I ′)
is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

2. If f is an epimorphism and I is a quasi-n-absorbing (resp. semi-n-absorbing)
ideal of R containing Ker(f), then f(I) is a quasi-n-absorbing (resp. semi-
n-absorbing) ideal of R′.

Proof. 1. Let I ′ is a quasi-n-absorbing ideal of R′ and anb ∈ f−1(I ′) for some
a, b ∈ R. Then f(a)nf(b) ∈ I ′. Hence either f(a)n ∈ I ′ or f(a)n−1f(b) ∈ I ′, and
thus either an ∈ f−1(I ′) or an−1b ∈ f−1(I ′). So f−1(I ′) is a quasi-n-absorbing
ideal of R.
2. Assume that f is an epimorphism and I is a quasi-n-absorbing ideal of R such
that Ker(f) ⊆ I. Let a′, b′ ∈ R′ and (a′)nb′ ∈ f(I). So there exist a, b ∈ R such
that f(a) = a′ and f(b) = b′, and f(anb) = (a′)nb′ ∈ f(I). Since Ker(f) ⊆ I, then
anb ∈ I. It implies that either an ∈ I or an−1b ∈ I. Therefore either (a′)n ∈ f(I)
or (a′)n−1b′ ∈ f(I). Consequently f(I) is a quasi-n-absorbing ideal of R′.

As an immediate consequence of Proposition 3.3 we have the following result.

Corollary 3.4. Let R be a ring and I be an ideal of R.

1. If R′ is a subring of R and I is a quasi-n-absorbing (resp. semi-n-absorbing)
ideal of R, then I ∩R′ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal
of R′.

2. Let J be an ideal of R with J ⊆ I. Then I is a quasi-n-absorbing (resp.
semi-n-absorbing) ideal of R if and only if I/J is a quasi-n-absorbing (resp.
semi-n-absorbing) ideal of R/J .

Corollary 3.5. Let I be an ideal of a ring R. Then 〈I,X〉 is a quasi-n-absorbing
(resp. semi-n-absorbing) ideal of R[X ] if and only if I is a quasi-n-absorbing (resp.
semi-n-absorbing) ideal of R.

Proof. By Corollary 3.4(2) and regarding the isomorphism 〈I,X〉/〈X〉 ≃ I in
R[X ]/〈X〉 ≃ R we have the result.

Let M be an R-module. The set of all zero divisors on M is:
ZR(M) = {r ∈ R | there exists an element 0 6= x ∈ M such that rx = 0}.

Proposition 3.6. Let R be a ring, S be a multiplicatively closed subset of R, and
I a proper ideal of R. Then
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1. If I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R with I∩S = ∅,
then S−1I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of S−1R.

2. If S−1I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of S−1R, S ∩
ZR(R/I) = ∅, then I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal
of R.

Proof. 1. Let a, b ∈ R, s, t ∈ S such that (a
s
)n b

t
∈ S−1I. Then there exists u ∈ S

such that uanb ∈ I. Since I is quasi-n-absorbing and uanb ∈ I, then an ∈ I or

uan−1b ∈ I. So (a
s
)n ∈ S−1I or (a

s
)n−1 b

t
= uan−1b

usn−1t
∈ S−1I. Therefore S−1I is a

quasi-n-absorbing ideal of S−1R.
2. Let a, b ∈ R such that anb ∈ I. Then anb

1 = (a1 )
n b
1 ∈ S−1I. Therefore

(a1 )
n ∈ S−1I or (a1 )

n−1 b
1 ∈ S−1I. If (a1 )

n ∈ S−1I, then for some ν ∈ S, νan ∈ I.

Since ν ∈ S and S ∩ ZR(R/I) = ∅, then an ∈ I. Similarly, if (a1 )
n−1 b

1 ∈ S−1I,
then an−1b ∈ I. Consequently I is a quasi-n-absorbing ideal of R.

Definition 3.7. Let m > n be positive integers. A proper ideal I of a ring R is
called quasi-(m,n)-absorbing if whenever am−1b ∈ I for a, b ∈ R, then an ∈ I or
an−1b ∈ I.

Proposition 3.8. Let I be a proper ideal of R and m > n be positive integers.
Then I is quasi-(m,n)-absorbing if and only if I is quasi-n-absorbing.

Proof. Assume that I is quasi-(m,n)-absorbing. Let anb ∈ I for some a, b ∈ R.
Since n ≤ m− 1, then am−1b ∈ I. Therefore an ∈ I or an−1b ∈ I. Consequently
I is quasi-n-absorbing. Now, suppose that I is quasi-n-absorbing. Let am−1b ∈ I
for some a, b ∈ R. Therefore ana(m−1−n)b ∈ I. Hence an ∈ I or an−1a(m−1−n)b =
a(m−2)b ∈ I. Repeating this method implies that an ∈ I or an−1b ∈ I. Thus I is
quasi-(m,n)-absorbing.

Proposition 3.9. Let I be a proper ideal of a ring R.

1. I is prime if and only if I is quasi-1-absorbing if and only if I is 1-absorbing.

2. If I is quasi-n-absorbing, then it is quasi-i-absorbing for all i ≥ n.

3. If I is prime, then it is quasi-n-absorbing for all n ≥ 1.

4. If I is n-absorbing, then it is quasi-n-absorbing.

5. If I is quasi-n-absorbing for some n ≥ 1, then there exists the least n0 ≥ 1
such that I is quasi-n0-absorbing. In this case, I is quasi-n-absorbing for
all n ≥ n0 and it is not quasi-i-absorbing for n0 > i > 0.

Proof. Every statement has a routin verification.

Proposition 3.10. Let I be a proper ideal of a ring R. If I is a quasi-n-absorbing
ideal of R, then

√
I = {x ∈ R | xn ∈ I}, the converse holds if I is primary.
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Proof. First, assume that I is quasi-n-absorbing. Clearly {x ∈ R | xn ∈ I} ⊆
√
I.

Now, let x ∈
√
I. Then there exists m ≥ 1 such that xm ∈ I. If m ≤ n,

then xn ∈ I. If m > n, then by Proposition 3.8 we have that I is quasi-(m,n)-
absorbing. So, xm−1x ∈ I implies that xn ∈ I. Therefore

√
I = {x ∈ R | xn ∈ I}.

Conversely, assume that
√
I = {x ∈ R | xn ∈ I} and I is primary. Let anb ∈ I

for some a, b ∈ R. If an ∈ I, then we are done. Therefore, suppose that an /∈ I.
Hence a /∈

√
I, and so an−1b ∈ I. Consequently I is quasi-n-absorbing.

The following remark shows that the two concepts of quasi-(n+ 1)-absorbing
ideals ((n + 1)-absorbing ideals) and of quasi-n-absorbing ideals are different in
general.

Remark 3.11. Let p, q be distinct prime numbers. By [2, p. 1650], pnZ is an n-
absorbing ideal of Z. So pnZ∩qZ is an (n+1)-absorbing ideal, [2, Theorem 2.1](c).
Then pnZ∩qZ is quasi-(n+1)-absorbing. If pnZ∩qZ is a quasi-n-absorbing ideal,
then pnq ∈ pnZ ∩ qZ implies that either pn ∈ qZ or pn−1q ∈ pnZ, which is a
contradiction.

Proposition 3.12. Let {Pλ}λ∈Λ be a family of prime ideals of a ring R. Then⋂
λ∈Λ Pλ is a quasi-i-absorbing ideal for every i ≥ 2.

Proof. Let I =
⋂

λ∈Λ Pλ. By Proposition 3.9(2), it is sufficient to we show that I
is a quasi-2-absorbing ideal. Suppose that a2b ∈ I for some a, b ∈ R. Since every
Pλ is prime and a2b ∈ Pλ, then ab ∈ Pλ. Therefore ab ∈ I, and so we conclude
that I is a quasi-2-absorbing ideal.

Remark 3.13. Let p1, p2, . . . , pn+1 be distinct prime numbers. Then by Proposi-
tion 3.12, Z(p1p2 . . . pn+1) = Zp1∩Zp2∩· · ·∩Zpn+1 is a quasi-i-absorbing ideal of
Z for every i ≥ 2. But, clearly Z(p1p2 . . . pn+1) is not an n-absorbing ideal. This
remark shows that the two concepts of quasi-n-absorbing ideals and of n-absorbing
ideals are different in general.

A commutative ring R is called semiprimitive if Jac(R) = 0, [17]. A commu-
tative ring is semiprimitive if and only if it is a subdirect product of fields, [18, p.
179].

As a direct consequence of Proposition 3.12 we have the following result.

Corollary 3.14. Let R be a ring.

1. For every proper ideal I of R,
√
I is a quasi-i-absorbing ideal of R for every

i ≥ 2.

2. Nil(R) and Jac(R) are quasi-i-absorbing ideals of R for every i ≥ 2.

3. If R is a semiprimitive ring, then 0 is a quasi-i-absorbing ideal in R for
every i ≥ 2.

Proposition 3.15. Let R be a ring. The following statements are equivalent:
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1. For every elements a, b ∈ R, an = ranb for some r ∈ R or an−1b = sanb for
some s ∈ R;

2. Every proper ideal of R is quasi-n-absorbing.

Proof. Straightforward.

Proposition 3.16. Let R be a ring. The following statements are equivalent:

1. For every ideals I, J of R, In = InJ or In−1J = InJ ;

2. For every ideals I1, I2, . . . , In+1 of R, (I1 ∩ I2 ∩ · · · ∩ In)
n ⊆ I1I2 · · · In+1 or

(I1 ∩ I2 ∩ · · · ∩ In)
n−1In+1 ⊆ I1I2 · · · In+1;

3. Every proper ideal of R is strongly quasi-n-absorbing.

Proof. (1)⇒(2) Suppose that I1, I2, . . . , In+1 are ideals of R. By part (1),

(I1 ∩ I2 ∩ · · · ∩ In)
n = (I1 ∩ I2 ∩ · · · ∩ In)

nIn+1 ⊆ I1I2 · · · In+1,

or

(I1 ∩ I2 ∩ · · · ∩ In)
n−1In+1 = (I1 ∩ I2 ∩ · · · ∩ In)

nIn+1 ⊆ I1I2 · · · In+1.

(2)⇒(1) For ideals I, J of R, we have from (2), In = (

n times︷ ︸︸ ︷
I ∩ · · · ∩ I)n ⊆ InJ or

In−1J = (

n times︷ ︸︸ ︷
I ∩ · · · ∩ I)n−1J ⊆ InJ .

(1)⇔(3) Is trivial.

Proposition 3.17. Let I be a proper ideal of R.

1. If for every ideals I1, I2 of R, we have In1 I2 ⊆ I ⊆ I1 ∩ I2 ⇒ [In1 ⊆ I or
In−1
1 I2 ⊆ I], then I is strongly quasi-n-absorbing.

2. If for every ideals I1, I2, . . . , In+1 of R, we have

I1I2 · · · In+1 ⊆ I and I ⊆ I1 ∩ I2 ∩ · · · ∩ In+1 ⇒

[I1 · · · Îi · · · In+1 ⊆ I, for some 1 ≤ i ≤ n+ 1]

then I is a strongly n-absorbing ideal.

Proof. 1. Assume that I is an ideal that satisfies the hypothesis atated in 1.
Let Jn

1 J2 ⊆ I for some ideals J1, J2 of R. Then (J1+ I)n(J2 + I) ⊆ I, so we
have (J1+ I)n ⊆ I or (J1 + I)n−1(J2 + I) ⊆ I. Thus Jn

1 ⊆ I or Jn−1
1 J2 ⊆ I.

2. The proof is similar to that of 1.

Notice that in Remark 3.11 we can observe that the intersection of two quasi-
n-absorbing ideals may not be quasi-n-absorbing.
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Proposition 3.18. Let {Iλ}λ∈Λ be a chain of quasi-n-absorbing ideals. Then⋂
λ∈Λ Iλ is a quasi-n-absorbing ideal.

Proof. Let I =
⋂

λ∈Λ Iλ and suppose that anb ∈ I for some a, b ∈ R. If an ∈ Iλ
for each λ ∈ Λ, then an ∈ I. So we may assume that there is λ0 ∈ Λ such that
an /∈ Iλ0

, then an /∈ Iλ for each Iλ ⊆ Iλ0
. Since all ideals in {Iλ}λ∈Λ are quasi-n-

absorbing, it follows that an−1b ∈ Iλ for each Iλ ⊆ Iλ0
. Thus an−1b ∈ Iλ for each

λ ∈ Λ, so that an−1b ∈ I. We deduce that I is a quasi-n-absorbing ideal.

Proposition 3.19. Let I1, I2, . . . , Ik be ideals of R. If Ii is a quasi-ni-absorbing
ideal of R for every 1 ≤ i ≤ k, then I1 ∩ I2 ∩ · · · ∩ Ik is a quasi-n-absorbing ideal
for n = n1 + · · ·+ nk.

Proof. Let a, b ∈ R be such that anb ∈ I1 ∩ I2 ∩ · · · ∩ Ik. Since Ii’s are quasi-
ni-absorbing, then, for every 1 ≤ i ≤ k, either ani ∈ Ii or ani−1b ∈ Ii. If for
every 1 ≤ i ≤ k, ani ∈ Ii, then an ∈ I1 ∩ I2 ∩ · · · ∩ Ik. If for every 1 ≤ i ≤ k,
ani−1b ∈ Ii, then an−1b ∈ I1 ∩ I2 ∩ · · · ∩ Ik. Otherwise, without loss of generality
we may assume that there exists 1 ≤ j < k such that ani ∈ Ii for every 1 ≤ i ≤ j
and ani−1b ∈ Ii for every j + 1 ≤ i ≤ k. Hence an−1b ∈ I1 ∩ I2 ∩ · · · ∩ Ik which
shows that I1 ∩ I2 ∩ · · · ∩ Ik is a quasi-n-absorbing ideal.

Theorem 3.20. Let I1, I2, . . . , It be ideals of R.

1. If I1 is quasi-n-absorbing and I2 is quasi-m-absorbing for m < n, then I1∩I2
is quasi-(n+ 1)-absorbing.

2. If I1, I2, . . . , It are quasi-n-absorbing, then I1 ∩ I2 ∩ · · · ∩ It is quasi-(n+ t)-
absorbing.

3. If Ii is quasi-ni-absorbing for every 1 ≤ i ≤ t with n1 < n2 < · · · < nt and
t > 2, then I1 ∩ I2 ∩ · · · ∩ It is quasi-(nt + 2)-absorbing.

Proof. 1. Let a, b ∈ R be such that an+1b ∈ I1 ∩ I2. We show that an+1 ∈ I1 ∩ I2
or anb ∈ I1 ∩ I2. Since I1 is quasi-n-absorbing, then by Proposition 3.8 it is
quasi-(n + 2, n)-absorbing. Therefore either an ∈ I1 or an−1b ∈ I1. Also, I2 is
quasi-m-absorbing, again by Proposition 3.8 either am ∈ I2 or am−1b ∈ I2. There
are four cases.
Case 1. Suppose that an ∈ I1 and am ∈ I2. Then an ∈ I1 ∩ I2.
Case 2. Suppose that an ∈ I1 and am−1b ∈ I2. Then anb ∈ I1 ∩ I2.
Case 3. Suppose that an−1b ∈ I1 and am ∈ I2. Then an−1b ∈ I1 ∩ I2.
Case 4. Suppose that an−1b ∈ I1 and am−1b ∈ I2. Then an−1b ∈ I1 ∩ I2.
Consequently I1 ∩ I2 is quasi-(n+ 1)-absorbing.
2. Induction on t: For t = 1 there is nothing to prove. Let t > 1 and assume that
for t− 1 the claim holds. Then I1 ∩ I2 ∩ · · · ∩ It−1 is quasi-(n+ t− 1)-absorbing.
Since It is quasi-n-absorbing, then it is quasi-(n+ t−2)-absorbing, by Proposition
3.9(2). Therefore I1 ∩ I2 ∩ · · · ∩ It is quasi-(n+ t)-absorbing, by part 1.
3. Induction on t: For t = 3 apply parts 1 and 2. Let t > 3 and suppose that for
t− 1 the claim holds. Hence I1 ∩ I2 ∩ · · · ∩ It−1 is quasi-(nt−1 +2)-absorbing. We
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have the following cases:
Case 1. Let nt−1+2 < nt. In this case I1∩I2∩· · ·∩It is quasi-(nt+1)-absorbing,
by part 1. Therefore I1 ∩ I2 ∩ · · · ∩ It is quasi-(nt + 2)-absorbing.
Case 2. Let nt−1 + 2 = nt. Thus I1 ∩ I2 ∩ · · · ∩ It is quasi-(nt + 2)-absorbing, by
part 2.
Case 3. Let nt−1+2 > nt. Then I1∩I2∩· · ·∩It is quasi-(nt−1+3)-absorbing, by
part 1. Since nt−1+3 = nt+2, then I1∩I2∩· · ·∩It is quasi-(nt+2)-absorbing.

Proposition 3.21. Let R = R1 ×R2 be a decomposable ring, I1 a proper ideal of
R1 and I2 a proper ideal of R2. Then I1 (resp. I2) is a quasi-n-absorbing ideal of
R1 (resp. R2) if and only if I1 × R2 (resp. R1 × I2) is a quasi-n-absorbing ideal
of R.

Proof. (⇒) Suppose that I1 is a quasi-n-absorbing ideal of R1. Let (a1, a2)
n(b1, b2)

∈ I1 ×R2 for some (a1, a2), (b1, b2) ∈ R. Hence an1 b1 ∈ I1, and so either an1 ∈ I1 or
an−1
1 b1 ∈ I1. Therefore either (a1, a2)

n ∈ I1 ×R2 or (a1, a2)
n−1(b1, b2) ∈ I1 ×R2.

Consequently I1 ×R2 is a quasi-n-absorbing ideal of R.
(⇐) Assume that I1 ×R2 is a quasi-n-absorbing ideal of R. Let anb ∈ I1 for some
a, b ∈ R1. Then (a, 1)n(b, 1) ∈ I1×R2. Hence (a, 1)

n ∈ I1×R2 or (a, 1)n−1(b, 1) ∈
I1 × R2. Therefore an ∈ I1 or an−1b ∈ I1. So I1 is a quasi-n-absorbing ideal of
R1.

A strategy similar to Theorem 3.20 leads us to the following theorem:

Theorem 3.22. Let I1, I2, . . . , It be ideals of rings R1, R2, . . . , Rt, respectively.

1. If I1 is a quasi-n-absorbing ideal of R1 and I2 is a quasi-m-absorbing ideal
of R2 for m < n, then I1 × I2 is a quasi-(n+1)-absorbing ideal of R1 ×R2.

2. If I1, I2, . . . , It are quasi-n-absorbing ideals of R1, R2, . . . , Rt, respectively,
then I1×I2×· · ·×It is a quasi-(n+ t)-absorbing ideal of R1×R2×· · ·×Rt.

3. If Ii is a quasi-ni-absorbing ideal of Ri for every 1 ≤ i ≤ t with n1 < n2 <
· · · < nt and t > 2, then I1 × I2 × · · · × It is a quasi-(nt +2)-absorbing ideal
of R1 ×R2 × · · · ×Rt.

Proof. 1. Let (a1, a2), (b1, b2) ∈ R1×R2 be such that (a1, a2)
n+1(b1, b2) ∈ I1 × I2.

Therefore an+1
1 b1 ∈ I1 and an+1

2 b2 ∈ I2. Since I1 is a quasi-n-absorbing ideal of
R1, then an1 ∈ I1 or an−1

1 b1 ∈ I1. Also, I2 is a quasi-m-absorbing ideal of R2

and an+1
2 b2 = am2 (an+1−m

2 b2) ∈ I2, so am2 ∈ I2 or am−1
2 (an+1−m

2 b2) = an2 b2 ∈ I2.
Consider the following cases.
Case 1. Assume that an1 ∈ I1 and am2 ∈ I2. Then (a1, a2)

n ∈ I1 × I2.
Case 2. Assume that an1 ∈ I1 and an2 b2 ∈ I2. Then (a1, a2)

n(b1, b2) ∈ I1 × I2.
Case 3. Assume that an−1

1 b1 ∈ I1 and am2 ∈ I2. Then (a1, a2)
n−1(b1, b2) ∈ I1×I2.

Case 4. Assume that an−1
1 b1 ∈ I1 and an2 b2 ∈ I2. Then (a1, a2)

n(b1, b2) ∈ I1 × I2.
Consequently I1 × I2 is a quasi-(n+ 1)-absorbing ideal of R1 ×R2.
2. We use induction on t. For t = 1 there is nothing to prove. Let t > 1 and assume
that for t−1 the claim holds. Then I1×I2×· · ·×It−1 is a quasi-(n+t−1)-absorbing
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ideal of R1 ×R2 × · · · ×Rt−1. Since It is a quasi-n-absorbing ideal of Rt, then it
is quasi-(n+ t− 2)-absorbing, by Proposition 3.9(2). Therefore I1 × I2 × · · · × It
is a quasi-(n+ t)-absorbing ideal of R1 ×R2 × · · · ×Rt by 1.
3. Induction on t: For t = 3 apply parts 1 and 2. Let t > 3 and suppose that for
t − 1 the claim holds. Hence I1 × I2 × · · · × It−1 is a quasi-(nt−1 + 2)-absorbing
ideal of R1 ×R2 × · · · ×Rt−1. We consider the following cases:
Case 1. Let nt−1 + 2 < nt. In this case I1 × I2 × · · · × It is a quasi-(nt + 1)-
absorbing ideal of R1 × R2 × · · · ×Rt by part 1. Therefore I1 × I2 × · · · × It is a
quasi-(nt + 2)-absorbing ideal of R1 ×R2 × · · · ×Rt.
Case 2. Let nt−1 + 2 = nt. Thus I1 × I2 × · · · × It is a quasi-(nt + 2)-absorbing
ideal of R1 ×R2 × · · · ×Rt by part 2.
Case 3. Let nt−1 +2 > nt. Then I1 × I2 × · · ·× It is a quasi-(nt−1+3)-absorbing
of R1 ×R2 × · · · ×Rt by part 1. Since nt−1 + 3 = nt +2, then I1 × I2 × · · · × It is
quasi-(nt + 2)-absorbing.

Theorem 3.23. Let I be a secondary ideal of a ring R. If J is a quasi-n-absorbing
ideal of R, then I ∩ J is secondary.

Proof. Assume that I is a P -secondary ideal of R, and let a ∈ R. If a ∈ P =√
(0 :R I), then clearly a ∈

√
(0 :R I ∩ J). If a /∈ P , then an /∈ P , and so anI = I.

We show that a(I ∩J) = I ∩J . Suppose that x ∈ I ∩J . There is an element b ∈ I
such that x = anb ∈ J . Since J is quasi-n-absorbing we get an ∈ J or an−1b ∈ J .
If an ∈ J , then I = anI ⊆ J and so a(I ∩ J) = aI = I = I ∩ J . If an−1b ∈ J , then
x = anb ∈ a(I ∩ J) and we are done.

Let R be a ring with identity. We recall that if f = a0 + a1X + · · ·+ atX
t is a

polynomial on the ring R, then content of f is defined as the ideal of R, generated
by the coefficients of f , i.e. c(f) = (a0, a1, . . . , an). Let T be an R-algebra and
c the function from T to the ideals of R defined by c(f) = ∩{I | I is an ideal of
R and f ∈ IT } known as the content of f . Note that the content function c is
nothing but the generalization of the content of a polynomial f ∈ R[X ]. The
R-algebra T is called a content R-algebra if the following conditions hold:

1. For all f ∈ T , f ∈ c(f)T .

2. (Faithful flatness) For any r ∈ R and f ∈ T , the equation c(rf) = rc(f)
holds and c(1T ) = R.

3. (Dedekind-Mertens content formula) For each f, g ∈ T , there exists a natural
number n such that c(f)nc(g) = c(f)n−1c(fg).

For more information on content algebras and their examples we refer to [19–21].
In [7] Nasehpour gave the definition of a Gaussian R-algebra as follows: Let T
be an R-algebra such that f ∈ c(f)T for all f ∈ T . T is said to be a Gaussian
R-algebra if c(fg) = c(f)c(g), for all f, g ∈ T .

Example 3.24 ([7]). Let T be a content R-algebra such that R is a Prüfer domain.
Since every nonzero finitely generated ideal of R is a cancellation ideal of R, the
Dedekind-Mertens content formula causes T to be a Gaussian R-algebra.
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Theorem 3.25. Let R be a Prüfer domain, T a content R-algebra and I an ideal
of R.

1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal
of R, then IT is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of T .

2. If IT is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of T , then I is
a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. 1. Assume that I is a strongly quasi-n-absorbing ideal of R. Let fng ∈ IT
for some f, g ∈ T . Then c(fng) ⊆ I. Since R is a Prüfer domain and T is a content
R-algebra, then T is a Gaussian R-algebra. Therefore c(fng) = c(f)nc(g) ⊆ I.
Since I is a strongly quasi-n-absorbing ideal of R, c(f)n ⊆ I or c(f)n−1c(g) ⊆ I.
So fn ∈ c(fn)T ⊆ IT or fn−1g ∈ c(fn−1g)T ⊆ IT . Consequently IT is a quasi-
n-absorbing ideal of T .

2. Note that since T is a content R-algebra, IT ∩ R = I for every ideal I of
R. Now, apply Corollary 3.4(1).

The algebra of all polynomials over an arbitrary ring with an arbitrary number
of indeterminates is an example of content algebras.

Corollary 3.26. Let R be a Prüfer domain and I be an ideal of R.

1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal
of R, then I[X ] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of
R[X ].

2. If I[X ] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R[X ], then
I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

4 Semi-n-Absorbing Ideals

Suppose that m, n are positive integers with m > n. A more general concept
than semi-n-absorbing ideals is the concept of semi-(m,n)-absorbing ideals. A
proper ideal I of a ring R is called a semi-(m,n)-absorbing ideal if whenever
am ∈ I for a ∈ R, then an ∈ I. It is easy to see that every semi-(m,n)-absorbing
ideal is a semi-n-absorbing ideal.

Note that a semiprime ideal is just a semi-1-absorbing ideal.

Theorem 4.1. Let I be a proper ideal of R and m, n be positive integers with
m > n.

1. If I is quasi-n-absorbing, then it is semi-(m,n)-absorbing.

2. I is semi-(m,n)-absorbing if and only if I is semi-(m, k)-absorbing for each
m > k ≥ n if and only if I is semi-(i, j)-absorbing for each m ≥ i > j ≥ n.

3. If I is semi-(m,n)-absorbing, then it is semi-(mk, nk)-absorbing for every
positive integer k.
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4. If I is semi-(m,n)-absorbing and semi-(r, s)-absorbing for some positive in-
tegers r > s, then it is semi-(mr, ns)-absorbing.

Proof. 1. Is trivial.

2. Straightforward.

3. Suppose that I is a semi-(m,n)-absorbing ideal of R. Let a ∈ R and k be a
positive integer such that amk ∈ I. Then

(
ak

)m ∈ I. Since I is semi-(m,n)-

absorbing,
(
ak

)n
= ank ∈ I, and so I is semi-(mk, nk)-absorbing.

4. Assume that I is semi-(m,n)-absorbing and semi-(r, s)-absorbing for some
positive integers r > s. Let amr ∈ I. Since I is semi-(m,n)-absorbing,
anr ∈ I, and since I is semi-(r, s)-absorbing, ans ∈ I. Hence I is semi-
(mr, ns)-absorbing.

Corollary 4.2. Let I be a proper ideal of R.

1. If I is quasi-n-absorbing, then it is semi-n-absorbing.

2. Let t ≤ n be an integer. If I is semi-(n + 1, t)-absorbing, then it is semi-
(nk + i, tk)-absorbing for all k ≥ i ≥ 1.

3. If I is semi-n-absorbing, then it is semi-(nk + i, nk)-absorbing for all k ≥
i ≥ 1.

4. If I is semi-n-absorbing, then it is semi-(nk+j)-absorbing for all k > j ≥ 0.

5. If I is semi-n-absorbing, then it is semi-(nk)-absorbing for every positive
integer k.

6. If I is semiprime, then it is semi-k-absorbing for every positive integer k.

7. If I is semiprime, then for every k ≥ 1 and every a ∈ R, ak ∈ I implies
that a ∈ I.

8. If I is semi-n-absorbing, then it is semi-((n+1)t, nt)-absorbing for all t ≥ 1.

9. If I is semiprime, then it is quasi-k-absorbing for every k > 1.

Proof. 1. By Theorem 4.1(1).

2. Suppose that I is semi-(n + 1, t)-absorbing. Then by Theorem 4.1(3), I is
semi-(nk+ k, tk)-absorbing, for every positive integer k. Again by Theorem
4.1(2), I is semi-(nk + i, tk)-absorbing for every k ≥ i ≥ 1.

3. In part 2 get t = n.

4. By part 3.

5. Is a special case of 4.

6. Is a direct consequence of 5.

7. By part 6.
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8. By Theorem 4.1(4).

9. Assume that I is semiprime. Let akb ∈ I for some a, b ∈ R and some k > 1.
Then (ab)k ∈ I. Therefore ab ∈ I, by part 7. So I is quasi-k-absorbing.

Proposition 4.3. Let I1, I2, . . . , In be ideals of R. If for every 1 ≤ i ≤ n, Ii is a
semiprime ideal, then I1I2 · · · In is a semi-n-absorbing ideal. In particular, if I is
a semiprime ideal of R, then In is a semi-n-absorbing ideal.

Proof. Use Corollary 4.2(7).

Remark 4.4. Let I be an ideal of a ring R. If In+1 is a strongly semi-n-absorbing
ideal, then In+1 = In. In particular, if I2 is a semiprime ideal, then I is idempo-
tent.

The following remark shows that the two concepts of semi-n-absorbing ideals
and of semi-(n+ 1)-absorbing ideals are different in general.

Remark 4.5. Let n > 1, R be a ring and P be a prime ideal of R. By Proposition
4.3, Pn+1 is a semi-(n+ 1)-absorbing ideal. If Pn+1 is a semi-n-absorbing ideal,
then Pn+1 = Pn. Consequently, for any prime number p, pn+1Z is a semi-(n+1)-
absorbing ideal of Z which is not a semi-n-absorbing ideal.

Proposition 4.6. Let I be an ideal of a ring R. If I is such that for every ideal
J of R, we have Jn+1 ⊆ I ⊆ J ⇒ Jn ⊆ I, then I is strongly semi-n-absorbing.

Proof. The proof is similar to that of Proposition 3.17(1).

Proposition 4.7. Let I1, I2, . . . , In be semi-2-absorbing ideals of R. Then I1I2 · · · In
is a semi-(3n − 1)-absorbing ideal.

Proof. Suppose that a3
n ∈ I1I2 · · · In for some a ∈ R. For every 1 ≤ i ≤ n,

a3
n ∈ Ii and Ii is semi-2-absorbing, then a2

n ∈ Ii. Therefore an2
n ∈ I1I2 · · · In.

On the other hand n2n ≤ 3n−1. So a3
n−1 ∈ I1I2 · · · In which shows that I1I2 · · · In

is semi-(3n − 1)-absorbing.

Theorem 4.8. Let I1, I2, . . . , Ik be ideals of R. If Ii is a semi-ni-absorbing ideal
of R for every 1 ≤ i ≤ k, then I1 ∩ I2 ∩ · · · ∩ Ik is a semi-(n− 1)-absorbing ideal

for n =
k∏

i=1

(ni + 1).

Proof. Let a ∈ R be such that an ∈ I1 ∩ I2 ∩ · · · ∩ Ik. Then for every 1 ≤ i ≤ k,


a

k
∏

j=1,j 6=i
(nj+1)




(ni+1)

∈ Ii.
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Since Ii’s are semi-ni-absorbing, then, for each 1 ≤ i ≤ k,

a



ni

k
∏

j=1,j 6=i
(nj+1)





∈ Ii.

Note that for every 1 ≤ i ≤ k,

ni

k∏

j=1,j 6=i

(nj + 1) ≤
k∏

i=1

(ni + 1)− 1 = n− 1.

So we have an−1 ∈ Ii for every 1 ≤ i ≤ k. Hence an−1 ∈ I1 ∩ I2 ∩ · · · ∩ Ik which
implies that I1 ∩ I2 ∩ · · · ∩ Ik is a semi-(n− 1)-absorbing ideal.

Proposition 4.9. Let I1, I2 be ideals of R and m,n be positive integers.

1. If I1 is quasi-m-absorbing and I2 is semi-n-absorbing, then I1I2 is semi-
(n(m+ 1) +m)-absorbing.

2. If I1 is quasi-(2m)-absorbing and I2 is semi-m-absorbing, then I1I2 is semi-
(m(m+ 2))-absorbing.

Proof. 1. Assume that a(n+1)(m+1) ∈ I1I2 for some a ∈ R. Since I1 is quasi-m-
absorbing and a(n+1)(m+1) ∈ I1, then am ∈ I1. On the other hand I2 is semi-n-
absorbing and a(n+1)(m+1) ∈ I2, then an(m+1) ∈ I2. Consequently an(m+1)+m ∈
I1I2, and so I1I2 is semi-(n(m+ 1) +m)-absorbing.

2. Suppose that a(m+1)2 ∈ I1I2 for some a ∈ R. Since I1 is quasi-(2m)-absorbing

and a(m+1)2 ∈ I1, then a2m ∈ I1. Since I2 is semi-m-absorbing and a(m+1)2 ∈ I2,
then am

2 ∈ I2. Hence am
2+2m ∈ I1I2 which shows that I1I2 is semi-(m(m + 2))-

absorbing.

Let R be a ring and I be an ideal of R. We denote by I [n] the ideal of R
generated by the n-th powers of all elements of I. If n! is a unit in R, then
I [n] = In, see [22].

Proposition 4.10. Let I be an ideal of a ring R. Then I is semi-n-absorbing if
and only if J [n+1] ⊆ I implies that J [n] ⊆ I for every ideal J of R.

Proof. The proof is easy.

Corollary 4.11. Let R be a ring such that n! is a unit in R. Then every semi-n-
absorbing ideal of R is strongly semi-n-absorbing.

Proposition 4.12. Let R be a ring. The following statements are equivalent:

1. For every ideal I of R, I [n] ⊆ In+1;

2. For all ideals I1, I2, . . . , In+1 of R we have (I1∩ I2 ∩· · ·∩ In+1)
[n] ⊆ I1I2 · · ·

In+1;
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3. For every elements a ∈ R, an = ran+1 for some r ∈ R;

4. Every ideal I of R is semi-n-absorbing.

Proof. (1)⇒(2) For ideals I1, I2, . . . , In+1 of R, we get from 1,

(I1 ∩ I2 ∩ · · · ∩ In+1)
[n] ⊆ (I1 ∩ I2 ∩ · · · ∩ In+1)

n+1 ⊆ I1I2 · · · In+1.

(2)⇒(1) For an ideal I of R, by 2 we have that I [n] = (

n+1 times︷ ︸︸ ︷
I ∩ · · · ∩ I)[n] ⊆ In+1. So

we have I [n] ⊆ In+1.
(1)⇔(3) and (3)⇔(4) are easy.

Proposition 4.13. Let R be a ring. The following statements are equivalent:

1. For every ideal I of R, In+1 = In;

2. For every ideals I1, I2, . . . , In+1 of R we have (I1 ∩ I2 ∩ · · · ∩ In+1)
n ⊆

I1I2 · · · In+1;

3. Every ideal I of R is strongly semi-n-absorbing.

Proof. Similar to the proof of Proposition 4.12.

Remark 4.14. Let {Iλ}λ∈Λ be a family of semi-n-absorbing ideals of R. Then⋂
λ∈Λ Iλ is semi-n-absorbing.

The following remark shows that the two concepts of semi-n-absorbing ideals
and of quasi-n-absorbing (n-absorbing) ideals are different in general.

Remark 4.15. Let p, q be distinct prime numbers. By Proposition 4.3, pnZ is
a semi-n-absorbing ideal of Z. Therefore Remark 4.14 implies that pnZ ∩ qZ is a
semi-n-absorbing ideal of Z, but it is not quasi-n-absorbing, by Remark 3.11.

Proposition 4.16. For any ring R there exists a unique least semi-n-absorbing
ideal.

Proof. Set I(n) =
⋂{I | I is a semi-n-absorbing ideal of R}. By Remark 4.14,

I(n) is the least semi-n-absorbing ideal.

By notation in the the proof of the previous proposition we have the following
remark:

Remark 4.17. Let R be a ring. First of all, we know that Nil(R) (the set of all
nilpotent elements of R) is the intersection of all prime ideals of R, then I(1) ⊆
Nil(R). Suppose that x ∈ Nil(R), then there is a positive integer m such that
xm = 0 ∈ I(1). Hence I(1) semiprime implies that x ∈ I(1). Thus I(1) = Nil(R).

Proposition 4.18. The following statements hold:
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1. I(1) =
∑
n≥1

I(n).

2. I(nk) ⊆ I(n) for every positive integer k.

3. I(n) ⊆ In for every semiprime ideal I.

Proof. 1. By Corollary 4.2(6) every semiprime ideal is semi-n-absorbing for every
n ≥ 1. Then I(n) ⊆ I(1) for every n ≥ 1.

2. By Corollary 4.2(5).
3. By Proposition 4.3.

Proposition 4.19. Let R1, R2 be rings. If I1 is a semi-n-absorbing ideal of R1

and I2 is a semi-n-absorbing ideal of R2, then I1 × I2 is a semi-n-absorbing ideal
of R1 ×R2.

Proof. Let (a, b)n+1 ∈ I1 × I2 for some a ∈ R1 and b ∈ R2. Then an+1 ∈ I1
and bn+1 ∈ I2. Since I1 is semi-n-absorbing, then an ∈ I1, and since I2 is semi-
n-absorbing, then bn ∈ I2. Hence (a, b)n ∈ I1 × I2 which shows that I1 × I2 is
semi-n-absorbing.

Proposition 4.20. Let R = R1 ×R2 be a decomposable ring and L be a quasi-n-
absorbing ideal of R. Then either L = I1×R2 where I1 is a quasi-n-absorbing ideal
of R1 or L = R1 × I2 where I2 is a quasi-n-absorbing ideal of R2 or L = I1 × I2
where I1 is a semi-(n−1)-absorbing ideal of R1 and I2 is a semi-(n−1)-absorbing
ideal of R2.

Proof. Regarding Proposition 3.21 we only investigate the case when L = I1×I2 in
which I1 is a proper ideal of R1 and I2 is a proper ideal of R2. Let a

n ∈ I1 for some
a ∈ R1. Therefore (a, 1)

n(1, 0) ∈ I1 × I2. Since I2 is proper, then (a, 1)n /∈ I1 × I2.
Hence (a, 1)n−1(1, 0) ∈ I1 × I2, because I1 × I2 is a quasi-n-absorbing ideal of
R. Thus an−1 ∈ I1 which shows that I1 is a semi-(n − 1)-absorbing ideal of R1.
Similarly we can show that I2 is a semi-(n− 1)-absorbing ideal of R2.

Proposition 4.21. Let R = R1 × R2 be a decomposable ring and L be a proper
ideal of R. Then the following statements are equivalent:

1. L is a quasi-2-absorbing ideal of R;

2. Either L = I1×R2 where I1 is a quasi-2-absorbing ideal of R1 or L = R1×I2
where I2 is a quasi-2-absorbing ideal of R2 or L = I1 × I2 where I1 is a
semiprime ideal of R1 and I2 is a semiprime ideal of R2.

Proof. (1)⇒(2) By Proposition 4.20.
(2)⇒(1) Assume that L = I1 × I2 for some semiprime ideal I1 of R1 and some
semiprime ideal I2 of R2. Then, by Proposition 4.19, L = I1 × I2 is a semiprime
ideal of R = R1×R2. Thus L = I1×I2 is a quasi-2-absorbing ideal of R = R1×R2,
by Corollary 4.2(9).
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