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Abstract : Let R be a commutative ring and n be a positive integer. A
proper ideal I of R is called an n-absorbing ideal if whenever xy--- 241 € I
for 1,...,2p41 € R, then there are n of the z;’s whose product is in I. We give
a generalization of Prime Avoidance Theorem. Also, an n-Absorbing Avoidance
Theorem is proved. Moreover, we introduce the notions of quasi-n-absorbing ideals
and of semi-n-absorbing ideals. We say that a proper ideal I of R is a quasi-n-
absorbing ideal if whenever a™b € I for a,b € R, then ¢ € I or a® b€ I. A
proper ideal I of R is said to be a semi-n-absorbing ideal if whenever a™t! € I for
a € R, then a™ € I.
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1 Introduction

Throughout this paper R denotes a commutative ring with 1 # 0. Recall that a
proper ideal I of aring R is said to be a semiprime ideal if whenever a? € I for some
a € R, then a € I. Clearly, I is a semiprime ideal of R if and only if J? C I implies
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that J C I for every ideal J of R. Badawi [I] said that a proper ideal I of R is a
2-absorbing ideal of R if whenever a,b,c € R and abc € I, then ab € I or ac € I or
bc € I. He proved that [ is a 2-absorbing ideal of R if and only if whenever I, I3, I3
are ideals of R with I1IsI3 C I, then I1Io C I or I1I3 C I or IsI3 C I. Anderson
and Badawi [2] generalized the notion of 2-absorbing ideals to n-absorbing ideals.
A proper ideal I of R is called an n-absorbing (resp. a strongly n-absorbing) ideal
if whenever x1 «--xp41 € I for x1,...,2n41 € R (vesp. I1 -+ I,41 C I for ideals
I,...,In41 of R), then there are n of the x;’s (resp. n of the I;’s) whose product
is in I. Clearly, every strongly n-absorbing ideal is an n-absorbing ideal, but for
n > 2 the converse may not be holds. For more studies concerning 2-absorbing
(submodules) ideals we refer to [3HI2Z]. These concepts motivate us to introduce
some generalizations of semiprime ideals. We say that a proper ideal I of R is called
a quasi-n-absorbing (resp. strongly quasi-n-absorbing) ideal if whenever a™b € I
for a,b € R (resp. 171y C I for ideals Iy, I of R), then a™ € I or a®~'b € I (resp.
It CTor I{“llg C I). It is obvious that every strongly quasi-n-absorbing ideal is
a quasi-n-absorbing ideal. Also, a quasi-1-absorbing ideal is just a prime ideal. A
proper ideal I of R is called a semi-n-absorbing (resp. strongly semi-n-absorbing)
ideal if whenever a" ™1 € I for a € R (resp. J" ™! C [ for ideal J of R), then a™ € I
(resp. J™ C I). With these definitions a semiprime ideal is just a semi-1-absorbing
(strongly semi-1-absorbing) ideal. Let M be a nonzero R-module. We say that M
is secondary precisely when, for each r € R, either rM = M or there exists n € N
such that "M = 0. When this is the case, P := /(0 :p M) is a prime ideal of R:
in these circumstances, we say that M is a P-secondary R-module. A secondary
ideal of R is just a secondary submodule of the R-module R (see [13]). A domain
V' with the quotient field K is said to be a wvaluation domain if for every x € K,
x€Voraz! €V. A von-Neumann regular ring is a ring R such that for every a
in R there exists an z in R such that a = aza.

We recall from [I4] the Prime Avoidance Theorem: Let Py, Ps, ..., P,, n > 2,
be ideals of R such that at most two of P;, P, ..., P, are not prime. Let I be an
ideal of R such that I C PUP,U---UP,,. Then I C P; for some ¢ with 1 <7 < n.
In [8], Payrovi and Babaei stated the 2-Absorbing Avoidance Theorem.

In section 2, we generalize the Prime Avoidance Theorem. Let I be an ideal
of a ring R. We prove that if

ICJUKUWUZLPYYUWUE (PY NP U U (PO N0 PIY))

where J, K are ideals of R and Pi(’];)’s are prime ideals of R, then either I C J or

IgKorIQPi(;)ﬁ~~ﬂPi($) for some 1 < j < m and some 1 <7 < nj.

We prove an n-Absorbing Avoidance Theorem as follows: Let 11,15, ..., I,
(m > 2) be ideals of R such that I; be an n;-absorbing ideal of R for every
3 <i < m. Suppose that I; ¢ (I; :gr ™) C R for every x € /I;\I; with
i # j. If I is an ideal of R such that I C Iy Uy U---U I, then I C I; for
some 1 < i <m. Moreover, let I, Is,..., I, (m > 2) be ideals of R and I; be an
ni-absorbing ideal of R for every 2 < i < m. Suppose that I; € (I; :g 2™~ !') C R
for every x € \/I_j\lj with ¢ # j. If I is an ideal of R and e is an idempotent
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element of R such that I +e C ;UL U---UI,,, then we show that (I,e) C I, for
some 1 <1 <m.

In section 3, we give many properties of quasi-n-absorbing ideals, for example
we show that if I; is a quasi-n;-absorbing ideal of a ring R for every 1 < i < k,
then Iy NIsN---N I is a quasi-n-absorbing ideal for n = ny +- - - +nyg. It is proved
that for ideals Iy, Io, ..., I; of a ring R:

1. If I is quasi-n-absorbing and I is quasi-m-absorbing for m < n, then I N1s
is quasi-(n + 1)-absorbing.

2. If 1, I, ..., I; are quasi-n-absorbing, then I; NIo N---N I; is quasi-(n + t)-
absorbing.

3. If I; is quasi-n;-absorbing for every 1 < i <t with ny < ns < --- < ny and
t> 2 then Iy NI N---NI; is quasi-(n; + 2)-absorbing.

Also, it is shown that if [ is a secondary ideal of a ring R and J is a quasi-n-
absorbing ideal of R, then I N J is secondary. For an ideal I of a Priifer domain
R we show that the following assertions hold:

1. If I is a strongly quasi-n-absorbing ideal of R, then I[X] is a quasi-n-
absorbing ideal of R[X].

2. If I[X] is a quasi-n-absorbing ideal of R[X], then I is a quasi-n-absorbing
ideal of R.

In section 4, it is shown that if I is a semiprime ideal of a ring R, then [ is a
semi-i-absorbing (resp. quasi-j-absorbing) ideal of R for every ¢ > 1 (resp. j > 1).
Let R = R; X Ry be a decomposable ring and L be a proper ideal of R. Then we
prove that the following statements are equivalent:

1. L is a quasi-2-absorbing ideal of R;

2. Either L = I} X Ry where I is a quasi-2-absorbing ideal of Ry or L = Ry X I,
where I is a quasi-2-absorbing ideal of Ry or L = I; x Iy where I is a
semiprime ideal of R; and I5 is a semiprime ideal of R.

2 Properties of n-Absorbing Ideals
First, we give a generalization of the Prime Avoidance Theorem.

Theorem 2.1 (Generalized prime avoidance theorem). Let I be an ideal of a ring
R. If

ICJUKU(ULPY)UUE (PE NP U Ui (PO n---n P

,m 7, m

where J, K are ideals of R and Pisl;) ’s are prime ideals of R, then either I C J or
ICK orIQPi%)ﬂ---ﬂPig) for some 1 < j<m and some 1 <i<n;.
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Proof. We use induction on m. The case when m = 1 is just the Prime Avoidance
Theorem. Let m > 1 and assume that the claim holds for all positive integers less
than m. Let

ICJUKUULPY)UUE (RS nPE) U U (PO -0 P))

= 1, ,m

where J, K are ideals of R and Pi(’];)’s are prime ideals of R. If

JNPEU-uUm (P e P,

1, =1 i,m—1 i,m—1

I CJUKUUR, PYYUWU, (P!

G i,
then by the induction hypothesis we are done. Suppose that

I¢ JUKUUR, PYYUWUE (P NP U U (PO 0PI,

i,m—1

Since
ICJUKUUZPYUUE (PSP U---

T — 1 -1 m 1 -1
U (P e N PO U (Ul (P A -0 P YY),

i,m—1

the induction hypothesis implies that I C PZ(;)L n-- -ﬂPi(Zlfl) for some 1 <3 < ny,.
There are two cases:
Case 1. Let I C PZ(;)L NN Pi(’?:l_l) for every 1 <7 < n,,. Notice that

ICJUKU(UZPYYUWLE (PYNPE) U

V(U (Bl N NPT U (Ui PY),
so we have that I C Pj(f:l) for some 1 < j < n,,. Thus I C Pj(}% NN P;;ZX
Case 2. Assume that there exists 1 < ¢ < n,,, such that I C Pﬁi N---N Pi(,ﬁ_l)
forevery 1 <i<tand I ¢ U;’;’;H(P;Z N---N PZ-(’ZL;D). Because

IS JUKUUR P UUE (B NP U Uz (P 0N P Y)))

,m—1
1 -1
VU P U Uz (PG -0 PETY)),
by the induction hypothesis we deduce that I C PISZI) for some 1 < k < t, whence
1C Pl n---npm. O

Theorem 2.2 ([2] Theorem 2.5]). Let I be an n-absorbing ideal of a ring R. Then
there are at most n prime ideals of R minimal over I.

Theorem 2.3 ([2, Theorem 2.14]). Let I be an n-absorbing ideal of a ring R such
that I has exactly n minimal prime ideals, say Py,...,P,. Then P,--- P, C I.

Corollary 2.4. Let I be an n-absorbing ideal of a ring R such that I has exactly
n minimal prime ideals. Then (VI)" C I.
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Proposition 2.5 ([2, Corollary 3.6]). Let n > 2 and I C \/I be an n-absorbing
ideal of a ring R. Suppose that x € I\I and ™ € I, but "' ¢ I. Then
(I :g "1 is a prime ideal of R.

Theorem 2.6. Let I be an n-absorbing ideal of a ring R with distinct minimal
prime ideals Py, ..., P,. Suppose that x1,...,2,—1 € R be such that ©; € P\P,
fori=1,...,n—1. Then (I :g ®1 -+ xn_1) = Pn. In particular, if x is an element
of R such that x € (PL N+ N Py_1)\Py, then (I :g 2" 1) = P,.

Proof. Assume that x1,...,2,-1 € R be such that x; € P\P, fori=1,...,n—1.
Since 1+ -+ xp—1 ¢ Py, then (I :g 21 xp—1) C P,. Let y € P,. By Theorem 23
we have that 1+ 2,1y € P1+--P,_1P, CI. Hencey € (I :g 1+ x,—1) and
so the equality holds. [l

Theorem 2.7. Let I be a strongly n-absorbing ideal of a ring R with distinct
minimal prime ideals Py, ..., Py, (m <n). Suppose that x1,...,Zm—1 € R be such
that z; € P\P,, fori=1,...,m—1. Then (I :g 2" ---a," ") = P, for positive
mntegers Ny, ..., Nm—1 wWithn —1=mn1 4+ -+ +nypy—_1.

Proof. Regarding [2] Theorem 6.2] the proof is similar to that of Theorem 26 O

Definition 2.8. Suppose that m, n are positive integers with m > n. A proper
ideal I of a ring R is called (m,n)-absorbing if whenever ajas---a, € I for
ai,as,...,ay, € R, then the product of n of the a;’s is in 1.

Theorem 2.9. Let I be a proper ideal of a ring R and m > n. Then I is (m,n)-
absorbing if and only if I is n-absorbing.

Proof. The “if” part has a routin verification. For the converse, let I be (m,n)-
absorbing and let aj,as,...,a,+1 € R be such that ajas...an41 € I. Then
m—n—1 times
—— . .
aias...apy11.1...1 € 1. Since [ is proper, then the product of n of a1, aq, ...,
an+1 is in I. Consequently I is n-absorbing. (|

Proposition 2.10. Let V' be a valuation domain with the quotient field K and let I
be a proper ideal of V.. Then I is an n-absorbing ideal of V' if and only if whenever
T1X9 - Tpy1 € I with x1,Ta,...,xn41 € K, then there are n of x1,22,...,Tn41
whose product is in I.

Proof. Assume that [ is an n-absorbing ideal of V. Let z125 -« - 2,41 € I for some
Z1,%2,...,Tnt1 € K such that x1ze-- 2, ¢ I. If x,41 ¢ V, then :E;Jlrl eV,
since V is valuation. So 7 - - - :cn:an:E;}rl =x1-- T, € I, a contradiction. Hence
Tpt1 € V. I x; € V for every 1 < i < n, then there is nothing to prove. If x; ¢ V
for some 1 < ¢ <n, then 1 -+ -2, 1241 xTpy1 € 1. O

Proposition 2.11. Let R be a von-Neumann regular ring. Then I is an n-
absorbing ideal of R if and only if eyes - --epy1 € I for some idempotent elements
€1,€2,...,ent1 € R implies that the product of n of e1,ea,...,en41 is in 1.
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Proof. Notice the fact that any finitely generated ideal of a von-Neumann regular
ring R is generated by an idempotent element. O

Theorem 2.12. Let R be a ring. Suppose that J, K are ideals of R and I; is
an ni-absorbing ideal of R for every 1 < i < m. If I is an ideal of R such that
ICJUKUL UL U---Ul,, then either I C J or I C K or I C /I; for some
1<i<m.

Proof. Assume that I is an ideal of R such that I C JUK UL Ul U---U L.
Then I C JUKUIT, UV, U---U+/1,,. Now apply Theorem 2.2 and Theorem
21 O

Corollary 2.13. Let I; be an n;-absorbing ideal of a ring R for every 1 <i <m
(m > 2). Suppose that for every 1 < i < m, I; has exactly n; minimal prime
ideals. If I is an ideal of R such that I C [LUIyU---UI,,, then I™ C I; for some
1<i<m.

Proof. By Theorem and Corollary 24 O

Corollary 2.14. Let I; be a strongly n;-absorbing ideal of a ring R for every
1<i<m (m>2). If I is an ideal of R such that I C Iy Ul U---U I, then
I C I; for some 1 <i<m.

Proof. By Theorem [Z12] and [2, Theorem 6.1]. O

Theorem 2.15 (n-Absorbing avoidance theorem). Let Iy, I, ..., L, (m > 2) be
ideals of R such that I; be an n;-absorbing ideal of R for every 3 <i < m. Suppose
that I; € (I; :r ™) C R for every x € \/T;\I; with i # j. If I is an ideal of R
such that I CTLUIyU---Ul,, then I C I; for some 1 <i<m.

Proof. Suppose that I is an ideal of R such that I C Iy Ul U---U I,. By
Theorem 212, either I C I or I C I or I C /I, for some 3 <i<m. If I C I or
I C I, then we are done. So, we assume that I C \/E for some 3 < j < m. Let
I ¢ I;. Hence there exists € I\I;, and so x € \/I_j\Ij. Then we may assume that
I C [UILU- - -Ul,, is an efficient covering of ideals of R. Therefore I = U™, (I;NI)
is an efficient union. So, [I5, Lemma 2.1] implies that (N;zxZ;) NI C Iy NI. Thus
by hypothesis, I; ¢ (I; :r 2™ ~) C R for every i # j. Then, for every i # j there
exists r; € L;\(Ij :g 2™~ 1). Set r = [Liy;ri Thus ro € (Nig L) NI C ;NI
Therefore r € (I; :r 2™ 1) which is a contradiction, because by Proposition 2.5]
(I; :r 2™~ ') is a prime ideal of R. Consequently I C I; for some 1 <i <m. [

Theorem 2.16. Let I be an ideal of a ring R and let a € R. If
I+aCJU (UL PY)UUE(PY NP U U (U (PG 0N PTY)

where J is an ideal of R and Pf’? 's are prime ideals of R, then either (I,a) C J
or (I,a) C Pi(j-) ﬂ---ﬂPZ—(yj]'-) for some 1 < j <m and some 1 <i < n;.
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Proof. By using [16, Theorem 12| and by a similar manner to that of Theorem

21 O

Corollary 2.17. Let R be a ring, J be an ideal of R and I; be an n;-absorbing
ideal of R for every 1 <i<m (m >1). If I is an ideal of R and a is an element
of R such that [ +a C JUI; UI,U---Ul,,, then either (I,a) C J or (I,a) C/T;
for some 1 < i < m.

Corollary 2.18. Let I; be an n;-absorbing ideal of a ring R for every 1 <i<m
(m > 2). Suppose that for every 1 < i < m, I; has exactly n; minimal prime
ideals. If I is an ideal of R and a € R such that  +a C L UIyU---U I, then
(I,a)™ C I; for some 1 <i<m.

Corollary 2.19. Let I; be a strongly n;-absorbing ideal of a ring R for every 1 <
1 <m (m>2). IfIis an ideal of R and a € R such that +a C [LULU---Ul,,
then (I,a)™ C I; for some 1 <i<m.

Theorem 2.20. Let I, I, ..., I, (m > 2) be ideals of R and I; be an n;-absorbing
ideal of R for every 2 < i < m. Suppose that I; ¢ (I; :r 2"~ ') C R for every
T € \/I_j\Ij with i # j. If I is an ideal of R and e is an idempotent element of R
such that I +e CThUI,U---Ul,, then (I,e) C I; for some 1 <i <m.

Proof. By Corollary 2ZT7 we deduce that either (I,e) C I; or (I,e) C \/E for
some 2 < 7 < m. The first case leads us to the claim. In the second case we
have I C /I; and e € I;. If I C I;, then there is nothing to prove. So, we
assume that I ¢ I;. Hence, there exists z € I\I; and then z € /I;\I;. If
I+eChLULU---UlI, is an efficient covering of I, then (N;x; ;) NI C I; N 1.
On the other hand, by our hypothesis we have that for every ¢ # j there exists
ri € L\(I; :r ™ ~1). Set r = Hi#j ri. Thus ra € (Njx;1;) NI C I;. Therefore
r € (I; :g 2™ ') which is a contradiction, since (I; :g 2" ~!) is a prime ideal of
R. Consequently I + e C I; for some 1 < i < m, and so (I,e) C I,. O

3 Quasi-n-Absorbing Ideals

We begin this section with the following proposition.

Proposition 3.1. Let I be an ideal of a ring R. Then the following statements
are equivalent:

1. 1 is quasi-n-absorbing;
2. For each a € R with a™ ¢ I, (I :gr a") = (I :g a™1);

3. For every a € R and every ideal J of R with a™J C I, either a™ € I or
a1J C1I.

Proof. The proof is easy. O
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Corollary 3.2. Let R be a ring. Then 0 is a quasi-n-absorbing ideal of R if and
only if for each a € R, either a™ = 0 or anng(a™) = anng(a™1).

Proof. By Proposition 3.1 O

Proposition 3.3. Let f: R — R’ be a homomorphism of rings.

1. IfI' is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R', then f~1(I")
is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

2. If f is an epimorphism and I is a quasi-n-absorbing (resp. semi-n-absorbing)
ideal of R containing Ker(f), then f(I) is a quasi-n-absorbing (resp. semi-
n-absorbing) ideal of R'.

Proof. 1. Let I’ is a quasi-n-absorbing ideal of R’ and a"b € f~1(I') for some
a,b € R. Then f(a)"f(b) € I'. Hence either f(a)" € I’ or f(a)" 1 f(b) € I', and
thus either a™ € f~1(I') or a"~'b € f~1(I'). So f~(I') is a quasi-n-absorbing
ideal of R.

2. Assume that f is an epimorphism and [ is a quasi-n-absorbing ideal of R such
that Ker(f) C I. Let o/,b' € R' and (o)™ € f(I). So there exist a,b € R such
that f(a) = a’ and f(b) =¥, and f(a"b) = (a’)"b" € f(I). Since Ker(f) C I, then
a™b € I. Tt implies that either a™ € I or a™~'b € I. Therefore either (a/)" € f(I)
or (a/)"~tb' € f(I). Consequently f(I) is a quasi-n-absorbing ideal of R’. O

As an immediate consequence of Proposition [3.3] we have the following result.

Corollary 3.4. Let R be a ring and I be an ideal of R.

1. If R’ is a subring of R and I is a quasi-n-absorbing (resp. semi-n-absorbing)
ideal of R, then INR’ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal

of R'.

2. Let J be an ideal of R with J C I. Then I is a quasi-n-absorbing (resp.
semi-n-absorbing) ideal of R if and only if I/J is a quasi-n-absorbing (resp.
semi-n-absorbing) ideal of R/J.

Corollary 3.5. Let I be an ideal of a ring R. Then (I, X) is a quasi-n-absorbing
(resp. semi-n-absorbing) ideal of R[X] if and only if I is a quasi-n-absorbing (resp.
semi-n-absorbing) ideal of R.

Proof. By Corollary B4[2) and regarding the isomorphism (I, X)/(X) ~ I in
R[X]/(X) ~ R we have the result. O

Let M be an R-module. The set of all zero divisors on M is:
Zr(M) = {r € R | there exists an element 0 # x € M such that rz = 0}.

Proposition 3.6. Let R be a ring, S be a multiplicatively closed subset of R, and
I a proper ideal of R. Then
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1. If I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R with INS = (),
then S™I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of S™'R.

2. If S7'I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of STR, SN
Zr(R/I) =0, then I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal
of R.

Proof. 1. Let a,b € R, s,t € S such that (%)"% € S~1'I. Then there exists u € S
such that ua™b € I. Since I is quasi-n-absorbing and ua™b € I, then a™ € I or
ua" b € I. So (£)" € ™' or (&)1l = wa_b ¢ G-I Therefore S~'1 is a
quasi-n-absorbing ideal of S™'R.

2. Let a,b € R such that a"b € I. Then 4% = (2)"% € S~'I. Therefore
(4)" € S or (2"t e ST If (2)" € S~'I, then for some v € S, va™ € I.
Since v € S and SN Zr(R/I) = 0, then a™ € I. Similarly, if (2)""12 € 5717,
then a"~'b € I. Consequently I is a quasi-n-absorbing ideal of R. O

n—lb

Definition 3.7. Let m > n be positive integers. A proper ideal I of a ring R is
called quasi-(m,n)-absorbing if whenever a™~1b € I for a,b € R, then a™ € I or
a”bel.

Proposition 3.8. Let I be a proper ideal of R and m > n be positive integers.
Then I is quasi-(m,n)-absorbing if and only if I is quasi-n-absorbing.

Proof. Assume that I is quasi-(m,n)-absorbing. Let a™b € I for some a,b € R.
Since n < m — 1, then a™'b € I. Therefore a™ € I or a” b € I. Consequently
I is quasi-n-absorbing. Now, suppose that I is quasi-n-absorbing. Let a™ b € I
for some a,b € R. Therefore a™a™~1=™b ¢ I. Hence a™ € I or ™ ta(m=1-"p =
a(m=2)p € I. Repeating this method implies that a” € I or a® 'b € I. Thus I is
quasi-(m, n)-absorbing. O
Proposition 3.9. Let I be a proper ideal of a ring R.
1. I is prime if and only if I is quasi-1-absorbing if and only if I is 1-absorbing.
If I is quasi-n-absorbing, then it is quasi-i-absorbing for all i > n.
If I is prime, then it is quasi-n-absorbing for alln > 1.

2.
3.
4. If I is n-absorbing, then it is quasi-n-absorbing.
5.

If I is quasi-n-absorbing for some n > 1, then there exists the least ng > 1
such that I is quasi-ng-absorbing. In this case, I is quasi-n-absorbing for
all n > ng and it is not quasi-i-absorbing for ng > i > 0.

Proof. Every statement has a routin verification. O

Proposition 3.10. Let I be a proper ideal of a ring R. If I is a quasi-n-absorbing
ideal of R, then NI = {x € R|a™ € I}, the converse holds if I is primary.
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Proof. First, assume that I is quasi-n-absorbing. Clearly {z € R | 2™ € I} C V1.
Now, let z € V/I. Then there exists m > 1 such that 2 € I. If m < n,
then 2™ € I. If m > n, then by Proposition we have that I is quasi-(m,n)-
absorbing. So, 2™~z € T implies that 2™ € I. Therefore VI = {z € R| 2™ € I},
Conversely, assume that T = {z € R | 2" € I} and I is primary. Let a™b € I
for some a,b € R. If a™ € I, then we are done. Therefore, suppose that a™ ¢ I.
Hence a ¢ V1, and so a"'b € I. Consequently I is quasi-n-absorbing. O

The following remark shows that the two concepts of quasi-(n + 1)-absorbing
ideals ((n + 1)-absorbing ideals) and of quasi-n-absorbing ideals are different in
general.

Remark 3.11. Let p, q be distinct prime numbers. By [2, p. 1650], p"Z is an n-
absorbing ideal of Z. So p"ZNqZ is an (n+1)-absorbing ideal, [2, Theorem 2.1](c).
Then p"ZNqZ is quasi-(n+ 1)-absorbing. If p"ZNqZ is a quasi-n-absorbing ideal,
then p"q € p"Z N qZ implies that either p™ € qZ or p"~'q € p"Z, which is a
contradiction.

Proposition 3.12. Let {Px}xea be a family of prime ideals of a ring R. Then
Mxea Pr is a quasi-i-absorbing ideal for every i > 2.

Proof. Let I = (\,ca Px. By Proposition[3.9(2), it is sufficient to we show that I
is a quasi-2-absorbing ideal. Suppose that a?b € I for some a,b € R. Since every
P, is prime and a?b € Py, then ab € Py. Therefore ab € I, and so we conclude
that I is a quasi-2-absorbing ideal. O

Remark 3.13. Let p1,pa,...,pnt1 be distinct prime numbers. Then by Proposi-
tion[312, Z(p1p2 - - - Prnt1) = Zp1 NZpa N« - -NZppi1 is a quasi-i-absorbing ideal of
Z for every i > 2. But, clearly Z(pip2 . ..Pn+1) i not an n-absorbing ideal. This
remark shows that the two concepts of quasi-n-absorbing ideals and of n-absorbing
ideals are different in general.

A commutative ring R is called semiprimitive if Jac(R) = 0, [I7]. A commu-
tative ring is semiprimitive if and only if it is a subdirect product of fields, [I8] p.
179].

As a direct consequence of Proposition B.12 we have the following result.

Corollary 3.14. Let R be a ring.

1. For every proper ideal I of R, \/T is a quasi-i-absorbing ideal of R for every
i>2.

2. Nil(R) and Jac(R) are quasi-i-absorbing ideals of R for every i > 2.

3. If R is a semiprimitive ring, then 0 is a quasi-i-absorbing ideal in R for
every i > 2.

Proposition 3.15. Let R be a ring. The following statements are equivalent:
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1. For every elements a,b € R, a™ = ra™b for some r € R or a”~1b = sa™b for
some s € R;

2. FEvery proper ideal of R is quasi-n-absorbing.
Proof. Straightforward. [l
Proposition 3.16. Let R be a ring. The following statements are equivalent:

1. For every ideals I,J of R, I" = I"J or " 'J =1"J;

2. For every ideals I, Is, ..., Iny1 of R, (hNLN---NL)" C LIy I or
(hnLn---NL)" 'y Chly Iy

3. Every proper ideal of R is strongly quasi-n-absorbing.
Proof. (1)=(2) Suppose that Iy, I, ..., I 41 are ideals of R. By part (1),

(hNnkLn---NI)"=(0LNnkLNn---NL) "1 Chly-Inga,

or
(hNLN---NL)" 'y =L NLN---NL) " Ty ChIy--- Iy
n times
—~
(2)=(1) For ideals I,J of R, we have from (2), I" = (IN---NI)*» C I*J or
n times
—
" y=0In---nnH"tyciy.
(1)<(3) Is trivial. O

Proposition 3.17. Let I be a proper ideal of R.

1. If for every ideals I1,Iy of R, we have I}l C T C LN = [I? C 1T or
IP I, C 1), then I is strongly quasi-n-absorbing.

2. If for every ideals I, Is, ..., I+1 of R, we have
11[2---In+1 g[ and Ig[lﬂIQQ-"ﬂIn+1:>

Iy I;- Iy €I, for some1<i<n+1]

then I is a strongly n-absorbing ideal.

Proof. 1. Assume that I is an ideal that satisfies the hypothesis atated in 1.
Let J*Jo C I for some ideals Jy, Js of R. Then (J1 +1)*(Jo+1) C I, so we
have (J; +1)* C T or (Jy +1)" Y (Jo+1) C I. Thus J C I or J{“ljg Cc .

2. The proof is similar to that of 1. O

Notice that in Remark B.TT] we can observe that the intersection of two quasi-
n-absorbing ideals may not be quasi-n-absorbing.
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Proposition 3.18. Let {Ix}xea be a chain of quasi-n-absorbing ideals. Then
Mxea In 48 a quasi-n-absorbing ideal.

Proof. Let I = [\ ca I and suppose that a™b € I for some a,b € R. If a™ € I
for each A € A, then a™ € I. So we may assume that there is Ay € A such that
a™ ¢ I,, then a™ ¢ I, for each Iy C I,,. Since all ideals in {I)}xea are quasi-n-
absorbing, it follows that a”~'b € I, for each Iy C I),. Thus a"'b € I, for each
A € A, so that a®'b € I. We deduce that I is a quasi-n-absorbing ideal. O

Proposition 3.19. Let I, 1o, ..., I be ideals of R. If I; is a quasi-n;-absorbing
ideal of R for every 1 <1 <k, then Iy NIs N ---N Iy is a quasi-n-absorbing ideal
form=mny+---+ng.

Proof. Let a,b € R be such that a"b € Iy N I;N---N 1. Since I;’s are quasi-
n-absorbing, then, for every 1 < i < k, either a™ € I; or a™'b € I;. If for
every 1 < i < k,a™ € I;,thena” e [ NIoN--- NI If for every 1 <1 < k,
a™1b € I;, then a” b€ I; NI, N --- N I;. Otherwise, without loss of generality
we may assume that there exists 1 < j < k such that a™ € I; for every 1 <1¢ < j
and @™~ 'b € I; for every j +1 <4 < k. Hence a" 'b € I, NI, N---N I} which
shows that Iy N Io N---N I is a quasi-n-absorbing ideal. O

Theorem 3.20. Let I, 1o, ..., 1I; be ideals of R.

1. If I is quasi-n-absorbing and I is quasi-m-absorbing for m < n, then Iy NIs
is quasi-(n + 1)-absorbing.

2. If 1, I, ..., I; are quasi-n-absorbing, then 1 NIoN---N 1} is quasi-(n+1)-
absorbing.

3. If I is quasi-n;-absorbing for every 1 < i <t with ny < ng < -+ < ng and
t>2, then L NIoN---N1; is quasi-(ns + 2)-absorbing.

Proof. 1. Let a,b € R be such that a"™'b € I; N I,. We show that a"t! € I, N I,
or a"b € I N Iz. Since I is quasi-n-absorbing, then by Proposition B.8 it is
quasi-(n + 2,n)-absorbing. Therefore either a™ € I; or a® b € I. Also, I is
quasi-m-absorbing, again by Proposition 3.8l either a™ € I or a™'b € I,. There
are four cases.

Case 1. Suppose that a” € I; and a™ € Is. Then a™ € I; N I5.

Case 2. Suppose that a® € I and a™ 'b € I,. Then a™b € I; N I».

Case 3. Suppose that a”'b € I; and a™ € I,. Then a® b€ I, N I,.

Case 4. Suppose that a® b € I, and a™ 'b € I,. Then a" b € I; N L.
Consequently I1 N I is quasi-(n + 1)-absorbing.

2. Induction on t: For ¢ = 1 there is nothing to prove. Let ¢ > 1 and assume that
for t — 1 the claim holds. Then I; N[ N---NI;_; is quasi-(n + t — 1)-absorbing.
Since I is quasi-n-absorbing, then it is quasi-(n + ¢ — 2)-absorbing, by Proposition
B3(2). Therefore I; N Is N --- N I; is quasi-(n + t)-absorbing, by part 1.

3. Induction on ¢: For t = 3 apply parts 1 and 2. Let ¢ > 3 and suppose that for
t — 1 the claim holds. Hence I; N I; N ---N1;_1 is quasi-(ns—1 + 2)-absorbing. We
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have the following cases:

Case 1. Let ny—1+2 < ng. In this case 1 NI;N---N1; is quasi-(n; + 1)-absorbing,
by part 1. Therefore Iy N Is N --- N I; is quasi-(ns + 2)-absorbing.

Case 2. Let ny—1 +2 =n;. Thus Iy N Io N ---N I is quasi-(ns + 2)-absorbing, by
part 2.

Case 3. Let ng—1+2 > ny. Then 1 NIoN---N1; is quasi-(ny—1 + 3)-absorbing, by
part 1. Since ny—1+3 = ny+2, then I; NIxN---NI; is quasi-(n;+2)-absorbing. O

Proposition 3.21. Let R = Ry X Ry be a decomposable ring, 11 a proper ideal of
Ry and I> a proper ideal of Ry. Then I (resp. Is) is a quasi-n-absorbing ideal of
Ry (resp. Ra) if and only if I X Ry (resp. Ry x I3) is a quasi-n-absorbing ideal
of R.

Proof. (=) Suppose that I; is a quasi-n-absorbing ideal of R;. Let (a1, a2)"(b1,b2)
€ I X Ry for some (a1, a2), (b1,b2) € R. Hence ab; € I1, and so either a} € I or
a?71b1 € I;. Therefore either (a1,as)™ € Iy X Ry or (a1, az)" 1(b1,b2) € I} X Ra.
Consequently I; X Ry is a quasi-n-absorbing ideal of R.

(<) Assume that I; x R is a quasi-n-absorbing ideal of R. Let a™b € I for some
a,b € Ry. Then (a,1)"(b,1) € I; x Ry. Hence (a,1)" € I; x Ry or (a,1)""(b,1) €
Ii x Ry. Therefore a™ € I or a®'b € I,. So I; is a quasi-n-absorbing ideal of
R;. O

A strategy similar to Theorem [3.20] leads us to the following theorem:

Theorem 3.22. Let I, 1Is,...,I; be ideals of rings Ry, R, ..., R, respectively.

1. If I is a quasi-n-absorbing ideal of Ry and I3 is a quasi-m-absorbing ideal
of Ra for m < n, then Iy x I is a quasi-(n + 1)-absorbing ideal of R1 X Rs.

2. If L, I»,...,I; are quasi-n-absorbing ideals of R1, Ra, ..., Ry, respectively,
then Iy X Is X - - x I is a quasi-(n+t)-absorbing ideal of Ry X Ry X -+ X Ry.

3. If I; is a quasi-n;-absorbing ideal of R; for every 1 < i <t with ny < ng <
s <ng and t > 2, then Iy X Is X -+ - X I} is a quasi-(ng + 2)-absorbing ideal
0fR1 XR2 Xoeee XRt.

P?”OOf. 1. Let (al,ag), (bl,bg) € Ri x Ry be such that (al,ag)”“(bl,bg) e I, x Io.
Therefore a?“bl € I, and ag“bg € I,. Since I is a quasi-n-absorbing ideal of
Ry, then a} € I or a?_lbl € I;. Also, I, is a quasi-m-absorbing ideal of Rs
and ai by = a(ah T T ™hy) € I, s0 aft € Iy or ay " Hah T b)) = alby € Io.
Consider the following cases.

Case 1. Assume that a} € I; and a* € I. Then (a1,a2)" € I1 X Is.

Case 2. Assume that af € I; and a}by € I5. Then (a1, a2)"(b1,b2) € I1 X Is.
Case 3. Assume that a?_lbl € I and aJ* € Iy. Then (a1, a)" (b1, b2) € I1 X I5.
Case 4. Assume that a?_lbl € I and afby € Ir. Then (a1, a2)"(b1,bs) € I1 X I.
Consequently I7 x Iy is a quasi-(n + 1)-absorbing ideal of Ry X Rs.

2. We use induction on t. For ¢t = 1 there is nothing to prove. Let ¢ > 1 and assume
that for t—1 the claim holds. Then I X Io X - - - X I;_1 is a quasi-(n+t—1)-absorbing
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ideal of Ry X Ry X -+ X R;_1. Since I; is a quasi-n-absorbing ideal of Ry, then it
is quasi-(n + t — 2)-absorbing, by Proposition [39(2). Therefore I} X Iy X -+ X I
is a quasi-(n + t)-absorbing ideal of Ry X Ry X -+ X Ry by 1.

3. Induction on ¢: For t = 3 apply parts 1 and 2. Let ¢ > 3 and suppose that for
t — 1 the claim holds. Hence I} X Iy X --- x I;_7 is a quasi-(n¢—1 + 2)-absorbing
ideal of Ry x Ry X --+ x R;_1. We consider the following cases:

Case 1. Let ny—1 +2 < ng. In this case Iy x Iy x --- X I is a quasi-(ns + 1)-
absorbing ideal of Ry X Rg X --+ X R; by part 1. Therefore I; x Iy x --- x I} is a
quasi-(ns + 2)-absorbing ideal of Ry X Ry X - -+ X Ry.

Case 2. Let ny—1 +2 =mny. Thus I1 x Iz x --- x I is a quasi-(n; + 2)-absorbing
ideal of Ry X Ry X -+- X Ry by part 2.

Case 3. Let ny—1+2 > ny. Then I X Iy X - -+ X I is a quasi-(ny—1 + 3)-absorbing
of Ry X Ro X -+ X Ry by part 1. Since ny_1+3 =mn; +2, then Iy x I3 X --- X I} is
quasi-(ns + 2)-absorbing. O

Theorem 3.23. Let I be a secondary ideal of a ring R. If J is a quasi-n-absorbing
ideal of R, then I N J is secondary.

Proof. Assume that I is a P-secondary ideal of R, and let a € R. If a € P =
V(0 :g I), then clearly a € \/(0:g INJ). If a ¢ P, then a™ ¢ P, and so a"I = I.
We show that a(I'N.J) = INJ. Suppose that z € INJ. There is an element b € T
such that = a™b € J. Since J is quasi-n-absorbing we get a™ € J or "~ 'b € J.
Ifa" € J,then I =a"I C Jandsoa(INJ)=al =1=1NJ. If a® 'b € J, then
x =a"b € a(INJ) and we are done. O

Let R be a ring with identity. We recall that if f =ag+a1 X +---+a; X is a
polynomial on the ring R, then content of f is defined as the ideal of R, generated
by the coefficients of f, i.e. ¢(f) = (ag,a1,...,a,). Let T be an R-algebra and
¢ the function from T to the ideals of R defined by c(f) = N{I | I is an ideal of
R and f € IT} known as the content of f. Note that the content function c is
nothing but the generalization of the content of a polynomial f € R[X]. The
R-algebra T is called a content R-algebra if the following conditions hold:

1. Forall feT, fec(f)T.

2. (Faithful flatness) For any r € R and f € T, the equation ¢(rf) = re(f)
holds and ¢(17) = R.

3. (Dedekind-Mertens content formula) For each f, g € T, there exists a natural
number n such that c¢(f)"c(g) = c(f)" te(fg).

For more information on content algebras and their examples we refer to [T9H21].
In [7] Nasehpour gave the definition of a Gaussian R-algebra as follows: Let T
be an R-algebra such that f € ¢(f)T for all f € T. T is said to be a Gaussian
R-algebra if ¢(fg) = ¢(f)c(g), for all f,g e T.

Example 3.24 ([7]). Let T be a content R-algebra such that R is a Priifer domain.
Since every nonzero finitely generated ideal of R is a cancellation ideal of R, the
Dedekind-Mertens content formula causes T to be a Gaussian R-algebra.
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Theorem 3.25. Let R be a Prifer domain, T a content R-algebra and I an ideal
of R.

1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal
of R, then IT is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of T.

2. If IT is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of T, then I is
a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. 1. Assume that I is a strongly quasi-n-absorbing ideal of R. Let f"g € IT
for some f,g € T. Then ¢(f™g) C I. Since R is a Priifer domain and T is a content
R-algebra, then T' is a Gaussian R-algebra. Therefore c¢(f™g) = c(f)"c(g) C I.
Since I is a strongly quasi-n-absorbing ideal of R, ¢(f)™ C I or ¢(f)" te(g) C I.
So f* € c(fm)T CIT or f*tg € c(f*tg)T C IT. Consequently IT is a quasi-
n-absorbing ideal of T'.

2. Note that since T is a content R-algebra, IT N R = I for every ideal I of
R. Now, apply Corollary B:4(1). O

The algebra of all polynomials over an arbitrary ring with an arbitrary number
of indeterminates is an example of content algebras.

Corollary 3.26. Let R be a Prifer domain and I be an ideal of R.

1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal
of R, then I[X] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of
R[X].

2. If I|X] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R[X], then
I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

4 Semi-n-Absorbing Ideals

Suppose that m, n are positive integers with m > n. A more general concept
than semi-n-absorbing ideals is the concept of semi-(m,n)-absorbing ideals. A
proper ideal T of a ring R is called a semi-(m,n)-absorbing ideal if whenever
a™ € I for a € R, then o™ € I. Tt is easy to see that every semi-(m, n)-absorbing
ideal is a semi-n-absorbing ideal.

Note that a semiprime ideal is just a semi-1-absorbing ideal.

Theorem 4.1. Let I be a proper ideal of R and m, n be positive integers with
m>n.

1. If I is quasi-n-absorbing, then it is semi-(m,n)-absorbing.

2. I is semi-(m,n)-absorbing if and only if I is semi-(m, k)-absorbing for each
m >k > n if and only if I is semi-(i, j)-absorbing for each m >1i > j > n.

3. If I is semi-(m,n)-absorbing, then it is semi-(mk,nk)-absorbing for every
positive integer k.
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If I is semi-(m,n)-absorbing and semi-(r, s)-absorbing for some positive in-
tegers v > s, then it is semi-(mr, ns)-absorbing.

1. Is trivial.
Straightforward.

Suppose that I is a semi-(m, n)-absorbing ideal of R. Let a € R and k be a
positive integer such that ¢™* € I. Then (ak)m € I. Since I is semi-(m, n)-

absorbing, (a¥)" = a"* € I, and so I is semi-(mk, nk)-absorbing.

Assume that I is semi-(m, n)-absorbing and semi-(r, s)-absorbing for some
positive integers r > s. Let ™" € I. Since I is semi-(m,n)-absorbing,
a™ € I, and since I is semi-(r, s)-absorbing, a™ € I. Hence I is semi-
(mr,ns)-absorbing. O

Corollary 4.2. Let I be a proper ideal of R.

1.
2.

If I is quasi-n-absorbing, then it is semi-n-absorbing.

Let t < n be an integer. If I is semi-(n + 1,t)-absorbing, then it is semi-
(nk + i, tk)-absorbing for all k > i > 1.

If I is semi-n-absorbing, then it is semi-(nk + i,nk)-absorbing for all k >
i>1.

4. If I is semi-n-absorbing, then it is semi-(nk+ j)-absorbing for all k > j > 0.

5. If I is semi-n-absorbing, then it is semi-(nk)-absorbing for every positive

8.

9.
Proof.

2.

N O Ot = W

integer k.
If I is semiprime, then it is semi-k-absorbing for every positive integer k.

If I is semiprime, then for every k > 1 and every a € R, a* € I implies
that a € 1.

If I is semi-n-absorbing, then it is semi-((n+1)*, n)-absorbing for allt > 1.

If I is semiprime, then it is quasi-k-absorbing for every k > 1.

1. By Theorem [T](1).

Suppose that I is semi-(n + 1,t)-absorbing. Then by Theorem [I(3), I is
semi-(nk + k, tk)-absorbing, for every positive integer k. Again by Theorem
[1K2), I is semi-(nk + 4, tk)-absorbing for every k > i > 1.

. In part 2 get t = n.

. By part 3.

. Is a special case of 4.

. Is a direct consequence of 5.

. By part 6.
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8. By Theorem [£1[4).

9. Assume that I is semiprime. Let a*b € I for some a,b € R and some k > 1.
Then (ab)* € I. Therefore ab € I, by part 7. So I is quasi-k-absorbing. [

Proposition 4.3. Let I, I, ..., I, be ideals of R. If for every 1 <i<mn, I; is a
semiprime ideal, then I11s--- I, is a semi-n-absorbing ideal. In particular, if I is
a semiprime ideal of R, then I™ is a semi-n-absorbing ideal.

Proof. Use Corollary 2(7). O

Remark 4.4. Let I be an ideal of a ring R. If I"T! is a strongly semi-n-absorbing
ideal, then I"T' = I™. In particular, if I? is a semiprime ideal, then I is idempo-
tent.

The following remark shows that the two concepts of semi-n-absorbing ideals
and of semi-(n + 1)-absorbing ideals are different in general.

Remark 4.5. Letn > 1, R be a ring and P be a prime ideal of R. By Proposition

Pt s a semi-(n + 1)-absorbing ideal. If P"*! is a semi-n-absorbing ideal,
then Pt = P". Consequently, for any prime number p, p"*1Z is a semi-(n+1)-
absorbing ideal of Z which is not a semi-n-absorbing ideal.

Proposition 4.6. Let I be an ideal of a ring R. If I is such that for every ideal
J of R, we have J"H1 C I C J= J" C I, then I is strongly semi-n-absorbing.

Proof. The proof is similar to that of Proposition BI7(1). O

Proposition 4.7. Let Iy, I5, . .., I, be semi-2-absorbing ideals of R. Then I1Is--- 1,
is a semi-(3" — 1)-absorbing ideal.

Proof. Suppose that a’" € I1Iy---1, for some a € R. For every 1 < i < n,
a®" € I; and I; is semi-2-absorbing, then 2" € I;. Therefore a"?" € I Iy ---1I,,.
On the other hand n2" < 3"—1. Soa3"~! € I I, - - - I, which shows that I1I5 - - - I,
is semi- (3™ — 1)-absorbing. O

Theorem 4.8. Let I, o, ..., Iy be ideals of R. If I; is a semi-n;-absorbing ideal

of R for every 1 <i <k, then L NIaN---NIy is a semi-(n — 1)-absorbing ideal
k

forn=T](n; +1).

i=1
Proof. Let a € R be such that ™ € Iy N Io N ---N 1. Then for every 1 < < k,
(ni+1)

k
I (1)
qi=bLJi# eI,
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Since I;’s are semi-n;-absorbing, then, for each 1 <i <k,

|:n7, ﬁ (nj+1):|
al I=ti# eI

Note that for every 1 <i < k,

k k
n; H n]+1 anJrl )—1l=n-1.
J=1.47 i=1

So we have a® ! € I; for every 1 < i < k. Hence a" ' € I; NI, N ---N I} which
implies that Iy N Io N - N I is a semi-(n — 1)-absorbing ideal. O

Proposition 4.9. Let I, I be ideals of R and m,n be positive integers.

1. If I is quasi-m-absorbing and Iy is semi-n-absorbing, then I11s is semi-
(n(m + 1) + m)-absorbing.

2. If I is quasi-(2m)-absorbing and I is semi-m-absorbing, then I I3 is semi-
(m(m + 2))-absorbing.

Proof. 1. Assume that o TD(m+Y) ¢ [T, for some a € R. Since I; is quasi-m-
absorbing and a1V (m+1) ¢ [, then ™ € I;. On the other hand I, is semi-n-
absorbing and a D+ ¢ I, then o™+ € I,. Consequently a™(m++m ¢
I 15, and so I I7 is semi-(n(m + 1) + m)-absorbing.

2. Suppose that a(m+1)’* ¢ I1 15 for some a € R. Since I; is quasi-(2m)- absorbing

and a(m‘H) € I, then a2m € I;. Since I is semi-m-absorbing and a(m+1) e I,
then a™ € I>. Hence a™ “+2m o I Iy which shows that I1I5 is semi-(m(m + 2))-
absorbing. O

Let R be a ring and I be an ideal of R. We denote by I'" the ideal of R
generated by the n-th powers of all elements of I. If n! is a unit in R, then
I = 17 see [22).

Proposition 4.10. Let I be an ideal of a ring R. Then I is semi-n-absorbing if
and only if JTU C T implies that J" C I for every ideal J of R.

Proof. The proof is easy. O

Corollary 4.11. Let R be a ring such that n! is a unit in R. Then every semi-n-
absorbing ideal of R is strongly semi-n-absorbing.

Proposition 4.12. Let R be a ring. The following statements are equivalent:
1. For every ideal I of R, Il C [™+1;

2. For all ideals I, I, ..., 1,11 of R we have (I1NIyN---NI, )M C LT,
In—i—l}
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3. For every elements a € R, a™ = ra™*! for some r € R;

4. Every ideal I of R is semi-n-absorbing.
Proof. (1)=(2) For ideals I, I, ..., I,+1 of R, we get from 1,
(hnhn-—-Nh)Mc@nhn--NLg)" " C Ll Iy

n+1 times

——~
(2)=(1) For an ideal I of R, by 2 we have that I = (In...n 1) C "' So
we have "l C o+l
(1)<(3) and (3)<(4) are easy. O
Proposition 4.13. Let R be a ring. The following statements are equivalent:

1. For every ideal I of R, I"t! = I";

2. For every ideals I1,1s,...,Iny1 of R we have (It N Ia N -+~ N I41)" C
1112"'In+1;

3. Every ideal I of R is strongly semi-n-absorbing.
Proof. Similar to the proof of Proposition [4.12] [l

Remark 4.14. Let {Ix}ren be a family of semi-n-absorbing ideals of R. Then
Miea Ix is semi-n-absorbing.

The following remark shows that the two concepts of semi-n-absorbing ideals
and of quasi-n-absorbing (n-absorbing) ideals are different in general.

Remark 4.15. Let p, g be distinct prime numbers. By Proposition [[.3, p"Z is
a semi-n-absorbing ideal of Z. Therefore Remark [[.1]) implies that p"Z N qZ is a
semi-n-absorbing ideal of Z, but it is not quasi-n-absorbing, by Remark 311l

Proposition 4.16. For any ring R there exists a unique least semi-n-absorbing
ideal.

Proof. Set ") = N{I | I is a semi-n-absorbing ideal of R}. By Remark EI4
Z(") is the least semi-n-absorbing ideal. O

By notation in the the proof of the previous proposition we have the following
remark:

Remark 4.17. Let R be a ring. First of all, we know that Nil(R) (the set of all
nilpotent elements of R) is the intersection of all prime ideals of R, then M C
Nil(R). Suppose that x € Nil(R), then there is a positive integer m such that
2™ =0¢eZW. Hence IV semiprime implies that x € T, Thus T = Nil(R).

Proposition 4.18. The following statements hold:
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1. 7MW = 3 (),

n>1
2. Ik C M) for every positive integer k.

3. I C I™ for every semiprime ideal I.

Proof. 1. By Corollary L2(6) every semiprime ideal is semi-n-absorbing for every
n>1. Then Z" C ZW for every n > 1.

2. By Corollary L2(5).

3. By Proposition [£3] O

Proposition 4.19. Let R;, Rs be rings. If I1 is a semi-n-absorbing ideal of Ry
and I is a semi-n-absorbing ideal of Ro, then Iy X I is a semi-n-absorbing ideal
Of R1 X Rg.

Proof. Let (a,b)"*! € I x Iy for some a € Ry and b € Ry. Then a"*! € I
and b"*! € I,. Since I; is semi-n-absorbing, then a” € I, and since I is semi-
n-absorbing, then b € I5. Hence (a,b)” € I; x Iy which shows that I; x I is
semi-n-absorbing. O

Proposition 4.20. Let R = R; X Ry be a decomposable ring and L be a quasi-n-
absorbing ideal of R. Then either L = I; X Ry where I is a quasi-n-absorbing ideal
of Ry or L = Ry X Is where I3 is a quasi-n-absorbing ideal of Ry or L = I1 X I
where I is a semi-(n— 1)-absorbing ideal of Ry and Iz is a semi-(n— 1)-absorbing
ideal of Rs.

Proof. Regarding Proposition 3.2 we only investigate the case when L = I; x I3 in
which I is a proper ideal of Ry and Is is a proper ideal of Ry. Let a™ € I; for some
a € Ry. Therefore (a,1)"(1,0) € I; x Is. Since I is proper, then (a, 1) ¢ Iy x Is.
Hence (a,1)"71(1,0) € I; x I, because I; x Iy is a quasi-n-absorbing ideal of
R. Thus a"~! € I; which shows that I; is a semi-(n — 1)-absorbing ideal of R;.
Similarly we can show that I3 is a semi-(n — 1)-absorbing ideal of Rs. O

Proposition 4.21. Let R = Ry X Ry be a decomposable ring and L be a proper
ideal of R. Then the following statements are equivalent:

1. L is a quasi-2-absorbing ideal of R;

2. FEither L = I X Ry where 17 is a quasi-2-absorbing ideal of Ry or L = Ry X I
where Iy is a quasi-2-absorbing ideal of Ry or L = I x Is where I is a
semiprime ideal of R1 and Iy is a semiprime ideal of Ro.

Proof. (1)=(2) By Proposition 20

(2)=(1) Assume that L = I; x I5 for some semiprime ideal I; of R; and some
semiprime ideal Iy of Rs. Then, by Proposition 19 L = I; x I, is a semiprime
ideal of R = R X Ry. Thus L = I x I5 is a quasi-2-absorbing ideal of R = R1 X Ra,
by Corollary [£.2(9). O
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