Thai Journal of Mathematics Volume 15 (2017) Number 2 : 387–408

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

On n-Absorbing Ideals and Two Generalizations of Semiprime Ideals

Hojjat Mostafanasab¹ and Ahmad Yousefian Darani

Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran e-mail: h.mostafanasab@gmail.com (H. Mostafanasab) yousefian@uma.ac.ir (A. Yousefian Darani)

Abstract : Let R be a commutative ring and n be a positive integer. A proper ideal I of R is called an *n*-absorbing ideal if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$, then there are n of the x_i 's whose product is in I. We give a generalization of Prime Avoidance Theorem. Also, an *n*-Absorbing Avoidance Theorem is proved. Moreover, we introduce the notions of quasi-*n*-absorbing ideals and of semi-*n*-absorbing ideals. We say that a proper ideal I of R is a quasi-*n*-absorbing ideal if whenever $a^n b \in I$ for $a, b \in R$, then $a^n \in I$ or $a^{n-1}b \in I$. A proper ideal I of R is said to be a semi-*n*-absorbing ideal if whenever $a^{n+1} \in I$ for $a \in R$, then $a^n \in I$.

 ${\bf Keywords}:$ $n\mbox{-}{\rm absorbing}$ ideals; quasi- $n\mbox{-}{\rm absorbing}$ ideals; semi- $n\mbox{-}{\rm absorbing}$ ideals.

2010 Mathematics Subject Classification : 13A15; 13F05; 13G05.

1 Introduction

Throughout this paper R denotes a commutative ring with $1 \neq 0$. Recall that a proper ideal I of a ring R is said to be a *semiprime ideal* if whenever $a^2 \in I$ for some $a \in R$, then $a \in I$. Clearly, I is a semiprime ideal of R if and only if $J^2 \subseteq I$ implies

Copyright \bigodot 2017 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

Thai $J.\ M$ ath. 15 (2017)/ H. Mostafanasab and A. Yousefian Darani

that $J \subseteq I$ for every ideal J of R. Badawi [1] said that a proper ideal I of R is a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. He proved that I is a 2-absorbing ideal of R if and only if whenever I_1, I_2, I_3 are ideals of R with $I_1I_2I_3 \subseteq I$, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$. And erson and Badawi [2] generalized the notion of 2-absorbing ideals to n-absorbing ideals. A proper ideal I of R is called an *n*-absorbing (resp. a strongly *n*-absorbing) ideal if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$ (resp. $I_1 \cdots I_{n+1} \subseteq I$ for ideals I_1, \ldots, I_{n+1} of R), then there are n of the x_i 's (resp. n of the I_i 's) whose product is in I. Clearly, every strongly n-absorbing ideal is an n-absorbing ideal, but for n > 2 the converse may not be holds. For more studies concerning 2-absorbing (submodules) ideals we refer to [3–12]. These concepts motivate us to introduce some generalizations of semiprime ideals. We say that a proper ideal I of R is called a quasi-n-absorbing (resp. strongly quasi-n-absorbing) ideal if whenever $a^n b \in I$ for $a, b \in R$ (resp. $I_1^n I_2 \subseteq I$ for ideals I_1, I_2 of R), then $a^n \in I$ or $a^{n-1}b \in I$ (resp. $I_1^n \subseteq I$ or $I_1^{n-1}I_2 \subseteq I$). It is obvious that every strongly quasi-*n*-absorbing ideal is a quasi-n-absorbing ideal. Also, a quasi-1-absorbing ideal is just a prime ideal. A proper ideal I of R is called a *semi-n-absorbing (resp. strongly semi-n-absorbing) ideal* if whenever $a^{n+1} \in I$ for $a \in R$ (resp. $J^{n+1} \subseteq I$ for ideal J of R), then $a^n \in I$ (resp. $J^n \subseteq I$). With these definitions a semiprime ideal is just a semi-1-absorbing (strongly semi-1-absorbing) ideal. Let M be a nonzero R-module. We say that Mis secondary precisely when, for each $r \in R$, either rM = M or there exists $n \in \mathbb{N}$ such that $r^n M = 0$. When this is the case, $P := \sqrt{(0:R M)}$ is a prime ideal of R: in these circumstances, we say that M is a P-secondary R-module. A secondary *ideal of* R is just a secondary submodule of the R-module R (see [13]). A domain V with the quotient field K is said to be a valuation domain if for every $x \in K$, $x \in V$ or $x^{-1} \in V$. A von-Neumann regular ring is a ring R such that for every a in R there exists an x in R such that a = axa.

We recall from [14] the Prime Avoidance Theorem: Let $P_1, P_2, \ldots, P_n, n \ge 2$, be ideals of R such that at most two of P_1, P_2, \ldots, P_n are not prime. Let I be an ideal of R such that $I \subseteq P_1 \cup P_2 \cup \cdots \cup P_n$. Then $I \subseteq P_i$ for some i with $1 \le i \le n$. In [8], Payrovi and Babaei stated the 2-Absorbing Avoidance Theorem.

In section 2, we generalize the Prime Avoidance Theorem. Let I be an ideal of a ring R. We prove that if

$$I \subseteq J \cup K \cup (\cup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\cup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \dots \cup (\cup_{i=1}^{n_m} (P_{i,m}^{(1)} \cap \dots \cap P_{i,m}^{(m)}))$$

where J, K are ideals of R and $P_{i,j}^{(k)}$'s are prime ideals of R, then either $I \subseteq J$ or $I \subseteq K$ or $I \subseteq P_{i,j}^{(1)} \cap \cdots \cap P_{i,j}^{(j)}$ for some $1 \le i \le m$ and some $1 \le i \le n_i$.

$$\begin{split} I &\subseteq K \text{ or } I \subseteq P_{i,j}^{(1)} \cap \dots \cap P_{i,j}^{(j)} \text{ for some } 1 \leq j \leq m \text{ and some } 1 \leq i \leq n_j. \\ \text{We prove an } n\text{-Absorbing Avoidance Theorem as follows: Let } I_1, I_2, \dots, I_m \\ (m \geq 2) \text{ be ideals of } R \text{ such that } I_i \text{ be an } n_i\text{-absorbing ideal of } R \text{ for every} \\ 3 \leq i \leq m. \text{ Suppose that } I_i \nsubseteq (I_j :_R x^{n_j-1}) \subset R \text{ for every } x \in \sqrt{I_j} \setminus I_j \text{ with } i \neq j. \text{ If } I \text{ is an ideal of } R \text{ such that } I \subseteq I_1 \cup I_2 \cup \dots \cup I_m, \text{ then } I \subseteq I_i \text{ for some } 1 \leq i \leq m. \text{ Moreover, let } I_1, I_2, \dots, I_m \ (m \geq 2) \text{ be ideals of } R \text{ and } I_i \text{ be an } n_i\text{-absorbing ideal of } R \text{ for every } 2 \leq i \leq m. \text{ Suppose that } I_i \nsubseteq (I_j :_R x^{n_j-1}) \subset R \text{ for every } x \in \sqrt{I_j} \setminus I_j \text{ with } i \neq j. \text{ If } I \text{ is an ideal of } R \text{ and } e \text{ is an idempotent } I_i \text{ for every } x \in \sqrt{I_j} \setminus I_j \text{ with } i \neq j. \text{ If } I \text{ is an ideal of } R \text{ and } e \text{ is an idempotent } I \in I_i \text{ for every } x \in \sqrt{I_j} \setminus I_j \text{ with } i \neq j. \text{ If } I \text{ is an ideal of } R \text{ and } e \text{ is an idempotent } I \in I_i \text{ for every } x \in \sqrt{I_j} \setminus I_j \text{ with } i \neq j. \text{ If } I \text{ is an ideal of } R \text{ and } e \text{ is an idempotent } I \in I_i \text{ for every } x \in \sqrt{I_j} \setminus I_j \text{ with } i \neq j. \text{ If } I \text{ is an ideal of } R \text{ and } e \text{ is an idempotent } I \in I_i \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ with } i \neq j. \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ with } X \in V_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ with } X \in V_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text{ for every } X \in \sqrt{I_j} \setminus I_j \text$$

element of R such that $I + e \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$, then we show that $(I, e) \subseteq I_i$ for some $1 \leq i \leq m$.

In section 3, we give many properties of quasi-*n*-absorbing ideals, for example we show that if I_i is a quasi- n_i -absorbing ideal of a ring R for every $1 \le i \le k$, then $I_1 \cap I_2 \cap \cdots \cap I_k$ is a quasi-*n*-absorbing ideal for $n = n_1 + \cdots + n_k$. It is proved that for ideals I_1, I_2, \ldots, I_t of a ring R:

- 1. If I_1 is quasi-*n*-absorbing and I_2 is quasi-*m*-absorbing for m < n, then $I_1 \cap I_2$ is quasi-(n + 1)-absorbing.
- 2. If I_1, I_2, \ldots, I_t are quasi-*n*-absorbing, then $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi-(n+t)-absorbing.
- 3. If I_i is quasi- n_i -absorbing for every $1 \le i \le t$ with $n_1 < n_2 < \cdots < n_t$ and t > 2, then $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi- $(n_t + 2)$ -absorbing.

Also, it is shown that if I is a secondary ideal of a ring R and J is a quasi-n-absorbing ideal of R, then $I \cap J$ is secondary. For an ideal I of a Prüfer domain R we show that the following assertions hold:

- 1. If I is a strongly quasi-n-absorbing ideal of R, then I[X] is a quasi-n-absorbing ideal of R[X].
- 2. If I[X] is a quasi-*n*-absorbing ideal of R[X], then I is a quasi-*n*-absorbing ideal of R.

In section 4, it is shown that if I is a semiprime ideal of a ring R, then I is a semi-*i*-absorbing (resp. quasi-*j*-absorbing) ideal of R for every $i \ge 1$ (resp. j > 1). Let $R = R_1 \times R_2$ be a decomposable ring and L be a proper ideal of R. Then we prove that the following statements are equivalent:

- 1. L is a quasi-2-absorbing ideal of R;
- 2. Either $L = I_1 \times R_2$ where I_1 is a quasi-2-absorbing ideal of R_1 or $L = R_1 \times I_2$ where I_2 is a quasi-2-absorbing ideal of R_2 or $L = I_1 \times I_2$ where I_1 is a semiprime ideal of R_1 and I_2 is a semiprime ideal of R_2 .

2 Properties of *n*-Absorbing Ideals

First, we give a generalization of the Prime Avoidance Theorem.

Theorem 2.1 (Generalized prime avoidance theorem). Let I be an ideal of a ring R. If

$$I \subseteq J \cup K \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \dots \cup (\bigcup_{i=1}^{n_m} (P_{i,m}^{(1)} \cap \dots \cap P_{i,m}^{(m)}))$$

where J, K are ideals of R and $P_{i,j}^{(k)}$'s are prime ideals of R, then either $I \subseteq J$ or $I \subseteq K$ or $I \subseteq P_{i,j}^{(1)} \cap \cdots \cap P_{i,j}^{(j)}$ for some $1 \leq j \leq m$ and some $1 \leq i \leq n_j$.

Proof. We use induction on m. The case when m = 1 is just the Prime Avoidance Theorem. Let m > 1 and assume that the claim holds for all positive integers less than m. Let

$$I \subseteq J \cup K \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \dots \cup (\bigcup_{i=1}^{n_m} (P_{i,m}^{(1)} \cap \dots \cap P_{i,m}^{(m)}))$$

where J, K are ideals of R and $P_{i,j}^{(k)}$'s are prime ideals of R. If

$$I \subseteq J \cup K \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \dots \cup (\bigcup_{i=1}^{n_{m-1}} (P_{i,m-1}^{(1)} \cap \dots \cap P_{i,m-1}^{(m-1)})),$$

then by the induction hypothesis we are done. Suppose that

$$I \nsubseteq J \cup K \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \dots \cup (\bigcup_{i=1}^{n_{m-1}} (P_{i,m-1}^{(1)} \cap \dots \cap P_{i,m-1}^{(m-1)})),$$

Since

$$I \subseteq J \cup K \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \cdots$$
$$\cup (\bigcup_{i=1}^{n_{m-1}} (P_{i,m-1}^{(1)} \cap \cdots \cap P_{i,m-1}^{(m-1)})) \cup (\bigcup_{i=1}^{n_m} (P_{i,m}^{(1)} \cap \cdots \cap P_{i,m}^{(m-1)})),$$

the induction hypothesis implies that $I \subseteq P_{i,m}^{(1)} \cap \cdots \cap P_{i,m}^{(m-1)}$ for some $1 \leq i \leq n_m$. There are two cases: **Case 1.** Let $I \subseteq P_{i,m}^{(1)} \cap \cdots \cap P_{i,m}^{(m-1)}$ for every $1 \leq i \leq n_m$. Notice that

$$I \subseteq J \cup K \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \cdots$$
$$\cup (\bigcup_{i=1}^{n_{m-1}} (P_{i,m-1}^{(1)} \cap \cdots \cap P_{i,m-1}^{(m-1)})) \cup (\bigcup_{i=1}^{n_m} P_{i,m}^{(m)}),$$

so we have that $I \subseteq P_{j,m}^{(m)}$ for some $1 \leq j \leq n_m$. Thus $I \subseteq P_{j,m}^{(1)} \cap \cdots \cap P_{j,m}^{(m)}$. **Case 2.** Assume that there exists $1 \leq t < n_m$ such that $I \subseteq P_{i,m}^{(1)} \cap \cdots \cap P_{i,m}^{(m-1)}$ for every $1 \leq i \leq t$ and $I \not\subseteq \bigcup_{i=t+1}^{n_m} (P_{i,m}^{(1)} \cap \cdots \cap P_{i,m}^{(m-1)})$. Because

$$I \subseteq J \cup K \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \dots \cup (\bigcup_{i=1}^{n_{m-1}} (P_{i,m-1}^{(1)} \cap \dots \cap P_{i,m-1}^{(m-1)}))$$
$$\cup (\bigcup_{i=1}^{t} P_{i,m}^{(m)}) \cup (\bigcup_{i=t+1}^{n_m} (P_{i,m}^{(1)} \cap \dots \cap P_{i,m}^{(m-1)})),$$

by the induction hypothesis we deduce that $I \subseteq P_{k,m}^{(m)}$ for some $1 \leq k \leq t$, whence $I \subseteq P_{k,m}^{(1)} \cap \cdots \cap P_{k,m}^{(m)}$.

Theorem 2.2 ([2, Theorem 2.5]). Let I be an n-absorbing ideal of a ring R. Then there are at most n prime ideals of R minimal over I.

Theorem 2.3 ([2, Theorem 2.14]). Let I be an n-absorbing ideal of a ring R such that I has exactly n minimal prime ideals, say P_1, \ldots, P_n . Then $P_1 \cdots P_n \subseteq I$.

Corollary 2.4. Let I be an n-absorbing ideal of a ring R such that I has exactly n minimal prime ideals. Then $(\sqrt{I})^n \subseteq I$.

Proposition 2.5 ([2, Corollary 3.6]). Let $n \ge 2$ and $I \subset \sqrt{I}$ be an n-absorbing ideal of a ring R. Suppose that $x \in \sqrt{I} \setminus I$ and $x^n \in I$, but $x^{n-1} \notin I$. Then $(I :_R x^{n-1})$ is a prime ideal of R.

Theorem 2.6. Let I be an n-absorbing ideal of a ring R with distinct minimal prime ideals P_1, \ldots, P_n . Suppose that $x_1, \ldots, x_{n-1} \in R$ be such that $x_i \in P_i \setminus P_n$ for $i = 1, \ldots, n-1$. Then $(I :_R x_1 \cdots x_{n-1}) = P_n$. In particular, if x is an element of R such that $x \in (P_1 \cap \cdots \cap P_{n-1}) \setminus P_n$, then $(I :_R x^{n-1}) = P_n$.

Proof. Assume that $x_1, \ldots, x_{n-1} \in R$ be such that $x_i \in P_i \setminus P_n$ for $i = 1, \ldots, n-1$. Since $x_1 \cdots x_{n-1} \notin P_n$, then $(I :_R x_1 \cdots x_{n-1}) \subseteq P_n$. Let $y \in P_n$. By Theorem 2.3 we have that $x_1 \cdots x_{n-1}y \in P_1 \cdots P_{n-1}P_n \subseteq I$. Hence $y \in (I :_R x_1 \cdots x_{n-1})$ and so the equality holds.

Theorem 2.7. Let I be a strongly n-absorbing ideal of a ring R with distinct minimal prime ideals P_1, \ldots, P_m $(m \le n)$. Suppose that $x_1, \ldots, x_{m-1} \in R$ be such that $x_i \in P_i \setminus P_m$ for $i = 1, \ldots, m-1$. Then $(I :_R x_1^{n_1} \cdots x_{m-1}^{n_{m-1}}) = P_m$ for positive integers n_1, \ldots, n_{m-1} with $n-1 = n_1 + \cdots + n_{m-1}$.

Proof. Regarding [2, Theorem 6.2] the proof is similar to that of Theorem 2.6. \Box

Definition 2.8. Suppose that m, n are positive integers with m > n. A proper ideal I of a ring R is called (m, n)-absorbing if whenever $a_1a_2 \cdots a_m \in I$ for $a_1, a_2, \ldots, a_m \in R$, then the product of n of the a_i 's is in I.

Theorem 2.9. Let I be a proper ideal of a ring R and m > n. Then I is (m, n)-absorbing if and only if I is n-absorbing.

Proof. The "if" part has a routin verification. For the converse, let I be (m, n)-absorbing and let $a_1, a_2, \ldots, a_{n+1} \in R$ be such that $a_1a_2 \ldots a_{n+1} \in I$. Then m-n-1 times

 $a_1a_2 \dots a_{n+1}$ 1.1...1 $\in I$. Since *I* is proper, then the product of *n* of a_1, a_2, \dots, a_{n+1} is in *I*. Consequently *I* is *n*-absorbing.

Proposition 2.10. Let V be a valuation domain with the quotient field K and let I be a proper ideal of V. Then I is an n-absorbing ideal of V if and only if whenever $x_1x_2 \cdots x_{n+1} \in I$ with $x_1, x_2, \ldots, x_{n+1} \in K$, then there are n of $x_1, x_2, \ldots, x_{n+1}$ whose product is in I.

Proof. Assume that I is an n-absorbing ideal of V. Let $x_1x_2\cdots x_{n+1} \in I$ for some $x_1, x_2, \ldots, x_{n+1} \in K$ such that $x_1x_2\cdots x_n \notin I$. If $x_{n+1} \notin V$, then $x_{n+1}^{-1} \in V$, since V is valuation. So $x_1\cdots x_nx_{n+1}x_{n+1}^{-1} = x_1\cdots x_n \in I$, a contradiction. Hence $x_{n+1} \in V$. If $x_i \in V$ for every $1 \leq i \leq n$, then there is nothing to prove. If $x_i \notin V$ for some $1 \leq i \leq n$, then $x_1 \cdots x_{n-1}x_{n+1} \in I$.

Proposition 2.11. Let R be a von-Neumann regular ring. Then I is an nabsorbing ideal of R if and only if $e_1e_2\cdots e_{n+1} \in I$ for some idempotent elements $e_1, e_2, \ldots, e_{n+1} \in R$ implies that the product of n of $e_1, e_2, \ldots, e_{n+1}$ is in I. *Proof.* Notice the fact that any finitely generated ideal of a von-Neumann regular ring R is generated by an idempotent element.

Theorem 2.12. Let R be a ring. Suppose that J, K are ideals of R and I_i is an n_i -absorbing ideal of R for every $1 \le i \le m$. If I is an ideal of R such that $I \subseteq J \cup K \cup I_1 \cup I_2 \cup \cdots \cup I_m$, then either $I \subseteq J$ or $I \subseteq K$ or $I \subseteq \sqrt{I_i}$ for some $1 \le i \le m$.

Proof. Assume that I is an ideal of R such that $I \subseteq J \cup K \cup I_1 \cup I_2 \cup \cdots \cup I_m$. Then $I \subseteq J \cup K \cup \sqrt{I_1} \cup \sqrt{I_2} \cup \cdots \cup \sqrt{I_m}$. Now apply Theorem 2.2 and Theorem 2.1.

Corollary 2.13. Let I_i be an n_i -absorbing ideal of a ring R for every $1 \le i \le m$ $(m \ge 2)$. Suppose that for every $1 \le i \le m$, I_i has exactly n_i minimal prime ideals. If I is an ideal of R such that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$, then $I^{n_i} \subseteq I_i$ for some $1 \le i \le m$.

Proof. By Theorem 2.12 and Corollary 2.4.

Corollary 2.14. Let I_i be a strongly n_i -absorbing ideal of a ring R for every $1 \leq i \leq m \ (m \geq 2)$. If I is an ideal of R such that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$, then $I^{n_i} \subseteq I_i$ for some $1 \leq i \leq m$.

Proof. By Theorem 2.12 and [2, Theorem 6.1].

Theorem 2.15 (*n*-Absorbing avoidance theorem). Let I_1, I_2, \ldots, I_m $(m \ge 2)$ be ideals of R such that I_i be an n_i -absorbing ideal of R for every $3 \le i \le m$. Suppose that $I_i \nsubseteq (I_j :_R x^{n_j-1}) \subset R$ for every $x \in \sqrt{I_j} \setminus I_j$ with $i \ne j$. If I is an ideal of Rsuch that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$, then $I \subseteq I_i$ for some $1 \le i \le m$.

Proof. Suppose that I is an ideal of R such that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$. By Theorem 2.12, either $I \subseteq I_1$ or $I \subseteq I_2$ or $I \subseteq \sqrt{I_i}$ for some $3 \leq i \leq m$. If $I \subseteq I_1$ or $I \subseteq I_2$, then we are done. So, we assume that $I \subseteq \sqrt{I_j}$ for some $3 \leq j \leq m$. Let $I \nsubseteq I_j$. Hence there exists $x \in I \setminus I_j$, and so $x \in \sqrt{I_j} \setminus I_j$. Then we may assume that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$ is an efficient covering of ideals of R. Therefore $I = \bigcup_{i=1}^m (I_i \cap I)$ is an efficient union. So, [15, Lemma 2.1] implies that $(\bigcap_{i \neq k} I_i) \cap I \subseteq I_k \cap I$. Thus by hypothesis, $I_i \nsubseteq (I_j :_R x^{n_j-1}) \subset R$ for every $i \neq j$. Then, for every $i \neq j$ there exists $r_i \in I_i \setminus (I_j :_R x^{n_j-1})$. Set $r = \prod_{i \neq j} r_i$. Thus $rx \in (\bigcap_{i \neq j} I_i) \cap I \subseteq I_j \cap I$. Therefore $r \in (I_j :_R x^{n_j-1})$ which is a contradiction, because by Proposition 2.5, $(I_j :_R x^{n_j-1})$ is a prime ideal of R. Consequently $I \subseteq I_i$ for some $1 \leq i \leq m$. \Box

Theorem 2.16. Let I be an ideal of a ring R and let $a \in R$. If

$$I + a \subseteq J \cup (\bigcup_{i=1}^{n_1} P_{i,1}^{(1)}) \cup (\bigcup_{i=1}^{n_2} (P_{i,2}^{(1)} \cap P_{i,2}^{(2)})) \cup \dots \cup (\bigcup_{i=1}^{n_m} (P_{i,m}^{(1)} \cap \dots \cap P_{i,m}^{(m)}))$$

where J is an ideal of R and $P_{i,j}^{(k)}$'s are prime ideals of R, then either $(I,a) \subseteq J$ or $(I,a) \subseteq P_{i,j}^{(1)} \cap \cdots \cap P_{i,j}^{(j)}$ for some $1 \leq j \leq m$ and some $1 \leq i \leq n_j$.

392

Proof. By using [16, Theorem 12] and by a similar manner to that of Theorem 2.1. \Box

Corollary 2.17. Let R be a ring, J be an ideal of R and I_i be an n_i -absorbing ideal of R for every $1 \le i \le m$ ($m \ge 1$). If I is an ideal of R and a is an element of R such that $I + a \subseteq J \cup I_1 \cup I_2 \cup \cdots \cup I_m$, then either $(I, a) \subseteq J$ or $(I, a) \subseteq \sqrt{I_i}$ for some $1 \le i \le m$.

Corollary 2.18. Let I_i be an n_i -absorbing ideal of a ring R for every $1 \le i \le m$ $(m \ge 2)$. Suppose that for every $1 \le i \le m$, I_i has exactly n_i minimal prime ideals. If I is an ideal of R and $a \in R$ such that $I + a \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$, then $(I, a)^{n_i} \subseteq I_i$ for some $1 \le i \le m$.

Corollary 2.19. Let I_i be a strongly n_i -absorbing ideal of a ring R for every $1 \le i \le m$ ($m \ge 2$). If I is an ideal of R and $a \in R$ such that $I + a \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$, then $(I, a)^{n_i} \subseteq I_i$ for some $1 \le i \le m$.

Theorem 2.20. Let I_1, I_2, \ldots, I_m $(m \ge 2)$ be ideals of R and I_i be an n_i -absorbing ideal of R for every $2 \le i \le m$. Suppose that $I_i \nsubseteq (I_j :_R x^{n_j-1}) \subset R$ for every $x \in \sqrt{I_j} \setminus I_j$ with $i \ne j$. If I is an ideal of R and e is an idempotent element of R such that $I + e \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$, then $(I, e) \subseteq I_i$ for some $1 \le i \le m$.

Proof. By Corollary 2.17, we deduce that either $(I, e) \subseteq I_1$ or $(I, e) \subseteq \sqrt{I_j}$ for some $2 \leq j \leq m$. The first case leads us to the claim. In the second case we have $I \subseteq \sqrt{I_j}$ and $e \in I_j$. If $I \subseteq I_j$, then there is nothing to prove. So, we assume that $I \not\subseteq I_j$. Hence, there exists $x \in I \setminus I_j$ and then $x \in \sqrt{I_j} \setminus I_j$. If $I + e \subseteq I_1 \cup I_2 \cup \cdots \cup I_m$ is an efficient covering of I, then $(\cap_{i \neq j} I_i) \cap I \subseteq I_j \cap I$. On the other hand, by our hypothesis we have that for every $i \neq j$ there exists $r_i \in I_i \setminus (I_j :_R x^{n_j-1})$. Set $r = \prod_{i \neq j} r_i$. Thus $rx \in (\cap_{i \neq j} I_i) \cap I \subseteq I_j$. Therefore $r \in (I_j :_R x^{n_j-1})$ which is a contradiction, since $(I_j :_R x^{n_j-1})$ is a prime ideal of R. Consequently $I + e \subseteq I_i$ for some $1 \leq i \leq m$, and so $(I, e) \subseteq I_i$.

3 Quasi-*n*-Absorbing Ideals

We begin this section with the following proposition.

Proposition 3.1. Let I be an ideal of a ring R. Then the following statements are equivalent:

- 1. I is quasi-n-absorbing;
- 2. For each $a \in R$ with $a^n \notin I$, $(I :_R a^n) = (I :_R a^{n-1})$;
- 3. For every $a \in R$ and every ideal J of R with $a^n J \subseteq I$, either $a^n \in I$ or $a^{n-1}J \subseteq I$.

Proof. The proof is easy.

Corollary 3.2. Let R be a ring. Then 0 is a quasi-n-absorbing ideal of R if and only if for each $a \in R$, either $a^n = 0$ or $ann_R(a^n) = ann_R(a^{n-1})$.

Proof. By Proposition 3.1.

Proposition 3.3. Let $f : R \to R'$ be a homomorphism of rings.

- 1. If I' is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R', then $f^{-1}(I')$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.
- 2. If f is an epimorphism and I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R containing Ker(f), then f(I) is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R'.

Proof. 1. Let I' is a quasi-*n*-absorbing ideal of R' and $a^n b \in f^{-1}(I')$ for some $a, b \in R$. Then $f(a)^n f(b) \in I'$. Hence either $f(a)^n \in I'$ or $f(a)^{n-1} f(b) \in I'$, and thus either $a^n \in f^{-1}(I')$ or $a^{n-1}b \in f^{-1}(I')$. So $f^{-1}(I')$ is a quasi-*n*-absorbing ideal of R.

2. Assume that f is an epimorphism and I is a quasi-n-absorbing ideal of R such that $Ker(f) \subseteq I$. Let $a', b' \in R'$ and $(a')^n b' \in f(I)$. So there exist $a, b \in R$ such that f(a) = a' and f(b) = b', and $f(a^n b) = (a')^n b' \in f(I)$. Since $Ker(f) \subseteq I$, then $a^n b \in I$. It implies that either $a^n \in I$ or $a^{n-1}b \in I$. Therefore either $(a')^n \in f(I)$ or $(a')^{n-1}b' \in f(I)$. Consequently f(I) is a quasi-n-absorbing ideal of R'.

As an immediate consequence of Proposition 3.3 we have the following result.

Corollary 3.4. Let R be a ring and I be an ideal of R.

- 1. If R' is a subring of R and I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R, then $I \cap R'$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R'.
- 2. Let J be an ideal of R with $J \subseteq I$. Then I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R if and only if I/J is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R/J.

Corollary 3.5. Let I be an ideal of a ring R. Then $\langle I, X \rangle$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R[X] if and only if I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. By Corollary 3.4(2) and regarding the isomorphism $\langle I, X \rangle / \langle X \rangle \simeq I$ in $R[X]/\langle X \rangle \simeq R$ we have the result.

Let *M* be an *R*-module. The set of all zero divisors on *M* is: $Z_R(M) = \{r \in R \mid \text{there exists an element } 0 \neq x \in M \text{ such that } rx = 0\}.$

Proposition 3.6. Let R be a ring, S be a multiplicatively closed subset of R, and I a proper ideal of R. Then

- 1. If I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R with $I \cap S = \emptyset$, then $S^{-1}I$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of $S^{-1}R$.
- 2. If $S^{-1}I$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of $S^{-1}R$, $S \cap Z_R(R/I) = \emptyset$, then I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. 1. Let $a, b \in R$, $s, t \in S$ such that $(\frac{a}{s})^n \frac{b}{t} \in S^{-1}I$. Then there exists $u \in S$ such that $ua^n b \in I$. Since I is quasi-n-absorbing and $ua^n b \in I$, then $a^n \in I$ or $ua^{n-1}b \in I$. So $(\frac{a}{s})^n \in S^{-1}I$ or $(\frac{a}{s})^{n-1}\frac{b}{t} = \frac{ua^{n-1}b}{us^{n-1}t} \in S^{-1}I$. Therefore $S^{-1}I$ is a quasi-n-absorbing ideal of $S^{-1}R$.

quasi-*n*-absorbing ideal of S^{-R} . 2. Let $a, b \in R$ such that $a^n b \in I$. Then $\frac{a^n b}{1} = (\frac{a}{1})^n \frac{b}{1} \in S^{-1}I$. Therefore $(\frac{a}{1})^n \in S^{-1}I$ or $(\frac{a}{1})^{n-1}\frac{b}{1} \in S^{-1}I$. If $(\frac{a}{1})^n \in S^{-1}I$, then for some $\nu \in S$, $\nu a^n \in I$. Since $\nu \in S$ and $S \cap Z_R(R/I) = \emptyset$, then $a^n \in I$. Similarly, if $(\frac{a}{1})^{n-1}\frac{b}{1} \in S^{-1}I$, then $a^{n-1}b \in I$. Consequently I is a quasi-*n*-absorbing ideal of R.

Definition 3.7. Let m > n be positive integers. A proper ideal I of a ring R is called *quasi-(m,n)-absorbing* if whenever $a^{m-1}b \in I$ for $a, b \in R$, then $a^n \in I$ or $a^{n-1}b \in I$.

Proposition 3.8. Let I be a proper ideal of R and m > n be positive integers. Then I is quasi-(m, n)-absorbing if and only if I is quasi-n-absorbing.

Proof. Assume that *I* is quasi-(m, n)-absorbing. Let $a^n b \in I$ for some $a, b \in R$. Since $n \leq m-1$, then $a^{m-1}b \in I$. Therefore $a^n \in I$ or $a^{n-1}b \in I$. Consequently *I* is quasi-*n*-absorbing. Now, suppose that *I* is quasi-*n*-absorbing. Let $a^{m-1}b \in I$ for some $a, b \in R$. Therefore $a^n a^{(m-1-n)}b \in I$. Hence $a^n \in I$ or $a^{n-1}a^{(m-1-n)}b = a^{(m-2)}b \in I$. Repeating this method implies that $a^n \in I$ or $a^{n-1}b \in I$. Thus *I* is quasi-(m, n)-absorbing. \Box

Proposition 3.9. Let I be a proper ideal of a ring R.

- 1. I is prime if and only if I is quasi-1-absorbing if and only if I is 1-absorbing.
- 2. If I is quasi-n-absorbing, then it is quasi-i-absorbing for all $i \ge n$.
- 3. If I is prime, then it is quasi-n-absorbing for all $n \ge 1$.
- 4. If I is n-absorbing, then it is quasi-n-absorbing.
- 5. If I is quasi-n-absorbing for some $n \ge 1$, then there exists the least $n_0 \ge 1$ such that I is quasi- n_0 -absorbing. In this case, I is quasi-n-absorbing for all $n \ge n_0$ and it is not quasi-i-absorbing for $n_0 > i > 0$.

Proof. Every statement has a routin verification.

Proposition 3.10. Let I be a proper ideal of a ring R. If I is a quasi-n-absorbing ideal of R, then $\sqrt{I} = \{x \in R \mid x^n \in I\}$, the converse holds if I is primary.

Proof. First, assume that I is quasi-n-absorbing. Clearly $\{x \in R \mid x^n \in I\} \subseteq \sqrt{I}$. Now, let $x \in \sqrt{I}$. Then there exists $m \geq 1$ such that $x^m \in I$. If $m \leq n$, then $x^n \in I$. If m > n, then by Proposition 3.8 we have that I is quasi-(m, n)-absorbing. So, $x^{m-1}x \in I$ implies that $x^n \in I$. Therefore $\sqrt{I} = \{x \in R \mid x^n \in I\}$. Conversely, assume that $\sqrt{I} = \{x \in R \mid x^n \in I\}$ and I is primary. Let $a^n b \in I$ for some $a, b \in R$. If $a^n \in I$, then we are done. Therefore, suppose that $a^n \notin I$. Hence $a \notin \sqrt{I}$, and so $a^{n-1}b \in I$. Consequently I is quasi-n-absorbing.

The following remark shows that the two concepts of quasi-(n + 1)-absorbing ideals ((n + 1)-absorbing ideals) and of quasi-*n*-absorbing ideals are different in general.

Remark 3.11. Let p, q be distinct prime numbers. By [2, p. 1650], $p^n\mathbb{Z}$ is an *n*-absorbing ideal of \mathbb{Z} . So $p^n\mathbb{Z} \cap q\mathbb{Z}$ is an (n+1)-absorbing ideal, [2, Theorem 2.1](c). Then $p^n\mathbb{Z} \cap q\mathbb{Z}$ is quasi-(n+1)-absorbing. If $p^n\mathbb{Z} \cap q\mathbb{Z}$ is a quasi-*n*-absorbing ideal, then $p^nq \in p^n\mathbb{Z} \cap q\mathbb{Z}$ implies that either $p^n \in q\mathbb{Z}$ or $p^{n-1}q \in p^n\mathbb{Z}$, which is a contradiction.

Proposition 3.12. Let $\{P_{\lambda}\}_{\lambda \in \Lambda}$ be a family of prime ideals of a ring R. Then $\bigcap_{\lambda \in \Lambda} P_{\lambda}$ is a quasi-i-absorbing ideal for every $i \geq 2$.

Proof. Let $I = \bigcap_{\lambda \in \Lambda} P_{\lambda}$. By Proposition 3.9(2), it is sufficient to we show that I is a quasi-2-absorbing ideal. Suppose that $a^{2}b \in I$ for some $a, b \in R$. Since every P_{λ} is prime and $a^{2}b \in P_{\lambda}$, then $ab \in P_{\lambda}$. Therefore $ab \in I$, and so we conclude that I is a quasi-2-absorbing ideal.

Remark 3.13. Let $p_1, p_2, \ldots, p_{n+1}$ be distinct prime numbers. Then by Proposition 3.12, $\mathbb{Z}(p_1p_2\ldots p_{n+1}) = \mathbb{Z}p_1 \cap \mathbb{Z}p_2 \cap \cdots \cap \mathbb{Z}p_{n+1}$ is a quasi-i-absorbing ideal of \mathbb{Z} for every $i \geq 2$. But, clearly $\mathbb{Z}(p_1p_2\ldots p_{n+1})$ is not an n-absorbing ideal. This remark shows that the two concepts of quasi-n-absorbing ideals and of n-absorbing ideals are different in general.

A commutative ring R is called *semiprimitive* if Jac(R) = 0, [17]. A commutative ring is semiprimitive if and only if it is a subdirect product of fields, [18, p. 179].

As a direct consequence of Proposition 3.12 we have the following result.

Corollary 3.14. Let R be a ring.

- 1. For every proper ideal I of R, \sqrt{I} is a quasi-i-absorbing ideal of R for every $i \geq 2$.
- 2. Nil(R) and Jac(R) are quasi-i-absorbing ideals of R for every $i \ge 2$.
- 3. If R is a semiprimitive ring, then 0 is a quasi-i-absorbing ideal in R for every $i \geq 2$.

Proposition 3.15. Let R be a ring. The following statements are equivalent:

- 1. For every elements $a, b \in R$, $a^n = ra^n b$ for some $r \in R$ or $a^{n-1}b = sa^n b$ for some $s \in R$;
- 2. Every proper ideal of R is quasi-n-absorbing.

Proof. Straightforward.

Proposition 3.16. Let R be a ring. The following statements are equivalent:

- 1. For every ideals I, J of R, $I^n = I^n J$ or $I^{n-1}J = I^n J$:
- 2. For every ideals $I_1, I_2, ..., I_{n+1}$ of R, $(I_1 \cap I_2 \cap \cdots \cap I_n)^n \subseteq I_1 I_2 \cdots I_{n+1}$ or $(I_1 \cap I_2 \cap \cdots \cap I_n)^{n-1} I_{n+1} \subseteq I_1 I_2 \cdots I_{n+1};$
- 3. Every proper ideal of R is strongly quasi-n-absorbing.

Proof. (1) \Rightarrow (2) Suppose that $I_1, I_2, \ldots, I_{n+1}$ are ideals of R. By part (1),

$$(I_1 \cap I_2 \cap \cdots \cap I_n)^n = (I_1 \cap I_2 \cap \cdots \cap I_n)^n I_{n+1} \subseteq I_1 I_2 \cdots I_{n+1},$$

or

$$(I_1 \cap I_2 \cap \dots \cap I_n)^{n-1} I_{n+1} = (I_1 \cap I_2 \cap \dots \cap I_n)^n I_{n+1} \subseteq I_1 I_2 \cdots I_{n+1}.$$

 $(2) \Rightarrow (1)$ For ideals I, J of R, we have from $(2), I^n = (I \cap \cdots \cap I)^n \subseteq I^n J$ or n times $I^{n-1}J = (\overbrace{I \cap \cdots \cap I})^{n-1}J \subseteq I^nJ.$ $(1) \Leftrightarrow (3)$ Is trivial.

Proposition 3.17. Let I be a proper ideal of R.

- 1. If for every ideals I_1, I_2 of R, we have $I_1^n I_2 \subseteq I \subseteq I_1 \cap I_2 \Rightarrow [I_1^n \subseteq I \text{ or } I_1^{n-1}I_2 \subseteq I]$, then I is strongly quasi-n-absorbing.
- 2. If for every ideals $I_1, I_2, \ldots, I_{n+1}$ of R, we have

$$I_1I_2\cdots I_{n+1}\subseteq I \quad and \quad I\subseteq I_1\cap I_2\cap\cdots\cap I_{n+1}\Rightarrow$$

 $[I_1 \cdots \widehat{I_i} \cdots I_{n+1} \subseteq I, \text{ for some } 1 \le i \le n+1]$

then I is a strongly n-absorbing ideal.

Proof. 1. Assume that I is an ideal that satisfies the hypothesis at ted in 1. Let $J_1^n J_2 \subseteq I$ for some ideals J_1, J_2 of R. Then $(J_1 + I)^n (J_2 + I) \subseteq I$, so we have $(J_1+I)^n \subseteq I$ or $(J_1+I)^{n-1}(J_2+I) \subseteq I$. Thus $J_1^n \subseteq I$ or $J_1^{n-1}J_2 \subseteq I$.

2. The proof is similar to that of 1.

Notice that in Remark 3.11 we can observe that the intersection of two quasi*n*-absorbing ideals may not be quasi-*n*-absorbing.

Proposition 3.18. Let $\{I_{\lambda}\}_{\lambda \in \Lambda}$ be a chain of quasi-n-absorbing ideals. Then $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a quasi-n-absorbing ideal.

Proof. Let $I = \bigcap_{\lambda \in \Lambda} I_{\lambda}$ and suppose that $a^n b \in I$ for some $a, b \in R$. If $a^n \in I_{\lambda}$ for each $\lambda \in \Lambda$, then $a^n \in I$. So we may assume that there is $\lambda_0 \in \Lambda$ such that $a^n \notin I_{\lambda_0}$, then $a^n \notin I_{\lambda}$ for each $I_{\lambda} \subseteq I_{\lambda_0}$. Since all ideals in $\{I_{\lambda}\}_{\lambda \in \Lambda}$ are quasi-*n*-absorbing, it follows that $a^{n-1}b \in I_{\lambda}$ for each $I_{\lambda} \subseteq I_{\lambda_0}$. Thus $a^{n-1}b \in I_{\lambda}$ for each $\lambda \in \Lambda$, so that $a^{n-1}b \in I$. We deduce that I is a quasi-*n*-absorbing ideal. \Box

Proposition 3.19. Let I_1, I_2, \ldots, I_k be ideals of R. If I_i is a quasi- n_i -absorbing ideal of R for every $1 \le i \le k$, then $I_1 \cap I_2 \cap \cdots \cap I_k$ is a quasi-n-absorbing ideal for $n = n_1 + \cdots + n_k$.

Proof. Let $a, b \in R$ be such that $a^n b \in I_1 \cap I_2 \cap \cdots \cap I_k$. Since I_i 's are quasi n_i -absorbing, then, for every $1 \leq i \leq k$, either $a^{n_i} \in I_i$ or $a^{n_i-1}b \in I_i$. If for every $1 \leq i \leq k$, $a^{n_i} \in I_i$, then $a^n \in I_1 \cap I_2 \cap \cdots \cap I_k$. If for every $1 \leq i \leq k$, $a^{n_i-1}b \in I_i$, then $a^{n-1}b \in I_1 \cap I_2 \cap \cdots \cap I_k$. Otherwise, without loss of generality we may assume that there exists $1 \leq j < k$ such that $a^{n_i} \in I_i$ for every $1 \leq i \leq j$ and $a^{n_i-1}b \in I_i$ for every $j+1 \leq i \leq k$. Hence $a^{n-1}b \in I_1 \cap I_2 \cap \cdots \cap I_k$ which shows that $I_1 \cap I_2 \cap \cdots \cap I_k$ is a quasi-*n*-absorbing ideal.

Theorem 3.20. Let I_1, I_2, \ldots, I_t be ideals of R.

- If I₁ is quasi-n-absorbing and I₂ is quasi-m-absorbing for m < n, then I₁∩I₂ is quasi-(n + 1)-absorbing.
- 2. If I_1, I_2, \ldots, I_t are quasi-n-absorbing, then $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi-(n+t)-absorbing.
- 3. If I_i is quasi- n_i -absorbing for every $1 \le i \le t$ with $n_1 < n_2 < \cdots < n_t$ and t > 2, then $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi- $(n_t + 2)$ -absorbing.

Proof. 1. Let $a, b \in R$ be such that $a^{n+1}b \in I_1 \cap I_2$. We show that $a^{n+1} \in I_1 \cap I_2$ or $a^n b \in I_1 \cap I_2$. Since I_1 is quasi-*n*-absorbing, then by Proposition 3.8 it is quasi-(n + 2, n)-absorbing. Therefore either $a^n \in I_1$ or $a^{n-1}b \in I_1$. Also, I_2 is quasi-*m*-absorbing, again by Proposition 3.8 either $a^m \in I_2$ or $a^{m-1}b \in I_2$. There are four cases.

Case 1. Suppose that $a^n \in I_1$ and $a^m \in I_2$. Then $a^n \in I_1 \cap I_2$.

Case 2. Suppose that $a^n \in I_1$ and $a^{m-1}b \in I_2$. Then $a^nb \in I_1 \cap I_2$.

Case 3. Suppose that $a^{n-1}b \in I_1$ and $a^m \in I_2$. Then $a^{n-1}b \in I_1 \cap I_2$.

Case 4. Suppose that $a^{n-1}b \in I_1$ and $a^{m-1}b \in I_2$. Then $a^{n-1}b \in I_1 \cap I_2$. Consequently $I_1 \cap I_2$ is quasi-(n+1)-absorbing.

2. Induction on t: For t = 1 there is nothing to prove. Let t > 1 and assume that for t - 1 the claim holds. Then $I_1 \cap I_2 \cap \cdots \cap I_{t-1}$ is quasi-(n + t - 1)-absorbing. Since I_t is quasi-n-absorbing, then it is quasi-(n + t - 2)-absorbing, by Proposition 3.9(2). Therefore $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi-(n + t)-absorbing, by part 1.

3. Induction on t: For t = 3 apply parts 1 and 2. Let t > 3 and suppose that for t-1 the claim holds. Hence $I_1 \cap I_2 \cap \cdots \cap I_{t-1}$ is quasi- $(n_{t-1}+2)$ -absorbing. We

have the following cases:

Case 1. Let $n_{t-1} + 2 < n_t$. In this case $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi- $(n_t + 1)$ -absorbing, by part 1. Therefore $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi- $(n_t + 2)$ -absorbing.

Case 2. Let $n_{t-1} + 2 = n_t$. Thus $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi- $(n_t + 2)$ -absorbing, by part 2.

Case 3. Let $n_{t-1}+2 > n_t$. Then $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi- $(n_{t-1}+3)$ -absorbing, by part 1. Since $n_{t-1}+3 = n_t+2$, then $I_1 \cap I_2 \cap \cdots \cap I_t$ is quasi- (n_t+2) -absorbing.

Proposition 3.21. Let $R = R_1 \times R_2$ be a decomposable ring, I_1 a proper ideal of R_1 and I_2 a proper ideal of R_2 . Then I_1 (resp. I_2) is a quasi-n-absorbing ideal of R_1 (resp. R_2) if and only if $I_1 \times R_2$ (resp. $R_1 \times I_2$) is a quasi-n-absorbing ideal of R.

Proof. (\Rightarrow) Suppose that I_1 is a quasi-*n*-absorbing ideal of R_1 . Let $(a_1, a_2)^n (b_1, b_2)$ $\in I_1 \times R_2$ for some $(a_1, a_2), (b_1, b_2) \in R$. Hence $a_1^n b_1 \in I_1$, and so either $a_1^n \in I_1$ or $a_1^{n-1}b_1 \in I_1$. Therefore either $(a_1, a_2)^n \in I_1 \times R_2$ or $(a_1, a_2)^{n-1}(b_1, b_2) \in I_1 \times R_2$. Consequently $I_1 \times R_2$ is a quasi-*n*-absorbing ideal of *R*.

 (\Leftarrow) Assume that $I_1 \times R_2$ is a quasi-*n*-absorbing ideal of *R*. Let $a^n b \in I_1$ for some $a, b \in R_1$. Then $(a, 1)^n (b, 1) \in I_1 \times R_2$. Hence $(a, 1)^n \in I_1 \times R_2$ or $(a, 1)^{n-1} (b, 1) \in I_1 \times R_2$ $I_1 \times R_2$. Therefore $a^n \in I_1$ or $a^{n-1}b \in I_1$. So I_1 is a quasi-*n*-absorbing ideal of R_1 .

A strategy similar to Theorem 3.20 leads us to the following theorem:

Theorem 3.22. Let I_1, I_2, \ldots, I_t be ideals of rings R_1, R_2, \ldots, R_t , respectively.

- 1. If I_1 is a quasi-n-absorbing ideal of R_1 and I_2 is a quasi-m-absorbing ideal of R_2 for m < n, then $I_1 \times I_2$ is a quasi-(n+1)-absorbing ideal of $R_1 \times R_2$.
- 2. If I_1, I_2, \ldots, I_t are quasi-n-absorbing ideals of R_1, R_2, \ldots, R_t , respectively, then $I_1 \times I_2 \times \cdots \times I_t$ is a quasi-(n+t)-absorbing ideal of $R_1 \times R_2 \times \cdots \times R_t$.
- 3. If I_i is a quasi- n_i -absorbing ideal of R_i for every $1 \le i \le t$ with $n_1 < n_2 < i \le t$ $\cdots < n_t$ and t > 2, then $I_1 \times I_2 \times \cdots \times I_t$ is a quasi- $(n_t + 2)$ -absorbing ideal of $R_1 \times R_2 \times \cdots \times R_t$.

Proof. 1. Let $(a_1, a_2), (b_1, b_2) \in R_1 \times R_2$ be such that $(a_1, a_2)^{n+1}(b_1, b_2) \in I_1 \times I_2$. Therefore $a_1^{n+1}b_1 \in I_1$ and $a_2^{n+1}b_2 \in I_2$. Since I_1 is a quasi-*n*-absorbing ideal of R_1 , then $a_1^n \in I_1$ or $a_1^{n-1}b_1 \in I_1$. Also, I_2 is a quasi-*m*-absorbing ideal of R_2 and $a_2^{n+1}b_2 = a_2^m(a_2^{n+1-m}b_2) \in I_2$, so $a_2^m \in I_2$ or $a_2^{m-1}(a_2^{n+1-m}b_2) = a_2^nb_2 \in I_2$. Consider the following cases.

Case 1. Assume that $a_1^n \in I_1$ and $a_2^m \in I_2$. Then $(a_1, a_2)^n \in I_1 \times I_2$.

Case 2. Assume that $a_1^n \in I_1$ and $a_2^n b_2 \in I_2$. Then $(a_1, a_2)^n (b_1, b_2) \in I_1 \times I_2$. **Case 3.** Assume that $a_1^{n-1} b_1 \in I_1$ and $a_2^m \in I_2$. Then $(a_1, a_2)^{n-1} (b_1, b_2) \in I_1 \times I_2$. **Case 4.** Assume that $a_1^{n-1}b_1 \in I_1$ and $a_2^n b_2 \in I_2$. Then $(a_1, a_2)^n (b_1, b_2) \in I_1 \times I_2$. Consequently $I_1 \times I_2$ is a quasi-(n+1)-absorbing ideal of $R_1 \times R_2$.

2. We use induction on t. For t = 1 there is nothing to prove. Let t > 1 and assume that for t-1 the claim holds. Then $I_1 \times I_2 \times \cdots \times I_{t-1}$ is a quasi-(n+t-1)-absorbing ideal of $R_1 \times R_2 \times \cdots \times R_{t-1}$. Since I_t is a quasi-*n*-absorbing ideal of R_t , then it is quasi-(n + t - 2)-absorbing, by Proposition 3.9(2). Therefore $I_1 \times I_2 \times \cdots \times I_t$ is a quasi-(n + t)-absorbing ideal of $R_1 \times R_2 \times \cdots \times R_t$ by 1.

3. Induction on t: For t = 3 apply parts 1 and 2. Let t > 3 and suppose that for t - 1 the claim holds. Hence $I_1 \times I_2 \times \cdots \times I_{t-1}$ is a quasi- $(n_{t-1} + 2)$ -absorbing ideal of $R_1 \times R_2 \times \cdots \times R_{t-1}$. We consider the following cases:

Case 1. Let $n_{t-1} + 2 < n_t$. In this case $I_1 \times I_2 \times \cdots \times I_t$ is a quasi- $(n_t + 1)$ -absorbing ideal of $R_1 \times R_2 \times \cdots \times R_t$ by part 1. Therefore $I_1 \times I_2 \times \cdots \times I_t$ is a quasi- $(n_t + 2)$ -absorbing ideal of $R_1 \times R_2 \times \cdots \times R_t$.

Case 2. Let $n_{t-1} + 2 = n_t$. Thus $I_1 \times I_2 \times \cdots \times I_t$ is a quasi- $(n_t + 2)$ -absorbing ideal of $R_1 \times R_2 \times \cdots \times R_t$ by part 2.

Case 3. Let $n_{t-1} + 2 > n_t$. Then $I_1 \times I_2 \times \cdots \times I_t$ is a quasi- $(n_{t-1} + 3)$ -absorbing of $R_1 \times R_2 \times \cdots \times R_t$ by part 1. Since $n_{t-1} + 3 = n_t + 2$, then $I_1 \times I_2 \times \cdots \times I_t$ is quasi- $(n_t + 2)$ -absorbing.

Theorem 3.23. Let I be a secondary ideal of a ring R. If J is a quasi-n-absorbing ideal of R, then $I \cap J$ is secondary.

Proof. Assume that I is a P-secondary ideal of R, and let $a \in R$. If $a \in P = \sqrt{(0:_R I)}$, then clearly $a \in \sqrt{(0:_R I \cap J)}$. If $a \notin P$, then $a^n \notin P$, and so $a^n I = I$. We show that $a(I \cap J) = I \cap J$. Suppose that $x \in I \cap J$. There is an element $b \in I$ such that $x = a^n b \in J$. Since J is quasi-n-absorbing we get $a^n \in J$ or $a^{n-1}b \in J$. If $a^n \in J$, then $I = a^n I \subseteq J$ and so $a(I \cap J) = aI = I = I \cap J$. If $a^{n-1}b \in J$, then $x = a^n b \in a(I \cap J)$ and we are done.

Let R be a ring with identity. We recall that if $f = a_0 + a_1X + \cdots + a_tX^t$ is a polynomial on the ring R, then *content* of f is defined as the ideal of R, generated by the coefficients of f, i.e. $c(f) = (a_0, a_1, \ldots, a_n)$. Let T be an R-algebra and c the function from T to the ideals of R defined by $c(f) = \bigcap \{I \mid I \text{ is an ideal of} R$ and $f \in IT\}$ known as the content of f. Note that the content function c is nothing but the generalization of the content of a polynomial $f \in R[X]$. The R-algebra T is called a *content* R-algebra if the following conditions hold:

- 1. For all $f \in T$, $f \in c(f)T$.
- 2. (Faithful flatness) For any $r \in R$ and $f \in T$, the equation c(rf) = rc(f) holds and $c(1_T) = R$.
- 3. (Dedekind-Mertens content formula) For each $f, g \in T$, there exists a natural number n such that $c(f)^n c(g) = c(f)^{n-1} c(fg)$.

For more information on content algebras and their examples we refer to [19–21]. In [7] Nasehpour gave the definition of a Gaussian *R*-algebra as follows: Let *T* be an *R*-algebra such that $f \in c(f)T$ for all $f \in T$. *T* is said to be a Gaussian *R*-algebra if c(fg) = c(f)c(g), for all $f, g \in T$.

Example 3.24 ([7]). Let T be a content R-algebra such that R is a Prüfer domain. Since every nonzero finitely generated ideal of R is a cancellation ideal of R, the Dedekind-Mertens content formula causes T to be a Gaussian R-algebra.

Theorem 3.25. Let R be a Prüfer domain, T a content R-algebra and I an ideal of R.

- 1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal of R, then IT is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of T.
- 2. If IT is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of T, then I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. 1. Assume that I is a strongly quasi-*n*-absorbing ideal of R. Let $f^n g \in IT$ for some $f, g \in T$. Then $c(f^n g) \subseteq I$. Since R is a Prüfer domain and T is a content R-algebra, then T is a Gaussian R-algebra. Therefore $c(f^n g) = c(f)^n c(g) \subseteq I$. Since I is a strongly quasi-*n*-absorbing ideal of R, $c(f)^n \subseteq I$ or $c(f)^{n-1}c(g) \subseteq I$. So $f^n \in c(f^n)T \subseteq IT$ or $f^{n-1}g \in c(f^{n-1}g)T \subseteq IT$. Consequently IT is a quasi-*n*-absorbing ideal of T.

2. Note that since T is a content R-algebra, $IT \cap R = I$ for every ideal I of R. Now, apply Corollary 3.4(1).

The algebra of all polynomials over an arbitrary ring with an arbitrary number of indeterminates is an example of content algebras.

Corollary 3.26. Let R be a Prüfer domain and I be an ideal of R.

- 1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal of R, then I[X] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R[X].
- 2. If I[X] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R[X], then I is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

4 Semi-*n*-Absorbing Ideals

Suppose that m, n are positive integers with m > n. A more general concept than semi-n-absorbing ideals is the concept of semi-(m, n)-absorbing ideals. A proper ideal I of a ring R is called a *semi-(m, n)-absorbing ideal* if whenever $a^m \in I$ for $a \in R$, then $a^n \in I$. It is easy to see that every semi-(m, n)-absorbing ideal is a semi-n-absorbing ideal.

Note that a semiprime ideal is just a semi-1-absorbing ideal.

Theorem 4.1. Let I be a proper ideal of R and m, n be positive integers with m > n.

- 1. If I is quasi-n-absorbing, then it is semi-(m, n)-absorbing.
- 2. I is semi-(m, n)-absorbing if and only if I is semi-(m, k)-absorbing for each $m > k \ge n$ if and only if I is semi-(i, j)-absorbing for each $m \ge i > j \ge n$.
- 3. If I is semi-(m,n)-absorbing, then it is semi-(mk,nk)-absorbing for every positive integer k.

4. If I is semi-(m, n)-absorbing and semi-(r, s)-absorbing for some positive integers r > s, then it is semi-(mr, ns)-absorbing.

Proof. 1. Is trivial.

- 2. Straightforward.
- 3. Suppose that I is a semi-(m, n)-absorbing ideal of R. Let $a \in R$ and k be a positive integer such that $a^{mk} \in I$. Then $(a^k)^m \in I$. Since I is semi-(m, n)-absorbing, $(a^k)^n = a^{nk} \in I$, and so I is semi-(mk, nk)-absorbing.
- 4. Assume that I is semi-(m, n)-absorbing and semi-(r, s)-absorbing for some positive integers r > s. Let $a^{mr} \in I$. Since I is semi-(m, n)-absorbing, $a^{nr} \in I$, and since I is semi-(r, s)-absorbing, $a^{ns} \in I$. Hence I is semi-(mr, ns)-absorbing.

Corollary 4.2. Let I be a proper ideal of R.

- 1. If I is quasi-n-absorbing, then it is semi-n-absorbing.
- 2. Let $t \leq n$ be an integer. If I is semi-(n + 1, t)-absorbing, then it is semi-(nk + i, tk)-absorbing for all $k \geq i \geq 1$.
- 3. If I is semi-n-absorbing, then it is semi-(nk + i, nk)-absorbing for all $k \ge i \ge 1$.
- 4. If I is semi-n-absorbing, then it is semi-(nk+j)-absorbing for all $k > j \ge 0$.
- 5. If I is semi-n-absorbing, then it is semi-(nk)-absorbing for every positive integer k.
- 6. If I is semiprime, then it is semi-k-absorbing for every positive integer k.
- 7. If I is semiprime, then for every $k \ge 1$ and every $a \in R$, $a^k \in I$ implies that $a \in I$.
- 8. If I is semi-n-absorbing, then it is semi- $((n+1)^t, n^t)$ -absorbing for all $t \ge 1$.
- 9. If I is semiprime, then it is quasi-k-absorbing for every k > 1.

Proof. 1. By Theorem 4.1(1).

- 2. Suppose that I is semi-(n + 1, t)-absorbing. Then by Theorem 4.1(3), I is semi-(nk + k, tk)-absorbing, for every positive integer k. Again by Theorem 4.1(2), I is semi-(nk + i, tk)-absorbing for every $k \ge i \ge 1$.
- 3. In part 2 get t = n.
- 4. By part 3.
- 5. Is a special case of 4.
- 6. Is a direct consequence of 5.
- 7. By part 6.

- 8. By Theorem 4.1(4).
- 9. Assume that I is semiprime. Let $a^k b \in I$ for some $a, b \in R$ and some k > 1. Then $(ab)^k \in I$. Therefore $ab \in I$, by part 7. So I is quasi-k-absorbing. \square

Proposition 4.3. Let I_1, I_2, \ldots, I_n be ideals of R. If for every $1 \le i \le n$, I_i is a semiprime ideal, then $I_1I_2 \cdots I_n$ is a semi-*n*-absorbing ideal. In particular, if I is a semiprime ideal of R, then I^n is a semi-*n*-absorbing ideal.

Proof. Use Corollary 4.2(7).

Remark 4.4. Let I be an ideal of a ring R. If I^{n+1} is a strongly semi-n-absorbing ideal, then $I^{n+1} = I^n$. In particular, if I^2 is a semiprime ideal, then I is idempotent.

The following remark shows that the two concepts of semi-*n*-absorbing ideals and of semi-(n + 1)-absorbing ideals are different in general.

Remark 4.5. Let n > 1, R be a ring and P be a prime ideal of R. By Proposition 4.3, P^{n+1} is a semi-(n + 1)-absorbing ideal. If P^{n+1} is a semi-n-absorbing ideal, then $P^{n+1} = P^n$. Consequently, for any prime number p, $p^{n+1}\mathbb{Z}$ is a semi-(n+1)-absorbing ideal of \mathbb{Z} which is not a semi-n-absorbing ideal.

Proposition 4.6. Let I be an ideal of a ring R. If I is such that for every ideal J of R, we have $J^{n+1} \subseteq I \subseteq J \Rightarrow J^n \subseteq I$, then I is strongly semi-n-absorbing.

Proof. The proof is similar to that of Proposition 3.17(1).

Proposition 4.7. Let I_1, I_2, \ldots, I_n be semi-2-absorbing ideals of R. Then $I_1I_2 \cdots I_n$ is a semi- $(3^n - 1)$ -absorbing ideal.

Proof. Suppose that $a^{3^n} \in I_1 I_2 \cdots I_n$ for some $a \in R$. For every $1 \leq i \leq n$, $a^{3^n} \in I_i$ and I_i is semi-2-absorbing, then $a^{2^n} \in I_i$. Therefore $a^{n2^n} \in I_1 I_2 \cdots I_n$. On the other hand $n2^n \leq 3^n - 1$. So $a^{3^n - 1} \in I_1 I_2 \cdots I_n$ which shows that $I_1 I_2 \cdots I_n$ is semi- $(3^n - 1)$ -absorbing.

Theorem 4.8. Let I_1, I_2, \ldots, I_k be ideals of R. If I_i is a semi- n_i -absorbing ideal of R for every $1 \le i \le k$, then $I_1 \cap I_2 \cap \cdots \cap I_k$ is a semi-(n-1)-absorbing ideal for $n = \prod_{i=1}^k (n_i + 1)$.

Proof. Let $a \in R$ be such that $a^n \in I_1 \cap I_2 \cap \cdots \cap I_k$. Then for every $1 \leq i \leq k$,

$$\left(a^{\prod_{j=1, j\neq i}^{k}(n_j+1)}\right)^{(n_i+1)} \in I_i.$$

Since I_i 's are semi- n_i -absorbing, then, for each $1 \le i \le k$,

$$a^{\left[n_i\prod_{j=1,j\neq i}^k (n_j+1)\right]} \in I_i.$$

Note that for every $1 \le i \le k$,

$$n_i \prod_{j=1, j \neq i}^k (n_j + 1) \le \prod_{i=1}^k (n_i + 1) - 1 = n - 1.$$

So we have $a^{n-1} \in I_i$ for every $1 \le i \le k$. Hence $a^{n-1} \in I_1 \cap I_2 \cap \cdots \cap I_k$ which implies that $I_1 \cap I_2 \cap \cdots \cap I_k$ is a semi-(n-1)-absorbing ideal.

Proposition 4.9. Let I_1, I_2 be ideals of R and m, n be positive integers.

- 1. If I_1 is quasi-m-absorbing and I_2 is semi-n-absorbing, then I_1I_2 is semi-(n(m+1)+m)-absorbing.
- 2. If I_1 is quasi-(2m)-absorbing and I_2 is semi-m-absorbing, then I_1I_2 is semi-(m(m+2))-absorbing.

Proof. 1. Assume that $a^{(n+1)(m+1)} \in I_1I_2$ for some $a \in R$. Since I_1 is quasi-*m*-absorbing and $a^{(n+1)(m+1)} \in I_1$, then $a^m \in I_1$. On the other hand I_2 is semi-*n*-absorbing and $a^{(n+1)(m+1)} \in I_2$, then $a^{n(m+1)} \in I_2$. Consequently $a^{n(m+1)+m} \in I_1I_2$, and so I_1I_2 is semi-(n(m+1)+m)-absorbing.

2. Suppose that $a^{(m+1)^2} \in I_1 I_2$ for some $a \in R$. Since I_1 is quasi-(2m)-absorbing and $a^{(m+1)^2} \in I_1$, then $a^{2m} \in I_1$. Since I_2 is semi-*m*-absorbing and $a^{(m+1)^2} \in I_2$, then $a^{m^2} \in I_2$. Hence $a^{m^2+2m} \in I_1 I_2$ which shows that $I_1 I_2$ is semi-(m(m+2))-absorbing.

Let R be a ring and I be an ideal of R. We denote by $I^{[n]}$ the ideal of R generated by the n-th powers of all elements of I. If n! is a unit in R, then $I^{[n]} = I^n$, see [22].

Proposition 4.10. Let I be an ideal of a ring R. Then I is semi-n-absorbing if and only if $J^{[n+1]} \subseteq I$ implies that $J^{[n]} \subseteq I$ for every ideal J of R.

Proof. The proof is easy.

Corollary 4.11. Let R be a ring such that n! is a unit in R. Then every semi-n-absorbing ideal of R is strongly semi-n-absorbing.

Proposition 4.12. Let R be a ring. The following statements are equivalent:

- 1. For every ideal I of R, $I^{[n]} \subseteq I^{n+1}$;
- 2. For all ideals $I_1, I_2, ..., I_{n+1}$ of R we have $(I_1 \cap I_2 \cap \cdots \cap I_{n+1})^{[n]} \subseteq I_1 I_2 \cdots I_{n+1}$;

- 3. For every elements $a \in R$, $a^n = ra^{n+1}$ for some $r \in R$;
- 4. Every ideal I of R is semi-n-absorbing.

Proof. (1) \Rightarrow (2) For ideals $I_1, I_2, \ldots, I_{n+1}$ of R, we get from 1,

$$(I_1 \cap I_2 \cap \dots \cap I_{n+1})^{[n]} \subseteq (I_1 \cap I_2 \cap \dots \cap I_{n+1})^{n+1} \subseteq I_1 I_2 \cdots I_{n+1}.$$

 $(2) \Rightarrow (1)$ For an ideal I of R, by 2 we have that $I^{[n]} = \overbrace{I \cap \cdots \cap I}^{n+1} \stackrel{\text{imes}}{[n] \subseteq I^{n+1}}$. So we have $I^{[n]} \subseteq I^{n+1}$. (1) \Leftrightarrow (3) and (3) \Leftrightarrow (4) are easy.

Proposition 4.13. Let R be a ring. The following statements are equivalent:

- 1. For every ideal I of R, $I^{n+1} = I^n$;
- 2. For every ideals $I_1, I_2, \ldots, I_{n+1}$ of R we have $(I_1 \cap I_2 \cap \cdots \cap I_{n+1})^n \subseteq I_1 I_2 \cdots I_{n+1}$;
- 3. Every ideal I of R is strongly semi-n-absorbing.

Proof. Similar to the proof of Proposition 4.12.

Remark 4.14. Let $\{I_{\lambda}\}_{\lambda \in \Lambda}$ be a family of semi-n-absorbing ideals of R. Then $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is semi-n-absorbing.

The following remark shows that the two concepts of semi-n-absorbing ideals and of quasi-n-absorbing (n-absorbing) ideals are different in general.

Remark 4.15. Let p, q be distinct prime numbers. By Proposition 4.3, $p^n\mathbb{Z}$ is a semi-n-absorbing ideal of \mathbb{Z} . Therefore Remark 4.14 implies that $p^n\mathbb{Z} \cap q\mathbb{Z}$ is a semi-n-absorbing ideal of \mathbb{Z} , but it is not quasi-n-absorbing, by Remark 3.11.

Proposition 4.16. For any ring R there exists a unique least semi-n-absorbing ideal.

Proof. Set $\mathcal{I}^{(n)} = \bigcap \{I \mid I \text{ is a semi-}n\text{-absorbing ideal of } R\}$. By Remark 4.14, $\mathcal{I}^{(n)}$ is the least semi-*n*-absorbing ideal.

By notation in the the proof of the previous proposition we have the following remark:

Remark 4.17. Let R be a ring. First of all, we know that Nil(R) (the set of all nilpotent elements of R) is the intersection of all prime ideals of R, then $\mathcal{I}^{(1)} \subseteq Nil(R)$. Suppose that $x \in Nil(R)$, then there is a positive integer m such that $x^m = 0 \in \mathcal{I}^{(1)}$. Hence $\mathcal{I}^{(1)}$ semiprime implies that $x \in \mathcal{I}^{(1)}$. Thus $\mathcal{I}^{(1)} = Nil(R)$.

Proposition 4.18. The following statements hold:

405

Thai $J.\ M$ ath. 15 (2017)/ H. Mostafanasab and A. Yousefian Darani

- 1. $\mathcal{I}^{(1)} = \sum_{n \ge 1} \mathcal{I}^{(n)}.$
- 2. $\mathcal{I}^{(nk)} \subseteq \mathcal{I}^{(n)}$ for every positive integer k.
- 3. $\mathcal{I}^{(n)} \subseteq I^n$ for every semiprime ideal I.

Proof. 1. By Corollary 4.2(6) every semiprime ideal is semi-*n*-absorbing for every $n \ge 1$. Then $\mathcal{I}^{(n)} \subseteq \mathcal{I}^{(1)}$ for every $n \ge 1$.

- 2. By Corollary 4.2(5).
- 3. By Proposition 4.3.

Proposition 4.19. Let R_1, R_2 be rings. If I_1 is a semi-n-absorbing ideal of R_1 and I_2 is a semi-n-absorbing ideal of R_2 , then $I_1 \times I_2$ is a semi-n-absorbing ideal of $R_1 \times R_2$.

Proof. Let $(a, b)^{n+1} \in I_1 \times I_2$ for some $a \in R_1$ and $b \in R_2$. Then $a^{n+1} \in I_1$ and $b^{n+1} \in I_2$. Since I_1 is semi-*n*-absorbing, then $a^n \in I_1$, and since I_2 is semi-*n*-absorbing, then $b^n \in I_2$. Hence $(a, b)^n \in I_1 \times I_2$ which shows that $I_1 \times I_2$ is semi-*n*-absorbing.

Proposition 4.20. Let $R = R_1 \times R_2$ be a decomposable ring and L be a quasiabsorbing ideal of R. Then either $L = I_1 \times R_2$ where I_1 is a quasi-n-absorbing ideal of R_1 or $L = R_1 \times I_2$ where I_2 is a quasi-n-absorbing ideal of R_2 or $L = I_1 \times I_2$ where I_1 is a semi-(n-1)-absorbing ideal of R_1 and I_2 is a semi-(n-1)-absorbing ideal of R_2 .

Proof. Regarding Proposition 3.21 we only investigate the case when $L = I_1 \times I_2$ in which I_1 is a proper ideal of R_1 and I_2 is a proper ideal of R_2 . Let $a^n \in I_1$ for some $a \in R_1$. Therefore $(a, 1)^n (1, 0) \in I_1 \times I_2$. Since I_2 is proper, then $(a, 1)^n \notin I_1 \times I_2$. Hence $(a, 1)^{n-1}(1, 0) \in I_1 \times I_2$, because $I_1 \times I_2$ is a quasi-*n*-absorbing ideal of R. Thus $a^{n-1} \in I_1$ which shows that I_1 is a semi-(n-1)-absorbing ideal of R_2 .

Proposition 4.21. Let $R = R_1 \times R_2$ be a decomposable ring and L be a proper ideal of R. Then the following statements are equivalent:

- 1. L is a quasi-2-absorbing ideal of R;
- 2. Either $L = I_1 \times R_2$ where I_1 is a quasi-2-absorbing ideal of R_1 or $L = R_1 \times I_2$ where I_2 is a quasi-2-absorbing ideal of R_2 or $L = I_1 \times I_2$ where I_1 is a semiprime ideal of R_1 and I_2 is a semiprime ideal of R_2 .

Proof. $(1) \Rightarrow (2)$ By Proposition 4.20.

 $(2) \Rightarrow (1)$ Assume that $L = I_1 \times I_2$ for some semiprime ideal I_1 of R_1 and some semiprime ideal I_2 of R_2 . Then, by Proposition 4.19, $L = I_1 \times I_2$ is a semiprime ideal of $R = R_1 \times R_2$. Thus $L = I_1 \times I_2$ is a quasi-2-absorbing ideal of $R = R_1 \times R_2$, by Corollary 4.2(9).

Acknowledgement : We would like to thank the referee for his\her comments and suggestions on the manuscript.

References

- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417-429.
- [2] D.F. Anderson, A. Badawi, On *n*-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646-1672.
- [3] A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (4) (2014), 1163-1173.
- [4] A. Badawi, U. Tekir, E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (1) (2015) 97-111.
- [5] A. Badawi, A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013) 441-452.
- [6] H. Mostafanasab, E. Yetkin, U. Tekir, A. Yousefian Darani, On 2-absorbing primary submodules of modules over commutative rings, An. St. Univ. Ovidius Constanta, (2015). http://arxiv.org/pdf/1503.00308.pdf
- [7] P. Nasehpour, On the Anderson-Badawi $\omega_{R[X]}(I[X]) = \omega_R(I)$ conjecture, arXiv:1401.0459, (2014). http://arxiv.org/pdf/1401.0459v3.pdf
- [8] Sh. Payrovi, S. Babaei, On the 2-absorbing ideals in comutative rings, Bull. Malaysian Math. Sci. Soc. 23 (2013) 1511-1526.
- [9] A. Yousefian Darani, H. Mostafanasab, Co-2-absorbing preradicals and submodules, J. Algebra Appl. 14 (7) (2015) 1550113 (23 pages).
- [10] A. Yousefian Darani, H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2) (2015) 1550017 (22 pages).
- [11] A. Yousefian Darani, F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9 (3) (2011) 577-584.
- [12] A. Yousefian Darani, F. Soheilnia, On n-absorbing submodules, Math. Comm. 17 (2012) 547-557.
- [13] I.G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) 23-43. Academic Press, London, 1973.
- [14] R. Y. Sharp, Steps in Commutative Algebra, second edition, London Mathematical Society Student Texts, 51, Cambridge Univ. Press, Cambridge, 2000.
- [15] C.P. Lu, Unions of prime submodules, Houston J. Math. 23 (2) (1997) 203-213.

- [16] C. Gottlieb, On finite unions of ideals and cosets, Comm. Algebra 22 (8) (1994) 3087-3097.
- [17] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag New York, Inc 1991.
- [18] T.Y. Lam, Exercises in Classical Ring Theory, Springer-Verlag New York, Inc 2003.
- [19] D.G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Phil. Soc. 55 (1959) 282-288.
- [20] J. Ohm, D.E. Rush, Content modules and algebras, Math. Scand. 31 (1972) 49-68.
- [21] D.E. Rush, Content algebras, Canad. Math. Bull. 21 (3) (1978) 329-334.
- [22] D.D. Anderson, K.R. Knopp, R.L. Lewin, Ideals generated by powers of elements, Bull. Austral. Math. Soc. 49 (1994) 373-376.

(Received 19 February 2015) (Accepted 12 June 2015)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th