Coupled Coincidence Point for Generalized Monotone Operators in Partially Ordered Metric Spaces

M. Bousselsa ${ }^{1}$ and M. Laïd Kadri
Laboratoire d'Analyse Nonlineaire et H.M. ENS-Kouba Department of Mathematics, 16050, Algiers (Algeria). e-mail : bousselsal55@gmail.com (M. Bousselsal) e-mail : kadriml@gmail.com (M.L. Kadri)

Abstract

In this note, we prove the existence and the uniqueness of coupled coincidence points theorem for $(\varphi-\psi)$ contractive condition for a generalized mapping having the mixed g-monotone property in complete ordered spaces. These results generalize and extend the existing fixed point results in the literature.

Keywords : coupled coincidence point; partially ordered metric space; mixed g-monotone property.
2010 Mathematics Subject Classification : 47H10; 54H25.

1 Introduction

The existence of fixed points in partially ordered metric spaces has been studied recently by several authors: Ran et all [1], Bhaskar and Laksmikantham [2], Agarwal et all [3, Lakshmikantham and Ciric [4, Luong Thuan [5] and Alotaibi and Alsulami [6]. The first result appeared in this direction was given by Ran and Reurings [1], who presented its applications to matrix equation. Nieto and Rodriguez-Lopez [7, 8] extended the results of Ran and Reurings [1] for nondecreasing mappings and applied them to obtain a unique solution for a first-order ordinary differential equation with periodic boundary conditions.
${ }^{1}$ Corresponding author.
Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

Recently, Alotaibi and Alsulami [6], established the existence and uni-queness of coupled coincidence point, involving a (φ, ψ)-contraction condition for a mapping having the mixed g-monotone property. The aim of this paper is to extend the results obtained in [6] by using a more general mapping having the mixed g-monotone property and generalize the existing fixed point in the literature, [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Here are some definitions, and early results we presented in the following.
Definition 1.1. ([$\underline{3}$). Let (X, \preceq) be a partially ordered set and $F: X \times X \rightarrow$ X. The mapping F is said to have the mixed monotone property, if $F(x, y)$ is monotone, nondecreasing in x and it is monotone non-increasing in y, that is, for any $x, y \in X$:

$$
x_{1}, x_{2} \in X, \quad x_{1} \preceq x_{2} \Longrightarrow F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right),
$$

and

$$
y_{1}, y_{2} \in X, \quad y_{1} \preceq y_{2} \Longrightarrow F\left(x, y_{1}\right) \succeq F\left(x, y_{2}\right)
$$

Definition 1.2. (3). An element $(x, y) \in X \times X$ is called a coupled fixed point of the mapping $F: X \times X \rightarrow X$ if

$$
x=F(x, y) \quad \text { and } \quad y=F(y, x)
$$

Definition 1.3. (4]). (Mixed g-monotone Property).
Let F and g be two mappings such that

$$
F: X \times X \rightarrow X \text { and } g: X \rightarrow X
$$

The mapping F is said to have the mixed g-monotone property if $F(x, y)$ is monotone, nondecreasing in x and is monotone non-increasing in y, that is, for any $x, y \in X:$

$$
\begin{equation*}
x_{1}, x_{2} \in X, g x_{1} \preceq g x_{2} \Longrightarrow F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{1}, y_{2} \in X, g y_{1} \preceq g y_{2} \Longrightarrow F\left(x, y_{1}\right) \succeq F\left(x, y_{2}\right) \tag{1.2}
\end{equation*}
$$

Definition 1.4. (4). An element $(x, y) \in X \times X$ is called a coupled coincidence point of the mapping $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if

$$
g x=F(x, y) \text { and } g y=F(y, x) .
$$

Definition 1.5. ([4). The mappings F and g, where $F: X \times X \rightarrow X$ and $g: X \rightarrow X$, are said to be compatible if

$$
\lim _{n \rightarrow \infty} d\left(g\left(F\left(x_{n}, y_{n}\right)\right), F\left(g x_{n}, g y_{n}\right)\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} d\left(g\left(F\left(y_{n}, x_{n}\right)\right), F\left(g y_{n}, g x_{n}\right)\right)=0
$$

whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in X, such that:

$$
\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} g x_{n}=x
$$

and

$$
\lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} g y_{n}=y
$$

are satisfied for all $x, y \in X$.
The main theoritical results presented in 2] are the following coupled point theorems.

Theorem 1.6. ([2]). Let (X, \preceq) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ be a continuous mapping, having the mixed monotone property on X. Assume that there exists a $k \in[0,1)$ with

$$
\begin{gathered}
d(F(x, y), F(u, v)) \leq \frac{k}{2}[d(x, u)+d(y, v)] \\
\text { for all } x \succeq u \quad \text { and } \quad y \preceq v .
\end{gathered}
$$

If there exist two elements $x_{0}, y_{0} \in X$, with

$$
x_{0} \preceq F\left(x_{0}, y_{0}\right) \text { and } y_{0} \succeq F\left(y_{0}, x_{0}\right),
$$

then there exist $x, y \in X$ such that

$$
x=F(x, y) \quad \text { and } \quad y=F(y, x)
$$

Theorem 1.7. [2]. Let (X, \preceq) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a complete metric space. Assume that X has the following property:

1. If a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \preceq x$, for all $n \geq 1$.
2. If a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \succeq y$, for all $n \geq 1$.

Let $F: X \times X \rightarrow X$ be a mapping, having the mixed monotone property on X. Assume that there exists a $k \in[0,1)$ with

$$
\begin{gathered}
d(F(x, y), F(u, v)) \leq \frac{k}{2}[d(x, u)+d(y, v)] \\
\text { for all } x \succeq u \text { and } y \preceq v .
\end{gathered}
$$

If there exist two elements $x_{0}, y_{0} \in X$, with

$$
x_{0} \preceq F\left(x_{0}, y_{0}\right) \quad \text { and } \quad y_{0} \succeq F\left(y_{0}, x_{0}\right),
$$

then there exist $x, y \in X$ such that

$$
x=F(x, y) \quad \text { and } \quad y=F(y, x) .
$$

In [5], the authors presented some coupled fixed point theorems for a mixed monotone mapping in a partially ordered metric space, which are nondecreasing, of the results of Bhaskar and Lakshmikantham [2].

Let us denote by Φ the set of all functions $\varphi:[0, \infty[\rightarrow[0, \infty[$ which satisfy

1. φ is continuous and nondecreasing,
2. $\varphi(t)=0$ if, and only if $t=0$,
3. $\varphi(t+s) \leq \varphi(t)+\varphi(s)$, for all $t, s \in[0, \infty[$
and Ψ denotes the set of all functions $\psi:[0, \infty[\rightarrow[0, \infty[$, which satisfy

$$
\lim _{t \rightarrow r} \psi(t)>0 \text { for all } r>0 \text { and } \lim _{t \rightarrow 0_{+}} \psi(t)=0
$$

(For more details about Φ and Ψ, see [5]).
Theorem 1.8. ([2]). Let (X, \preceq) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ be a continuous mapping, having the mixed monotone property on X, such that there exist two elements $x_{0}, y_{0} \in X$, with $x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $y_{0} \succeq F\left(y_{0}, x_{0}\right)$. Suppose there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{gathered}
\varphi(d(F(x, y), F(u, v))) \leq \frac{1}{2} \varphi(d(x, u)+d(y, v))-\psi\left(\frac{d(x, u)+d(y, v)}{2}\right) \\
\text { for all } x \succeq u \text { and } y \preceq v .
\end{gathered}
$$

Suppose either
(a) F is continuous or
(b) X has the following properties:
(i) If a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \preceq x$, for all $n \geq 1$,
(ii) If A non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \succeq y$, for all $n \geq 1$,
then there exist $x, y \in X$ such that $x=F(x, y)$ and $y=F(y, x)$. That is F has a fixed point.
A. Alotaibi and S. Alsulami [6] established the existence and uniqueness of coupled coincidence point involving a (φ, ψ)-contractive condition for mappings having the mixed g-monotone property. The main theoritical result in A. Alotaibi and S. Alsulami [6], is given by the following theorem:

Theorem 1.9. 6]. Let (X, \preceq) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ be a continuous mapping, having the mixed monotone property on X such that there
exist two elements $x_{0}, y_{0} \in X$ with $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \succeq F\left(y_{0}, x_{0}\right)$. Suppose there exist $\varphi \in \Phi$ and $\psi \in \Psi$ such that

$$
\begin{aligned}
\varphi(d(F(x, y), F(u, v))) \leq & \frac{1}{2} \varphi(d(g x, g u)+d(g y, g v)) \\
& -\psi\left(\frac{d(g x, g u)+d(g y, g v)}{2}\right)
\end{aligned}
$$

$$
\text { for all } \quad g x \succeq g u \quad \text { and } \quad g y \preceq g v .
$$

Suppose $F(X \times X) \subset g(X), g$ continuous and compatible with F, also suppose either
(a) F is continuous or
(b) X has the following property:
(i) f a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \preceq x$, for all $n \geq 1$,
(ii) fanon-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \succeq y$, for all $n \geq 1$
then there exist $x, y \in X$ such that $g x=F(x, y)$ and $g y=F(y, x)$. That is F and g have a coupled coincidence point in X.

2 Existence of Coupled Coincidence Points.

The set Ψ_{1} of all lower semi-continuous functions $\psi:[0, \infty[\rightarrow[0, \infty[$, is considered, instead of Ψ, the function, ψ satisfies: $\psi(t)=0$ if, and only if $t=0$. We prove our main result:
Theorem 2.1 (Main Theorem). Let (X, \preceq) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ be a continuous mapping, having the mixed monotone property on X, such that there exist two elements $x_{0}, y_{0} \in X$ with

$$
\begin{equation*}
g x_{0} \preceq F\left(x_{0}, y_{0}\right) \text { and } g y_{0} \succeq F\left(y_{0}, x_{0}\right) . \tag{2.1}
\end{equation*}
$$

Suppose that there exist $\varphi \in \Phi$ and $\psi \in \Psi_{1}$ such that

$$
\begin{array}{r}
\left.\varphi(d(F(x, y), F(u, v))) \leq \begin{array}{c}
\frac{1}{2} \varphi(\Theta(g x, g y, g u, g v)) \\
-\psi(\Theta(g x, g y, g u, g v))
\end{array}\right\} \\
\left.\left.\begin{array}{r}
\text { for all } \quad g x \succeq g u \quad \text { and } \quad g y \preceq g v
\end{array}\right\}(g x, g y, g u, g v)=\begin{array}{r}
\frac{\alpha}{2}[d(g x, g u)+d(g y, g v)] \\
+\frac{\beta}{2}[d(g x, F(x, y))+d(g y, F(y, x)) \\
+d(g u, F(u, v))+d(g v, F(v, u))] \\
+\frac{\gamma}{2}[d(g x, F(u, v))+d(g y, F(v, u)) \\
+d(g u, F(x, y)+d(g v, F(y, x))]
\end{array}\right\}
\end{array}
$$

where $\alpha>0$, and $\beta, \gamma \geq 0$ such that $\alpha+2 \beta+2 \gamma<2$. Suppose $F(X \times X) \subset g(X)$, g continuous and compatible with F, also suppose either
(a) F is continuous or
(b) X has the following properties:
(i) If a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \preceq x$, for all $n \geq 1$,
(ii) If a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y_{n} \succeq y$, for all $n \geq 1$,
then there exist $x, y \in X$ such that $g x=F(x, y)$ and $g y=F(y, x)$. That is F and g have a coupled coincidence point in X.

Proof. Let $x_{0}, y_{0} \in X$ be such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \succeq F\left(y_{0}, x_{0}\right)$. Using the fact that $F(X \times X) \subset g(X)$, we construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X as follows:

$$
\begin{equation*}
g x_{n+1}=F\left(g x_{n}, g y_{n}\right) \text { and } g y_{n+1}=F\left(g y_{n}, g x_{n}\right) \text { for all } n \geq 0 \tag{2.4}
\end{equation*}
$$

We shall show that the sequence $\left\{g x_{n}\right\}$ is increasing and $\left\{g y_{n}\right\}$ is decreasing, that is:

$$
\begin{equation*}
g x_{n} \preceq g x_{n+1} \text { for all } n \geq 0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g y_{n} \succeq g y_{n+1} \text { for all } n \geq 0 \tag{2.6}
\end{equation*}
$$

To prove (2.5) and (2.6), we use the mathematical induction.
Let $n=0$. Since $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \succeq F\left(y_{0}, x_{0}\right)$ and as $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$, we have $g x_{0} \preceq g x_{1}$ and $g y_{0} \succeq g y_{1}$. Thus (2.5) and (2.6) hold for $n=0$.

Suppose now that (2.5) and (2.6) hold for some $n \geq 0$. Then, since $g x_{n} \preceq g x_{n+1}$ and $g y_{n} \succeq g y_{n+1}$, and by the mixed g-monotone property of F, we have

$$
\begin{equation*}
g x_{n+2}=F\left(x_{n+1}, y_{n+1}\right) \succeq F\left(x_{n}, y_{n+1}\right) \succeq F\left(x_{n}, y_{n}\right)=g x_{n+1} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g y_{n+2}=F\left(y_{n+1}, x_{n+1}\right) \preceq F\left(y_{n}, y_{n+1}\right) \preceq F\left(y_{n}, x_{n}\right)=g y_{n+1} . \tag{2.8}
\end{equation*}
$$

Now, from (2.7) and (2.8), we obtain

$$
\begin{equation*}
g x_{n+2} \preceq g x_{n+1} \quad \text { and } \quad g y_{n+1} \succeq g y_{n+2} \tag{2.9}
\end{equation*}
$$

thus, by mathematical induction, we conclude that (2.5) and (2.6) hold for all $n \geq 0$. Therefore:

$$
\begin{gather*}
g x_{0} \preceq g x_{1} \preceq g x_{2} \preceq \cdots \preceq g x_{n} \preceq g x_{n+1} \preceq \cdots \tag{2.10}\\
g y_{0} \succeq g y_{1} \succeq g y_{2} \succeq \cdots \succeq g y_{n} \succeq g y_{n+1} \succeq \cdots \tag{2.11}
\end{gather*}
$$

since $g x_{n} \succeq g x_{n-1}$ and $g y_{n} \preceq g y_{n-1}$. Then, from (2.3) and (2.4), we have:

$$
\left.\begin{array}{rl}
\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)= & \frac{\alpha}{2}\left[d\left(g x_{n}, g x_{n-1}\right)+d\left(g y_{n}, g y_{n-1}\right)\right] \\
& +\frac{\beta}{2}\left[d\left(g x_{n}, g x_{n+1}\right)+d\left(g y_{n}, g y_{n+1}\right)\right. \tag{2.12}\\
& \left.+d\left(g x_{n-1}, g x_{n}\right)+d\left(g y_{n-1}, g y_{n}\right)\right] \\
& \left.\frac{\gamma}{2}\left[d\left(g x_{n-1}, g x_{n+1}\right)\right)+d\left(g y_{n-1}, g y_{n+1}\right)\right]
\end{array}\right\}
$$

Similarly, since $g x_{n} \succeq g x_{n-1}$ and $g y_{n} \preceq g y_{n-1}$, then, from (2.3) and (2.4), we have also:

$$
\left.\begin{array}{rl}
\varphi\left(d\left(g y_{n+1}, g y_{n}\right)\right)= & \varphi\left(d\left(F\left(y_{n}, x_{n}\right)\right), F\left(y_{n-1}, x_{n-1}\right)\right) \tag{2.13}\\
\leq & \frac{1}{2} \varphi\left(\Theta\left(g y_{n}, g x_{n}, g y_{n-1}, g x_{n-1}\right)\right) \\
& -\psi\left(\Theta\left(g y_{n}, g x_{n}, g y_{n-1}, g x_{n-1}\right)\right)
\end{array}\right\}
$$

where

$$
\left.\begin{array}{rl}
\Theta\left(g y_{n}, g x_{n}, g y_{n-1}, g x_{n-1}\right)= & \frac{\alpha}{2}\left[d\left(g y_{n}, g y_{n-1}\right)+d\left(g x_{n}, g x_{n-1}\right)\right] \\
& +\frac{\beta}{2}\left[d\left(g y_{n}, g y_{n+1}\right)+d\left(g x_{n}, g x_{n+1}\right)\right. \\
& \left.+d\left(g y_{n-1}, g y_{n}\right)+d\left(g x_{n-1}, g x_{n}\right)\right] \\
& \left.+\frac{\gamma}{2}\left[d\left(g y_{n-1}, g y_{n+1}\right)\right)+d\left(g x_{n-1}, g x_{n+1}\right)\right]
\end{array}\right\}
$$

From (2.15) and (2.14), we remark that, for all $n \geq 1$:

$$
\begin{equation*}
\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)=\Theta\left(g y_{n}, g x_{n}, g y_{n-1}, g x_{n-1}\right) . \tag{2.16}
\end{equation*}
$$

Now, let us set

$$
\begin{equation*}
\delta_{n-1}=d\left(g x_{n}, g x_{n-1}\right)+d\left(g y_{n}, g y_{n-1}\right) . \tag{2.17}
\end{equation*}
$$

From (2.16), (2.17) and triangular inequality, we get

$$
\left.\begin{array}{rl}
\frac{\alpha}{2} \delta_{n-1} \leq \Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right) \leq \frac{\alpha}{2} \delta_{n-1} & +\frac{\beta}{2}\left[\delta_{n}+\delta_{n-1}\right] \tag{2.18}\\
& +\frac{\gamma}{2}\left[\delta_{n-1}+\delta_{n}\right]
\end{array}\right\}
$$

Now, from (2.18), we have

$$
\begin{equation*}
\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right) \leq \frac{\alpha+\beta+\gamma}{2} \delta_{n-1}+\frac{\beta+\gamma}{2} \delta_{n} . \tag{2.19}
\end{equation*}
$$

If there exists $n_{0} \in \mathbb{N}$ such that $\Theta\left(g x_{n_{0}}, g y_{n_{0}}, g x_{n_{0}-1}, g y_{n_{0}-1}\right)=0$, then $\delta_{n_{0}-1}=0$. Therefore:

$$
g x_{n_{0}}=g x_{n_{0}-1}=F\left(x_{n_{0}-1}, y_{n_{0}-1}\right)
$$

and

$$
g y_{n_{0}}=g y_{n_{0}-1}=F\left(y_{n_{0}-1}, x_{n_{0}-1}\right),
$$

so, the proof is finished.
From now on, we suppose that

$$
\begin{equation*}
\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)>0 \text { for all } n \geq 1 . \tag{2.20}
\end{equation*}
$$

From (2.12), we obtain

$$
\left.\begin{array}{l}
\varphi\left(d\left(g x_{n+1}, g x_{n}\right)\right)+\varphi\left(d\left(g y_{n+1}, g y_{n}\right)\right) \leq \\
\quad \varphi\left(\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)\right)-2 \psi\left(\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)\right) \tag{2.21}
\end{array}\right\}
$$

Using the property of φ, we have

$$
\left.\begin{array}{rl}
\varphi\left(d\left(g x_{n+1}, g x_{n}\right)+d\left(g y_{n+1}, g y_{n}\right)\right) \leq & \varphi\left(d\left(g x_{n+1}, g x_{n}\right)\right) \tag{2.22}\\
& +\varphi\left(d\left(g y_{n+1}, g y_{n}\right)\right)
\end{array}\right\}
$$

From (2.21) and (2.22), we have

$$
\left.\begin{array}{rl}
\varphi\left(\delta_{n}\right) \leq & \varphi\left(\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)\right) \tag{2.23}\\
& -2 \psi\left(\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)\right)
\end{array}\right\}
$$

Therefore, from (2.19) and (2.23) and by the property of φ, we obtain

$$
\begin{equation*}
\left.\varphi\left(\delta_{n}\right) \leq \quad \varphi\left(\frac{\alpha+\beta+\gamma}{2} \delta_{n-1}+\frac{\beta+\gamma}{2} \delta_{n}\right), \quad-2 \psi\left(\Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)\right) ~\right\} ~, ~ \tag{2.24}
\end{equation*}
$$

Now, we claim that

$$
\begin{equation*}
\delta_{n} \leq \delta_{n-1} \quad \text { for all } n \geq 1 \tag{2.25}
\end{equation*}
$$

Suppose that (2.25) is not true, in this case, there exists $n_{0} \geq 1$ such that

$$
\begin{equation*}
\delta_{n_{0}}>\delta_{n_{0}-1}, \tag{2.26}
\end{equation*}
$$

then from (2.24) and (2.26) we have

$$
\left.\begin{array}{rl}
\varphi\left(\delta_{n_{0}}\right) \leq & \varphi\left(\frac{\alpha+2 \beta+2 \gamma}{2} \delta_{n_{0}}\right) \tag{2.27}\\
& -2 \psi\left(\Theta\left(g x_{n_{0}}, g y_{n_{0}}, g x_{n_{0}-1}, g y_{n_{0}-1}\right)\right)
\end{array}\right\}
$$

since $\frac{\alpha+2 \beta+2 \gamma}{2}<1$ and since φ is nondecreasing, we get

$$
\begin{equation*}
\varphi\left(\delta_{n_{0}}\right) \leq \varphi\left(\delta_{n_{0}}\right)-2 \psi\left(\Theta\left(g x_{n_{0}}, g y_{n_{0}}, g x_{n_{0}-1}, g y_{n_{0}-1}\right)\right), \tag{2.28}
\end{equation*}
$$

which implies:

$$
\psi\left(\Theta\left(g x_{n_{0}}, g y_{n_{0}}, g x_{n_{0}-1}, g y_{n_{0}-1}\right)\right)=0
$$

and by the property of ψ, we have

$$
\Theta\left(g x_{n_{0}}, g y_{n_{0}}, g x_{n_{0}-1}, g y_{n_{0}-1}\right)=0
$$

which is a contradiction to (2.20). Therefore, (2.25) is true.
Now we shall prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{n-1}=0 \tag{2.29}
\end{equation*}
$$

From (2.25), the sequence $\left\{\delta_{n}\right\}$ is non-increasing, with 0 as lower bound, thus, there exists $\delta \geq 0$ such that $\delta_{n} \rightarrow \delta$. We shall show that $\delta=0$. We suppose that $\delta>0$, then from (2.25), (2.21) and (2.27), we have:

$$
\left.\begin{array}{rl}
\lim _{n \rightarrow \infty} \frac{\alpha}{2} \delta_{n} & \leq \limsup _{n \rightarrow \infty} \Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right) \tag{2.30}\\
& \leq \limsup _{n \rightarrow \infty}\left[\frac{\alpha+2 \beta+2 \gamma}{2} \delta_{n-1}\right] .
\end{array}\right\}
$$

Since $\frac{\alpha+2 \beta+2 \gamma}{2}<1,(2.30)$ implies that

$$
\begin{equation*}
\frac{\alpha}{2} \delta \leq \limsup _{n \rightarrow \infty} \Theta\left(g x_{n}, g y_{n}, g x_{n-1}, g y_{n-1}\right)<\delta \tag{2.31}
\end{equation*}
$$

So, there exists $\delta_{1}>0$ and a subsequence $\left\{\delta_{n_{k}}\right\}$ of $\left\{\delta_{n}\right\}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right)=\delta_{1} \leq \delta \tag{2.32}
\end{equation*}
$$

By the lower semicontinuity of ψ, we have

$$
\begin{equation*}
\psi\left(\delta_{1}\right) \leq \liminf _{k \rightarrow \infty} \psi\left(\Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right)\right) \tag{2.33}
\end{equation*}
$$

From (2.23), we have

$$
\left.\begin{array}{rl}
\varphi\left(\delta_{n_{k}}\right) \leq & \varphi\left(\Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right)\right) \tag{2.34}\\
& -2 \psi\left(\Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right)\right)
\end{array}\right\}
$$

thus

$$
\left.\begin{array}{rl}
\limsup _{k \rightarrow \infty} \varphi\left(\delta_{n_{k}}\right) \leq & \limsup _{k \rightarrow \infty} \varphi\left(\Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right)\right) \tag{2.35}\\
& -2 \liminf _{k \rightarrow \infty} \psi\left(\Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right)\right)
\end{array}\right\}
$$

which implies

$$
\begin{equation*}
\varphi(\delta) \leq \varphi(\delta)-2 \psi\left(\delta_{1}\right) \tag{2.36}
\end{equation*}
$$

From (2.36) we obtain $\psi\left(\delta_{1}\right)=0$, thus, by the property of ψ, we get $\delta_{1}=0$, which is a contradiction with the fact that $\delta>0$, therefore $\delta=0$. Now we will prove that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences. Suppose to the contrary, that at least one of $\left\{g x_{n}\right\}$ or $\left\{g y_{n}\right\}$ is not Cauchy sequence. Then there exists an $\varepsilon>0$ for which we can find subsequences $\left\{g x_{n(k)}\right\},\left\{g x_{m(k)}\right\}$ of $\left\{g x_{n}\right\}$ and $\left\{g y_{n(k)}\right\},\left\{g y_{m(k)}\right\}$ of $\left\{g y_{n}\right\}$, with $n(k)>m(k) \geq k$, such that

$$
\begin{equation*}
d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right) \geq \varepsilon \tag{2.37}
\end{equation*}
$$

Furthermore, corresponding to $m(k)$, we can choose $n(k)$ as the smallest integer with $n(k)>m(k) \geq k$ and satisfying (2.37). Then

$$
\begin{equation*}
d\left(g x_{n(k)-1}, g x_{m(k)}\right)+d\left(g y_{n(k)-1}, g y_{m(k)}\right) \leq \varepsilon \tag{2.38}
\end{equation*}
$$

Using (2.37), (2.38) and the triangular inequality, we have

$$
\begin{aligned}
\varepsilon \leq & r_{k}:=d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right) \\
\leq & d\left(g x_{n(k)}, g x_{n(k)-1}\right)+d\left(g x_{n(k)-1}, g x_{m(k)}\right) \\
& +d\left(g y_{n(k)}, g y_{n(k)-1}\right)+d\left(g y_{n(k)-1}, g y_{m(k)}\right) \\
\leq & d\left(g x_{n(k)}, g x_{n(k)-1}\right)+d\left(g y_{n(k)}, g y_{n(k)-1}\right)+\varepsilon .
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using (2.17), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} r_{k}=\lim _{k \rightarrow \infty}\left[d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g x_{n(k)}, g x_{m(k)}\right)\right]=\varepsilon \tag{2.39}
\end{equation*}
$$

From (2.3) we have

$$
\begin{aligned}
& \frac{\alpha}{2}\left[d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right)\right] \\
& \leq \Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right) \\
&= \frac{\alpha}{2}\left[d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right)\right] \\
&+\frac{\beta}{2}\left[d\left(g x_{n(k)}, F\left(x_{n(k)}, g y_{n(k)}\right)\right)+d\left(g y_{n(k)}, F\left(y_{n(k)}, g x_{n(k)}\right)\right)\right. \\
&\left.+d\left(g x_{m(k)}, F\left(x_{m(k)}, y_{m(k)}\right)\right)+d\left(g y_{m(k)}, F\left(y_{m(k)}, x_{m(k)}\right)\right)\right] \\
&+\frac{\gamma}{2}\left[d\left(g x_{m(k)}, F\left(x_{m(k)}, y_{m(k)}\right)\right)+d\left(g y_{n(k)}, F\left(y_{m(k)}, x_{m(k)}\right)\right)\right] \\
&\left.+d\left(g x_{n(k)}, F\left(x_{n(k)}, y_{n(k)}\right)\right)+d\left(g y_{n(k)}, F\left(y_{n(k)}, x_{n(k)}\right)\right)\right] .
\end{aligned}
$$

Then

$$
\begin{align*}
& \frac{\alpha}{2}\left[d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right)\right] \\
& \leq \Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right) \\
&= \frac{\alpha}{2}\left[d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g y_{n(k)}, g y_{m(k)}\right)\right] \\
&+\frac{\beta}{2}\left[d\left(g x_{n(k)}, g x_{n(k)+1}\right)+d\left(g y_{n(k)}, g y_{n(k)+1}\right)\right. \tag{2.40}\\
&\left.d\left(g x_{m(k)}, g x_{m(k)+1}\right)+d\left(g y_{m(k)}, g y_{m(k)+1}\right)\right] \\
&+\frac{\gamma}{2}\left[d\left(g x_{m(k)}, g x_{m(k)+1}\right)+d\left(g y_{m(k)}, g y_{m(k)+1}\right)\right. \\
&\left.+d\left(g x_{m(k)}, g x_{n(k)+1}\right)+d\left(g y_{m(k)}, g y_{n(k)+1}\right)\right]
\end{align*}
$$

From triangular inequality, we obtain

$$
\left.\begin{array}{l}
d\left(g x_{m(k)}, g x_{n(k)+1}\right) \leq d\left(g x_{m(k)}, g x_{m(k)+1}\right)+d\left(g x_{m(k)+1}, g x_{n(k)+1}\right. \\
d\left(g y_{m(k)}, g x_{n(k)+1}\right) \leq d\left(g y_{m(k)}, g y_{m(k)+1}\right)+d\left(g y_{m(k)+1}, g y_{n(k)+1}\right) \tag{2.41}
\end{array}\right\}
$$

From (2.40) and (2.41) we get

$$
\left.\begin{array}{rl}
\frac{\alpha}{2} r_{n_{k}} \leq \Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right) \leq & \frac{\alpha}{2} r_{n_{k}}+\frac{\beta}{2}\left(\delta_{n_{k}}+\delta_{m_{k}}\right) \tag{2.42}\\
& +\frac{\gamma}{2}\left(\delta_{m_{k}}+\delta_{m_{k}}+r_{n_{k+1}}\right)
\end{array}\right\}
$$

Taking upper limit when $k \rightarrow \infty$ and using (2.29), (2.39) and the fact that $\frac{\alpha}{2}+\frac{\gamma}{2}<$ 1 , we get

$$
0<\frac{\alpha}{2} \varepsilon \leq \limsup _{k \rightarrow \infty} \Theta\left(g x_{n_{k}}, g y_{n_{k}}, g x_{n_{k}-1}, g y_{n_{k}-1}\right) \leq \frac{\alpha}{2} \varepsilon+\frac{\gamma}{2} \varepsilon<\varepsilon
$$

this implies that there exist $\varepsilon_{1}>0$ and two subsequences $g x_{n_{k_{p}}}$ and $g y_{n_{k_{p}}}$ such that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \Theta\left(g x_{n_{k_{p}}}, g y_{n_{k_{p}}}, g x_{n_{k_{p}}-1}, g y_{n_{k_{p}}-1}\right)=\varepsilon_{1}<\varepsilon \tag{2.43}
\end{equation*}
$$

By the lower semicontinuity of ψ :

$$
\begin{equation*}
\psi(\varepsilon) \leq \liminf _{p \rightarrow \infty} \psi\left(\Theta\left(g x_{n_{k_{p}}}, g y_{n_{k_{p}}}, g x_{n_{k_{p}-1}}, g y_{n_{k_{p}}-1}\right)\right) . \tag{2.44}
\end{equation*}
$$

By the triangular inequality

$$
\begin{aligned}
r_{k}= & d\left(g x_{n(k)}, g x_{m(k)}\right)+d\left(g x_{n(k)}, g x_{m(k)}\right) \\
\leq & d\left(g x_{n(k)}, g x_{n(k)+1}\right)+d\left(g x_{n(k)+1}, g x_{m(k)+1}\right) \\
& +d\left(g x_{m(k)},, g x_{m(k)+1}\right)+d\left(g y_{n(k)}, g y_{n(k)+1}\right) \\
& +d\left(g y_{n(k)+1}, g y_{m(k)+1}\right)+d\left(g y_{m(k)},, g y_{m(k)+1}\right) \\
= & \delta_{n_{k}}+\delta_{m_{k}}+d\left(g x_{n(k)+1}, g x_{m(k)+1}\right) \\
& +d\left(g y_{n(k)+1}, g y_{m(k)+1}\right) .
\end{aligned}
$$

Using the property of φ, we have

$$
\left.\begin{array}{rl}
\varphi\left(r_{k}\right)= & \varphi\left[\delta_{n_{k}}+\delta_{m_{k}}+d\left(g x_{n(k)+1}, g x_{m(k)+1}\right)\right. \tag{2.45}\\
& \left.+d\left(g y_{n(k)+1}, g y_{m(k)+1}\right)\right] \\
\leq & \varphi\left(\delta_{n_{k}}+\delta_{m_{k}}\right)+\varphi\left(d\left(g x_{n(k)+1}, g x_{m(k)+1}\right)\right) \\
& +\varphi\left(d\left(g y_{n(k)+1}, g y_{m(k)+1}\right)\right)
\end{array}\right\}
$$

Since $n(k)>m(k)$, hence $g x_{n(k)} \succeq g x_{m(k)}$ and $g y_{n(k)} \preceq g y_{m(k)}$, using (2.2) and (2.4), we obtain

$$
\left.\begin{array}{rl}
\varphi\left(d\left(g x_{n(k)+1}, g x_{m(k)+1}\right)\right)= & \varphi\left(d\left(F\left(x_{n(k)}, y_{n(k)}\right), F\left(x_{m(k)}, y_{m(k)}\right)\right)\right. \tag{2.46}\\
\leq & \frac{1}{2} \varphi\left(\theta\left(x_{n(k)}, y_{n(k)}, x_{m(k)}, y_{m(k)}\right)\right) \\
& -\psi\left(\theta\left(x_{n(k)}, y_{n(k)}, x_{m(k)}, y_{m(k)}\right)\right)
\end{array}\right\}
$$

By the same way, we also have

$$
\left.\begin{array}{rl}
\varphi\left(d\left(g y_{n(k)+1}, g y_{m(k)+1}\right)\right)= & \varphi\left(d\left(F\left(y_{n(k)}, x_{n(k)}\right), F\left(y_{m(k)}, x_{m(k)}\right)\right)\right. \tag{2.47}\\
\leq & \frac{1}{2} \varphi\left(\theta\left(y_{n(k)}, x_{n(k)}, y_{m(k)}, x_{m(k)}\right)\right) \\
& -\psi\left(\theta\left(y_{n(k)}, x_{n(k)}, y_{m(k)}, x_{m(k)}\right)\right)
\end{array}\right\}
$$

From (2.45), (2.46) and (2.47), we obtain

$$
\left.\begin{array}{rl}
\varphi\left(r_{k_{p}}\right) \leq & \varphi\left(\delta_{n_{k_{p}}}+\delta_{m_{k_{p}}}\right) \tag{2.48}\\
& +\varphi\left(\theta\left(y_{n(k)}, x_{n(k)}, y_{m(k)}, x_{m(k)}\right)\right) \\
& -2 \psi\left(\theta\left(y_{n(k)}, x_{n(k)}, y_{m(k)}, x_{m(k)}\right)\right)
\end{array}\right\}
$$

then

$$
\begin{aligned}
\limsup _{p \rightarrow \infty} \varphi\left(r_{k_{p}}\right) \leq & \limsup _{p \rightarrow \infty} \varphi\left(\delta_{n_{k_{p}}}+\delta_{m_{k_{p}}}\right) \\
& +\limsup _{p \rightarrow \infty} \varphi\left(\theta\left(y_{n(k)}, x_{n(k)}, y_{m(k)}, x_{m(k)}\right)\right) \\
& -\liminf _{p \rightarrow \infty} 2 \psi\left(\theta\left(y_{n(k)}, x_{n(k)}, y_{m(k)}, x_{m(k)}\right)\right)
\end{aligned}
$$

hence

$$
\varphi(\varepsilon) \leq \varphi(0)+\varphi\left(\varepsilon_{1}\right)-2 \psi\left(\varepsilon_{1}\right) \leq \varphi(\varepsilon)-2 \psi\left(\varepsilon_{1}\right)
$$

This implies that $\psi\left(\varepsilon_{1}\right)=0$ and so $\varepsilon_{1}=0$, which is a contradiction. This shows that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences. Since X is a complete metric space, there exist $x, y \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right) \underset{n \rightarrow \infty}{=\lim _{n} g x_{n}=x} \tag{2.49}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}\right) \underset{n \rightarrow \infty}{=\lim _{n}} g y_{n}=y \tag{2.50}
\end{equation*}
$$

Since F and g are compatible mappings, we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(x_{n}, y_{n}\right), F\left(g x_{n}, g y_{n}\right)\right)=0\right. \tag{2.51}\\
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(y_{n}, x_{n}\right), F\left(g y_{n}, g x_{n}\right)\right)=0\right. \tag{2.52}
\end{align*}
$$

Now, we show that $g x=F(x, y)$ and $g y=F(y, x)$. Suppose that the assumption (a) holds. For all $n \geq 0$, we have

$$
d\left(g x, F\left(g x_{n}, g y_{n}\right)\right) \leq d\left(g x, g\left(F\left(x_{n}, y_{n}\right)\right)+d\left(g\left(F\left(x_{n}, y_{n}\right)\right), F\left(g x_{n}, g y_{n}\right)\right) .\right.
$$

Taking the limit as $n \rightarrow \infty$ and using (2.4), (2.49), (2.51) and by using the fact that F and g are continuous, we obtain $d(g x, F(x, y))=0$, hence $g x=F(x, y)$. With the same way, we obtain $d(g y, F(y, x))=0$, hence $g y=F(y, x)$. Combining the two results above, we get

$$
g x=F(x, y) \text { and } g y=F(y, x) .
$$

Finally, we suppose (b) holds. By (2.9) and from (2.49), (2.50), we have $\left\{g x_{n}\right\}$ is a nondecreasing sequence, $g x_{n} \rightarrow x$ and $\left\{g y_{n}\right\}$ is a nondecreasing sequence, $g y_{n} \rightarrow y$ as $n \rightarrow \infty$. Hence, by assumption (b), we have for all $n \geq 0$:

$$
\begin{equation*}
g x_{n} \preceq x \text { and } g y_{n} \succeq y . \tag{2.53}
\end{equation*}
$$

Since F and g are compatible mappings and g is continuous, by (2.51) and (2.52), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(g x_{n}\right)=g x=\lim _{n \rightarrow \infty} g\left(F\left(x_{n}, y_{n}\right)\right)=\lim _{n \rightarrow \infty} F\left(g x_{n}, g y_{n}\right) \tag{2.54}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(g y_{n}\right)=g y=\lim _{n \rightarrow \infty} g\left(F\left(y_{n}, x_{n}\right)\right)=\lim _{n \rightarrow \infty} F\left(g y_{n}, g x_{n}\right) \tag{2.55}
\end{equation*}
$$

Now, by triangular inequality, we have

$$
d(g x, F(x, y)) \leq d\left(g x, g\left(g x_{n+1}\right)\right)+d\left(g\left(g x_{n+1}\right), F(x, y)\right)
$$

taking $n \rightarrow \infty$ in the above inequality, using (2.4) and (2.48) we have

$$
\left.\begin{array}{rl}
d(g x, F(x, y)) & \leq \lim _{n \rightarrow \infty} d\left(g x, g\left(g x_{n+1}\right)\right)+\lim _{n \rightarrow \infty} d\left(g\left(g x_{n+1}\right), F(x, y)\right) \tag{2.56}\\
& \leq \lim _{n \rightarrow \infty} d\left(F\left(g x_{n}, g y_{n}\right), F(x, y)\right)
\end{array}\right\}
$$

Using the property of φ, we get

$$
\varphi(d(g x, F(x, y))) \leq \lim _{n \rightarrow \infty} \varphi\left(d\left(F\left(g x_{n}, g y_{n}\right), F(x, y)\right)\right)
$$

Since the mapping g is monotone and increasing, using (2.2), (2.53) and (2.56), we have, for all $n \geq 0$:

$$
\begin{aligned}
\varphi(d(g x, F(x, y))) \leq & \limsup _{n \rightarrow \infty} \frac{1}{2} \varphi\left(\Theta\left(g\left(g x_{n}\right), g\left(g y_{n}\right), g x, g y\right)\right) \\
& -\liminf _{n \rightarrow \infty} \psi\left(\Theta\left(g\left(g x_{n}\right), g\left(g y_{n}\right), g x, g y\right)\right)
\end{aligned}
$$

$$
\limsup _{n \rightarrow \infty} \frac{1}{2} \varphi\left(\Theta\left(g\left(g x_{n}\right), g\left(g y_{n}\right), g x, g y\right)\right)=\frac{1}{2} \varphi(\Theta(g x, g y, g x, g y))
$$

and

$$
\psi(\Theta(g x, g y, g x, g y)) \leq \liminf _{n \rightarrow \infty} \psi\left(\Theta\left(g\left(g x_{n}\right), g\left(g y_{n}\right), g x, g y\right)\right)
$$

then

$$
\left.\varphi(d(g x, F(x, y))) \leq \begin{array}{c}
\frac{1}{2} \varphi(\Theta(g x, g y, g x, g y)) \tag{2.57}\\
-\psi(\Theta(g x, g y, g x, g y))
\end{array}\right\}
$$

With the same way and by using (2.16), we prove that

$$
\left.\begin{array}{rl}
\left.\varphi(d(g y, F(y, x))) \leq \begin{array}{c}
\frac{1}{2} \varphi(\Theta(g x, g y, g x, g y)) \\
-\psi(\Theta(g x, g y, g x, g y))
\end{array}\right\} \\
\Theta(g x, g y, g x, g y)=(\beta+\gamma)(d(g x, F(x, y))+d(g y, F(y, x))) \tag{2.59}\\
\leq d(g x, F(x, y))+d(g y, F(y, x))
\end{array}\right\}
$$

and φ is nondecreasing, then from (2.57), (2.58), (2.59) and the property of φ, we get

$$
\begin{aligned}
& \varphi(d(g x, F(x, y))+d(g y, F(y, x))) \leq \varphi(\\
&(g x, F(x, y))+d(g y, F(y, x))) \\
&-2 \psi(\Theta(g x, g y, g x, g y))
\end{aligned}
$$

Then

$$
\Theta(g x, g y, g x, g y)=0=(\beta+\gamma)(d(g x, F(x, y))+d(g y, F(y, x)))
$$

This implies that

$$
d(g x, F(x, y))=0 \text { and } d(g y, F(y, x))=0
$$

Hence $g x=F(x, y)$ and $g y=F(y, x)$. Thus we proved that F and g have a coupled coincidence point.

3 Uniqueness of Coupled Coincidence Point.

In this section, we will prove the uniqueness of the coupled coincidence point. Note that if (X, \preceq) is a partially ordered set, then we endow the product $X \times X$, with the following partial order relation, for all $(x, y),(u, v) \in X \times X$:

$$
(x, y) \preceq(u, v) \text { if, and only if } x \preceq u \text { and } y \succeq v .
$$

Theorem 3.1. In addition to hypotheses of theorem 2.1. Suppose that for every $(x, y),(z, t)$ in $X \times X$, there exist a element (u, v) in $X \times X$ that is comparable to (x, y) and (z, t), then F has a coupled coincidence point.

Proof. Suppose (x, y) and (z, t) are coupled coincidence points of F and g, that is $g x=F(x, y), g y=F(y, x), g z=F(z, t)$ and $g t=F(t, z)$. We are going to show that $g x=g z$ and $g y=g t$. By assumption, there exists $(u, v) \in X \times X$, comparable to (x, y) and (z, t). We define sequences $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ as follows:

$$
u_{0}=u, v_{0}=v g u_{n+1}=F\left(u_{n}, v_{n}\right) \text { and } g v_{n+1}=F\left(v_{n}, u_{n}\right) \text { for all } n \geq 1
$$

Since (u, v) is comparable with (x, y), we may assume that

$$
(x, y) \succeq(u, v)=\left(u_{0}, v_{0}\right) .
$$

Using the mathematical induction, it is easy to prove that

$$
\begin{equation*}
(x, y) \succeq\left(u_{n}, v_{n}\right) \text { for all } n \geq 1 \tag{3.1}
\end{equation*}
$$

Using (2.2) and (3.1), we have

$$
\left.\begin{array}{rl}
\varphi\left(d\left(g x, g u_{n+1}\right)\right) & =\varphi\left(d\left(F(x, y), F\left(u_{n}, v_{n}\right)\right)\right) \\
\leq & \frac{1}{2} \varphi\left(\theta\left(g x, g y, g u_{n}, g v_{n}\right)\right) \tag{3.2}\\
& -\psi\left(\theta\left(g x, g y, g u_{n}, g v_{n}\right)\right)
\end{array}\right\}
$$

We have

$$
\begin{equation*}
\theta\left(g x, g y, g u_{n}, g v_{n}\right)=\theta\left(g v_{n}, g u_{n}, g y, g x\right) . \tag{3.3}
\end{equation*}
$$

Indeed

$$
\begin{aligned}
\theta\left(g x, g y, g u_{n}, g v_{n}\right)= & \frac{\alpha}{2}\left[d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)\right] \\
& +\frac{\beta}{2}\left[d\left(g u_{n}, g u_{n+1}\right)+d\left(g v_{n}, g v_{n+1}\right)\right] \\
& +\frac{\gamma}{2}\left[d\left(g x, g u_{n+1}\right)+d\left(g y, g v_{n+1}\right)\right. \\
& \left.+d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\theta\left(g v_{n}, g u_{n}, g y, g x\right)= & \frac{\alpha}{2}\left[d\left(g u_{n}, g x\right)+d\left(g v_{n}, g y\right)\right] \\
& +\frac{\beta}{2}\left[d\left(g v_{n}, g v_{n+1}\right)+d\left(g u_{n}, g u_{n+1}\right)\right] \\
& +\frac{\gamma}{2}\left[d\left(g v_{n}, g y\right)+d\left(g u_{n}, g x\right)\right. \\
& \left.+d\left(g y, g v_{n+1}\right)+d\left(g x, g u_{n+1}\right)\right]
\end{aligned}
$$

then

$$
\left.\begin{array}{rl}
\varphi\left(d\left(g v_{n+1}, g y\right)\right)= & \varphi\left(d\left(F\left(v_{n}, u_{n}\right), F(y, x)\right)\right) \tag{3.4}\\
\leq & \frac{1}{2} \varphi\left(\theta\left(g x, g y, g u_{n}, g v_{n}\right)\right) \\
& -\psi\left(\theta\left(g x, g y, g u_{n}, g v_{n}\right)\right)
\end{array}\right\}
$$

Using (3.2), (3.4) and the property of φ, we get

$$
\begin{aligned}
\varphi\left(d\left(g x, g u_{n+1}\right)+d\left(g v_{n+1}, g y\right)\right) \leq & \varphi\left(d\left(g x, g u_{n+1}\right)\right)+\varphi\left(d\left(g v_{n+1}, g y\right)\right) \\
\leq & \varphi\left(\theta\left(g x, g y, g u_{n}, g v_{n}\right)\right) \\
& -2 \psi\left(\theta\left(g x, g y, g u_{n}, g v_{n}\right)\right)
\end{aligned}
$$

Since ψ is nonnegative, we obtain

$$
\varphi\left(d\left(g x, g u_{n+1}\right)+d\left(g v_{n+1}, g y\right)\right) \leq \varphi\left(\theta\left(g x, g y, g u_{n}, g v_{n}\right)\right) .
$$

Thus, since φ is nondecreasing, it follows

$$
d\left(g x, g u_{n+1}\right)+d\left(g v_{n+1}, g y\right) \leq \theta\left(g x, g u_{n}, g y, g v_{n}\right),
$$

hence

$$
\left.\begin{array}{rl}
d\left(g x, g u_{n+1}\right)+d\left(g v_{n+1}, g y\right) \leq & \frac{\alpha}{2}\left[d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)\right] \tag{3.5}\\
& +\frac{\beta}{2}\left[d\left(g u_{n}, g u_{n+1}\right)+d\left(g v_{n}, g v_{n+1}\right)\right] \\
& +\frac{\gamma}{2}\left[d\left(g x, g u_{n+1}\right)+d\left(g y, g v_{n+1}\right)\right. \\
& \left.+d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)\right]
\end{array}\right\}
$$

By using the triangular inequality

$$
\begin{aligned}
d\left(g u_{n}, g u_{n+1}\right) & \leq d\left(g u_{n}, g x\right)+d\left(g x, g u_{n+1}\right) \\
d\left(g v_{n}, g v_{n+1}\right) & \leq d\left(g v_{n}, g y\right)+d\left(g y, g v_{n+1}\right)
\end{aligned}
$$

we get from (3.5)

$$
\begin{equation*}
d\left(g x, g u_{n+1}\right)+d\left(g v_{n+1}, g y\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right)\left[d\left(g x, g u_{n}\right)+d\left(g y, g v_{n}\right)\right] \tag{3.6}
\end{equation*}
$$

By iteration, we get

$$
\begin{equation*}
d\left(g x, g u_{n+1}\right)+d\left(g v_{n+1}, g y\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right)^{n+1}\left[d\left(g x, g u_{0}\right)+d\left(g y, g v_{0}\right)\right] \tag{3.7}
\end{equation*}
$$

since $\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}<1$, (3.7) implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[d\left(g x, g u_{n+1}\right)+d\left(g v_{n+1}, g y\right)\right]=0 \tag{3.8}
\end{equation*}
$$

Similarly, we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[d\left(g z, g u_{n+1}\right)+d\left(g v_{n+1}, g t\right)\right]=0 . \tag{3.9}
\end{equation*}
$$

Using (3.8) and (3.9), we have $g x=g z$ and $g y=g t$.

4 Application.

Set $Y=\left\{\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, \psi\right.$ is a Lebesgue integrable which is nonnegative, satisfies $\int_{0}^{\varepsilon} \psi(t) \mathrm{dt}>0$, for each $\varepsilon>0$ and subadditive, that is: $\int_{0}^{\varepsilon+\mu} \psi(t) \mathrm{dt} \leq$ $\int_{0}^{\varepsilon} \psi(t) \mathrm{dt}+\int_{0}^{\mu} \psi(t) \mathrm{dt}$ for all $\varepsilon>0$ and $\left.\mu>0\right\}$.

Example 4.1. We consider $\psi(x)=\frac{1}{1+x}, \psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, \psi$ is a Lebesgue integrable which is nonnegative, satisfies $\int_{0}^{\varepsilon} \psi(t) \mathrm{dt}=\ln (1+\varepsilon)>0$, for each $\varepsilon>0 . \psi$ is subadditive, indeed: since $1+\varepsilon+\mu \leq 1+\varepsilon+\mu+\epsilon \mu$, then

$$
\begin{aligned}
\int_{0}^{\varepsilon+\mu} \psi(t) \mathrm{dt}=\ln (1+\varepsilon+\mu) & \leq \ln (1+\varepsilon)(1+\mu) \\
& =\ln (1+\varepsilon)+\ln (1+\mu) \\
& =\int_{0}^{\varepsilon} \psi(t) \mathrm{dt}+\int_{0}^{\mu} \psi(t) \mathrm{dt}
\end{aligned}
$$

This shows that ψ is an example of subadditive, non-negative, Lebesgue integrable function.

Theorem 4.2. Let (X, \preceq) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ be a continuous mapping having the mixed monotone property on X such that there exist two elements $x_{0}, y_{0} \in X$ with

$$
g x_{0} \preceq F\left(x_{0}, y_{0}\right) \text { and } g y_{0} \succeq F\left(y_{0}, x_{0}\right) .
$$

Suppose there exist $\varphi \in \Phi$ and $\psi \in \Psi_{1}$ such that

$$
\begin{aligned}
& \int_{0}^{\varphi(d(F(x, y), F(u, v)))} \chi(t) \mathrm{dt} \leq \int_{0}^{\frac{1}{2} \varphi(\Theta(g x, g y, g u, g v))} \chi(t) \mathrm{dt}-\int_{0}^{\psi(\Theta(g x, g y, g u, g v))} \chi(t) \mathrm{dt} \\
& \text { for all } g x \succeq g u \text { and } g y \preceq g v . \\
& \Theta(g x, g y, g u, g v)= \frac{\alpha}{2}[d(g x, g u)+d(g y, g v)] \\
&+\frac{\beta}{2}[d(g x, F(x, y))+d(g y, F(y, x)) \\
&+d(g u, F(u, v))+d(g v, F(v, u))] \\
&+\frac{\gamma}{2}[d(g x, F(u, v))+d(g y, F(v, u)) \\
&+d(g u, F(x, y))+d(g v, F(y, x))]
\end{aligned}
$$

where $\alpha>0$ and $\beta, \gamma \geq 0$ such that $\alpha+2 \beta+2 \gamma<2$. Suppose $F(X \times X) \subset g(X)$, g continuous and compatible with F also suppose either
(a) F is continuous or
(b) X has the following property
(i) If a nondecreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \preceq x$, for all $n \geq 1$,
(ii) If a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$. then $y_{n} \succeq y$, for all $n>1$,
then there exist $x, y \in X$ such that $g x=F(x, y)$ and $g y=F(y, x)$. That is F and g have a coupled coincidence point in X.

Proof. Define $\Lambda: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by $\Lambda(\varepsilon)=\int_{0}^{\varepsilon} \psi(t) \mathrm{dt}$, where $\psi \in Y$. Thus Λ is continuous and nondecreasing with $\Lambda(0)=0$. Then 3.1 becomes

$$
\begin{aligned}
\Lambda(\varphi(d(F(x, y), F(u, v))) \leq & \frac{1}{2} \Lambda(\varphi(\Theta(g x, g y, g u, g v)) \\
& -\Lambda(\psi(\Theta(g x, g y, g u, g v))
\end{aligned}
$$

which further can be written as

$$
\varphi_{1}(d(F(x, y), F(u, v))) \leq \frac{1}{2} \varphi_{1}(\Theta(g x, g y, g u, g v))-\psi_{1}(\Theta(g x, g y, g u, g v))
$$

where $\varphi_{1}=\Lambda \circ \varphi$ and $\psi_{1}=\Lambda \circ \psi$, hence by Theorem [2.1] we have the results.

References

[1] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc. 132 (2004) 1435-1443.
[2] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theory Methods Appli. 65 (2006) 1379-1393.
[3] R.P. Agarwal, M.A. El- Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008) 1-8.
[4] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. Theory Methods Appli. 12 (2009) 4341-4349.
[5] N.V. Luong, N.X. Thuan, Coupled fixed point in partially ordered metric spaces and applications, Nonlinear Anal. Theory Methods Appl. 74 (2011) 983-992.
[6] A. Alotaibi, S.M. Alsulami, Coupled coincidence points for monotone operators in partially ordered metric spaces, Fixed point theory and Appl. 2011.
[7] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239.
[8] J.J. Nieto, R.R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica Engl. Ser. 23 (12) (2007) 2205-2212.
[9] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed point theory Appl. 2011 (2011) Article ID 508730.
[10] B.S. Choudhury, A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010) 2524-2531.
[11] N. Hussain, M.H. Shah, M.A. Kutbi, Coupled coincidence point theorems for nonlinear contractions in partially ordered quasi-metric spaces with a Q function, Fixed point theory Appl. 2011 (2011) Article ID 703938.
[12] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. TMA (2010) 621-469.
[13] W. Sintunavarat, Y.J. Cho, P. Kumam, Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces, Fixed Point Theory and Applications 2011, 2011:81.
[14] W. Sintunavarat, Y.J. Cho, P. Kumam, Coupled fixed point theorems for weak contraction mapping under $\mathrm{F}-$ invariant set, Abstr. Appl. Anal. Vol. 2012 (2012) Article ID 324874.
[15] W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces, Fixed Point Theory and Applications 2012 (2012) 2012:93.
[16] W. Sintunavarat, P. Kumam, Coupled coincidence and coupled common fixed point theorems in partially ordered metric spaces, Thai Journal of Mathematics 10 (3) 2012 541-549.
[17] W. Sintunavarat, Y.J. Cho, P. Kumam, Coupled fixed point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces, Fixed Point Theory and Applications 2012 (2012) 2012:128.
[18] W. Sintunavarat, A. Petru el, P. Kumam, Common coupled fixed point theorems for w-compatible mappings without mixed monotone property, Rendiconti del Circolo Matematico di Palermo, DOI 10.1007/s12215-012-0096-0.
[19] W. Sintunavarat, P. Kumam, Y.J. Cho, Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory and Applications 2012 (2012) 2012:170.
(Received 30 August 2012)
(Accepted 12 March 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

