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1 Introduction

The existence of fixed points in partially ordered metric spaces has been stud-
ied recently by several authors: Ran et all [I], Bhaskar and Laksmikantham [2],
Agarwal et all [3], Lakshmikantham and Ciric [4], Luong Thuan [5] and Alotaibi
and Alsulami [6]. The first result appeared in this direction was given by Ran
and Reurings [I], who presented its applications to matrix equation. Nieto and
Rodriguez-Lopez [7] [8] extended the results of Ran and Reurings [1] for nonde-
creasing mappings and applied them to obtain a unique solution for a first-order
ordinary differential equation with periodic boundary conditions.
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Recently, Alotaibi and Alsulami [6], established the existence and uni-queness
of coupled coincidence point, involving a (i, 1)-contraction condition for a map-
ping having the mixed g-monotone property. The aim of this paper is to extend
the results obtained in [6] by using a more general mapping having the mixed
g-monotone property and generalize the existing fixed point in the literature,
[9, (1O} 111, 12} 13} 14 15, 16} 17, 18, 19].

Here are some definitions, and early results we presented in the following.

Definition 1.1. ([3]). Let (X, <) be a partially ordered set and F : X x X —
X. The mapping F' is said to have the mized monotone property, if F(z,y) is
monotone, nondecreasing in x and it is monotone non-increasing in y, that is, for
any z,y € X:

T1, X2 €X7 x j Ty = F(xlay) j F(l‘g,y),

and
yi,y2 € X, y1 2y2 = F(z,y1) = F(z,y2).

Definition 1.2. ([3]). An element (z,y) € X x X is called a coupled fized point
of the mapping F': X x X — X if

z=F(z,y) and y=F(y,).

Definition 1.3. ([4]). (Mixed g-monotone Property).
Let F' and g be two mappings such that

F:XxX—-Xandg: X — X.

The mapping F' is said to have the mized g—monotone property if F(zx,y) is mono-
tone, nondecreasing in z and is monotone non-increasing in y, that is, for any
r,y € X :

l’l,’JJQGX, gry jng - F(Zlay)jF(z%y)ﬂ (11)

and
yuy2 € X, gy 2gya = Fl,y1) = F(z,y2). (1.2)
Definition 1.4. ([4]). An element (z,y) € X x X is called a coupled coincidence
point of the mapping F/': X x X —- X and g: X — X if
gr = F(z,y) and gy = F(y, ).

Definition 1.5. ([4]). The mappings F and g, where F' : X x X — X and
g: X — X, are said to be compatible if

lim d(g (F(Imyn)) 7F(gxn;gyn)) =0,

n—oo

and
lim d (g (F(Yn, zn)) s F(9Yn, 92n)) = 0,

n—oo
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whenever {z, } and {y,} are sequences in X, such that:

lim F(xn,y,) = lim gx, =z,
n—oo n—o0

and

lim F(yn,xn) = Jim gy, =y,

n—oo

are satisfied for all z,y € X.

The main theoritical results presented in [2] are the following coupled point
theorems.

Theorem 1.6. ([2]). Let (X, <) be a partially ordered set and suppose there exists
a metric d on X such that (X,d) is a complete metric space. Let F: X x X — X
be a continuous mapping, having the mized monotone property on X. Assume that
there exists a k € [0,1) with

d (F(z,y), F(u,v)) < §ld(z,u) + d(y,v)]

forallz =u and y=wv.
If there exist two elements xg,yo € X, with
zo = F(20,y0) and yo = F(yo, o),
then there exist x,y € X such that
x=F(z,y) and y= F(y,x).

Theorem 1.7. [2]. Let (X, =X) be a partially ordered set and suppose there exists
a metric d on X such that (X,d) is a complete metric space. Assume that X has
the following property:

1. If a nondecreasing sequence {x,} — x, then x, <X, for alln > 1.
2. If a non-increasing sequence {yn,} — y, then y, =y, for alln > 1.

Let F : X x X — X be a mapping, having the mized monotone property on
X. Assume that there exists a k € [0,1) with

4 (P (2,), F(u,0)) < Sfd(a,w) + d(y, )
forall x = u and y =< wv.
If there exist two elements xy,yo € X, with
zo =X F(zo,y0) and yo = F(yo, zo),
then there exist x,y € X such that

x=F(z,y) and y=F(y,z).
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In [5], the authors presented some coupled fixed point theorems for a mixed
monotone mapping in a partially ordered metric space, which are nondecreasing,
of the results of Bhaskar and Lakshmikantham [2].

Let us denote by ® the set of all functions ¢ : [0, oo[— [0, oo which satisfy

1. ¢ is continuous and nondecreasing,
2. o(t) =0if, and only if t = 0,
3. p(t+s) <o(t) + ¢p(s), for all ¢, s € [0, 00]

and ¥ denotes the set of all functions % : [0, oo[— [0, 0o, which satisfy

t—r

lime)(¢) > 0 for all » > 0 and lim ¥(t) = 0.
t—04

(For more details about ® and U, see [5]).

Theorem 1.8. ([2]). Let (X, <) be a partially ordered set and suppose there exists
a metric d on X such that (X, d) is a complete metric space. Let F: X x X — X
be a continuous mapping, having the mired monotone property on X, such that
there exist two elements xo,yo € X, with xo < F(xo,y0) and yo = F(yo,xo).
Suppose there exist ¢ € ® and ¢ € U such that

d(z,u) + d(y,v) )

@ (d (F(,y), F(u,v) < 3o (d(w,u) + dly,v) — v (==

forallz>u and y=<w.
Suppose either

(a) F is continuous or

(b) X has the following properties:

(i) If a nondecreasing sequence {x,} — x, then x, <Xz, for alln > 1,

(ii) If A non-increasing sequence {yn} — vy, then y, =y, for alln > 1,

then there exist x,y € X such that © = F(x,y) and y = F(y,z). That is F has a
fized point.

A. Alotaibi and S. Alsulami [6] established the existence and uniqueness of
coupled coincidence point involving a (¢, 1)-contractive condition for mappings
having the mixed g-monotone property. The main theoritical result in A. Alotaibi
and S. Alsulami [6], is given by the following theorem:

Theorem 1.9. [6]. Let (X, X) be a partially ordered set and suppose there exists a
metric d on X such that (X, d) is a complete metric space. Let F: X x X — X be
a continuous mapping, having the mized monotone property on X such that there



Coupled Coincidence Point for Generalized Monotone Operators ... 371

exist two elements g, yo € X with gro = F(xo,y0) and gyo = F(yo, o). Suppose
there exist ¢ € ® and ¢ € U such that

p(d(F(z,y), F(u,0))) < 3¢ (d(gz, gu) + d(gy, gv))
7w<d(g:ﬂ, gu) +d(gy, gv))
2

for all gx >=gu and gy = gv.

Suppose F (X x X) C g(X), g continuous and compatible with F, also suppose
either

(a) F is continuous or

(b) X has the following property:
(i) f a nondecreasing sequence {x,} — x, then x, =<z, for alln > 1,
(ii) f a non-increasing sequence {yn} — y, then y, =y, for alln >1

then there exist x,y € X such that gx = F(z,y) and gy = F(y,x). That is F and
g have a coupled coincidence point in X.

2 Existence of Coupled Coincidence Points.

The set ¥y of all lower semi-continuous functions ¢ : [0, co[— [0, co[, is con-
sidered, instead of ¥, the function, v satisfies: ¢(¢t) = 0 if, and only if ¢ = 0. We
prove our main result:

Theorem 2.1 (Main Theorem). Let (X, <) be a partially ordered set and suppose
there exists a metric d on X such that (X,d) is a complete metric space. Let
F: X xX — X be a continuous mapping, having the mixed monotone property
on X, such that there exist two elements xg,yo € X with

gzo = F(wo,y0) and gyo = F(yo, o). (2.1)
Suppose that there exist ¢ € ® and ¢ € V1 such that

@ (d(F(z,y), Fu,v) < 10(O(gz,gy,gu,gv))
¥ (©(gz, gy, gu, gv)) (2.2)
for all gx>=gu and gy = gv
O(gz, 9y, 9u, gv) = g [d(gz,gu) + d(gy, gv)]
+5 dlgx, F(e, ) + dlgy. F(y, )
+d(gu, F(u,v)) + d(gv, F(v,u))]

—|—:72— [d(gz, F(u,v)) +d(gy, F(v,u))

+d(gu, F(z,y) + d(gv, F(y, v))]
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where o > 0, and B,v > 0 such that a+20 +2vy< 2. Suppose F (X x X) C g(X),
g continuous and compatible with F, also suppose either

(a) F is continuous or

(b) X has the following properties:

(i) If a nondecreasing sequence {x,} — x, then x, <Xz, for alln > 1,

(ii) If a non-increasing sequence {yn} — vy, then y, =y, for alln > 1,

then there exist x,y € X such that gx = F(x,y) and gy = F(y,x). That is F and
g have a coupled coincidence point in X.

Proof. Let zg,yo € X be such that gxg <X F(zo,y0) and gyo = F(yo, o). Using
the fact that F' (X x X) C g (X), we construct sequences {z,} and {y,} in X as
follows:

9Tn+1 = F(g2n, gyn) and gyni1 = F(gyn, gvy) for all n > 0. (2.4)

We shall show that the sequence {gz,} is increasing and {gy,} is decreasing, that
is:
g, = grpyp forall n >0 (2.5)

and
JYn = gYn+1 for all m > 0. (2.6)

To prove ([23) and ([26]), we use the mathematical induction.

Let n = 0. Since gxog < F(xo,y0) and gyo = F(yo, o) and as gx; = F(zo,yo0)
and gy1 = F(yo, o), we have gxg < gz and gyo = gy1. Thus (Z0) and (Z6]) hold
for n = 0.

Suppose now that (Z3]) and (Z6]) hold for some n > 0. Then, since gz, =< gxnt1
and gy, = gYn+1, and by the mixed g—monotone property of F', we have

9Tn42 = F(xn+1a yn-i-l) = F(wna yn-i-l) = F(Ina yn) = 9Tn+1 (2'7)

and
9Yn+2 = F(Ynt1, Znt1) 2 F(Yn, Yn+1) = F(Yn,Tn) = gYn+1- (2.8)

Now, from (Z71) and (28], we obtain

9Tni2 2 GTny1 and  GYni1 = GYni2, (2.9)

thus, by mathematical induction, we conclude that (Z3) and (28) hold for all
n > 0. Therefore:

gro X gr1 X gry X+ 2 gy X GTpg1 X0 (2.10)

9Y0 = gY1 = Y2 = = GYn = GYnt1 = (2.11)
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since g, ¥ grn—1 and gy, = gyn—1. Then, from (Z3) and (Z4), we have:

«
O(9Zn, 9Yn, 9Tn—1,9Yn—1) = = [d(gTn, gTn—1) + d(gYn, gYn—1)]
B
2

+d(gzn—1,9Tn) + d(gYn—1, 9Yn)]

% [d(g2n—1,9%n11)) + d(GYn—1, 9Yn+1)]

Similarly, since gz, > grn—1 and gy, =< gyn—1, then, from (Z3) and Z2), we
have also:

¢ (d(gyn+1,99n)) = @A F WYn,T0)), F (Yn—1,2n-1))
%50 (@(gynagznagynflagznfl) ) (2'13)
_w (G(Qynmgmnmgyn—lagxn—l))

2
+3 [d(gn, 92ns1) + d(gYn, 9Yn+1) (2.12)

IN

¢ (d(9Tnt1,970)) = @ (d(F (@n,yn)) s F (Tn—1,Yn-1))

1
< 5@(G(an,gymgﬂcnq,gynq))

=1 (©(9Zn, 9Yn, 9Tn—1,9Yn—1) )
where

O(9Yn, 9%n, GYn—1, 9Tn—1) = (9Yns 9Yn—1) + d(92n, gTn_1)]

+ o2

[d
B
5 [d(gyna gynJrl) + d(gmna gl’nJrl)

+d(gyn—1a 9Yn) + d(gmn—h gxn)]

Y
+§ [d(gyn—h gyn-‘rl)) + d(gxn—la gxn-i-l)]

(2.14)
o
©(92n, 9Yn, 9n-1, 9Yn-1) = 5 [d(92n, g¥n-1) + d(gyn, gyn-1)]
B
+5 [d(g@n, g2nr1) + d(9yn, gyn+1)
+9£(gxn_1, 9%n) + d(gyn—1, 9Yn)]
+5 [d(92n-1,92n+1)) + d(gYn-1, 9Yn-+1)]
(2.15)
From (ZI0) and (2I4), we remark that, for all n > 1:
O(9Tn, gYns 9Tn—1,9Yn—1) = O(9Yn: 9Tn, 9Yn—1, gTn—1)- (2.16)
Now, let us set
On—1 = d(9Tn, gTn—1) + d(g¥Yn, gYn—1)- (2.17)
From (ZTI4), (ZI7) and triangular inequality, we get
o o
§6n—1 < e(gxrugyn;gxn—lvgyn—l) < 5571—1 + g [571 + 571—1]
(2.18)
Y
+—= [57171 + 6n]

2
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Now, from (ZI8)), we have

O(9%n, 9Yn, 9Tn—1, 9Yn—1) <
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oz—i—ﬁ-i-vé

) n—1 +

B+
5 S .

(2.19)

If there exists ng € N such that (g%, , 9Yng, 9Tne—1s GYne—1) = 0, then §,,, 1 = 0.

Therefore:

9Tng = GTng—1 = F(l‘noflaynofl)

and

9Yno = GYno—1 = F (ynofla :L'nofl) )

so, the proof is finished.

From now on, we suppose that

O(9Tn, 9Yn, 9Tn—1,9Yn—1) > 0 for all n > 1.

From (ZI2), we obtain

@ (d(g2n11,970)) + ¢ (d(gYn+1, 9yn)) <

© (0(92n; 9Yn, 9Tn—1,9Yn—1)) — 20 (O(gTn; GYn> 9Tn—1, 9Yn—1))

Using the property of ¢, we have

@ (d(gTnt1, 9%n) + d(9Yn+1,9Yn)) < @ (d(g2ni1,9%n))
+90 (d (gynJrla gyn))

From (Z21) and (222)), we have

© (0n)

Therefore, from ([2I9) and ([223) and by the property of ¢, we obtain

12 (5n)

Now, we claim that

Suppose that (Z25) is not true, in this case, there exists ng > 1 such that

< ¢ (0(9Zn, 9Yn> 9Tn—1,9Yn—1))

=29 (0(92n, 9Yns 9Tn—1, 9Yn—1)) }

2

(s, 1+ 2E05) }
=29 (O(9Zn, 9Yn, 9Tn—1, 9Yn—1))

Op < 0p—1 foralln>1.

6710 > 57’7,0717
then from (2.24)) and ([2.:20) we have
a+ 26+ 2y
0 0n) < o 0n)

=20 (O(9Tng > GYnos 9Tno—1> GYno—1))

}

|

|

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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since LT 25 +2 < 1 and since ¢ is nondecreasing, we get

¥ (5710) < ¥ (5710) - 21/} (G(gxnoa 9Yngs 9Tno—1, gynofl)) ) (228)
which implies:
(0 (@(QInO, 9Yngs 9Tno—1, gyno—l)) =0,
and by the property of v, we have

O(9%ng> GYno> 9Tno—1, 9Yno—1) = 0,

which is a contradiction to ([Z20)). Therefore, (Z.20)) is true.
Now we shall prove that
lim 8,1 = 0. (2.29)
n—oo

From (2.25), the sequence {d,} is non-increasing, with 0 as lower bound, thus,
there exists 6 > 0 such that d4,, — J. We shall show that § = 0. We suppose that

d > 0, then from (Z20), 221)) and (Z27)), we have:

. « .
lim 0, < limsup©(g2n, gYn, gTn—1,9Yn—1)
n—oo 2
954 2y (2.30)
< hmsup[ién_l]
n—oo 2

Since &1 25 +2 < 1, (Z30) implies that

%5 < limsup ©(g2n, 9Yn, 9Tn—1, gYn—1) < 0. (2.31)

n—oo

So, there exists 6; > 0 and a subsequence {dy, } of {d,} such that
Um O©(92n, ; gYnis 9Tn,—1, GYn,—1) = 61 < 6. (2.32)
k—o0
By the lower semicontinuity of 1, we have
w (61) < hkn_1>£f¢ (@(gmnk y 9Yny s GTny—1, gynk—l)) . (233)
From (2:23), we have

(10(57'%) S 90(@(gxnkvgynkagxnk—lagynk—l) ) } (234)
—20) (O(9Tnys GYnss 9Tnp—15 GYni—1))

thus

lim supp (0n,,) < limsup o (O(97n,,, 9Ynis 9Tne—159Yne—1) )
k—oco k— oo (235)

—2lim inf ¢ (©(gn,,, 9Yny> 9Tn, —1, 9Yni—1)),
k—oo
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which implies
©(8) <(8) —2¢(61). (2.36)

From (Z:36]) we obtain ¢ (61) = 0, thus, by the property of ¥, we get §; = 0, which
is a contradiction with the fact that § > 0, therefore 6 = 0. Now we will prove that
{9z, } and {gy,} are Cauchy sequences. Suppose to the contrary, that at least one
of {gx,} or {gyn} is not Cauchy sequence. Then there exists an € > 0 for which

we can find subsequences {9,k }, {9Tmm)} of {920} and {gyn)}, {9Ym} of
{gyn}, with n(k) > m(k) > k, such that

d (92 (k) 9Tm)) + & (9Yn(k)s GYm(k)) = €. (2.37)

Furthermore, corresponding to m(k), we can choose n(k) as the smallest integer
with n(k) > m(k) > k and satisfying (231). Then

A (9Zn(k) -1, 9Tm(k)) + 4 (9Yn(k)—1, 9Ymr)) < €. (2.38)

Using (2.37), (238) and the triangular inequality, we have

= d (9%n), 9Tmk)) + A (9Yn(k)> Ym(r))

d (9n(k)> 9%nk)—1) + d (9Tn(k)—1, 9Tm(r))

+d (9Yn (k) 9Yne)—1) + & (9Yn)—1> 9Ymk))

d (9% (y: 9Tn(k)—1) + A (9Yn(h), GYn(r)-1) + €

INIA

IN

Letting k — oo and using ([2I7)), we get

lim r, = hm [d (g:nn(k), gmm(k)) +d (g:cn(k), g:cm(k))} =e. (2.39)

k—o0

From (23) we have

% [d (9%n k), 9Tm(k)) + A (9Yn(k) GYmr)) ]

< G(ankagynkagxnk—hgynk—l)
= 2d(9%nm)s 9Tmk)) + A (9Ynk)s GYm))]

+81d (920, F (fﬂn(k) 9Yn(k))) + A (9Yn)s F Wnii)> 9Tnr)))
+d (9T (k) F(@m(r)s Ym(r) ) + d (9Ymiys FYmiys Tmry) )]
+3[d (gxm(k)v (fﬂm(k) Ymk))) + 4 (9Ynkys F Ume)s Tm(r)) )]
+d (9% (k) F(@n)» Yn))) + d (9Ynk)> FWne» Tuiiy))]-
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Then

% [d (9%n k), 9Tmr)) + A (9Yn(k)> GYmr)) ]

< e(gxnkvgynmgxnk—lagynk—l)

[d (920 k), 9Tm@)) + & (9Yn(k)> GYm(k))]
B
2

@
2
n (2.40)

[d(9Zn (k) 9Tn(k)+1) + A(GYn(k)> GYn(k)+1)
A(9Tm(k)s 9Tm(k)+1) + AGYm(k)s Ymik)+1)]

v
+§[d(9$m(k)7 9Tmk)+1) + A(GYm(k)s 9Ym(k)+1)

Fd(9Tm k), 9Tn(k)+1) + AGYmk)> GYn(k)+1)]
From triangular inequality, we obtain

d(9$m(k)7 gfﬂn(k)ﬂ) < d(gxm(k)agxm(k)Jrl) + d(gxm(k)Jrh gfﬂn(k)ﬂ} (2.41)
A(9Ymk)> 9Tn(k)+1) < AGYm(k)» 9Ym(ke)+1) + AGYmk)+1> 9Yn(k)+1)

From (Z40) and (Z41]) we get

%T"k S @(gxnk,gynk,gxnk—hgynk—l) S %T'ﬂk + g (6nk + 6mk) (242)
+% (5mk + 5mk + Tnk+1)

?aking upper limit when & — oo and using (2.29)), (2.39) and the fact that §+3 <
, we get

« . «
0< 3¢ < limsup ©(gn,,, GYny> 9%n,—1, GYnj—1) < 3¢ + %6 <g,

k—o0

this implies that there exist ¢; > 0 and two subsequences Gy, and 9Yn,., such
that
lim ©(g2n, s 9Yny, s 9Tns, —15 9Yns, —1) = €1 < €. (2.43)

p—0o0

By the lower semicontinuity of ) :

P(e) < liminfy (@(gxnkp s QYni, s 9Ty, 15 GYn, —1)) : (2.44)

p—o0

By the triangular inequality

e = d(9Tar) 9Tm@w)) + d (9Tn(r) 9Tmr))
< d(9%a(t), 9Tn(my+1) + d (9Tn(t) 415 9Tm(r)+1)
+d(9Z (k) » 9Tm(k)+1) + A (GYn(k)> GYn(k)+1)
+d (9Yn(k)+15 9Ymk)+1) + AGYm)s > GYm(k)+1)
= O + Oy +d (9Tn(k) 415 9Tm(k)+1)
+d (GYn(k)+15 GYm(k)+1) -
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Using the property of ¢, we have

e(rk) = @ [0n, 4 0my +d (9Zn(k) 11> 9Tm(k)+1)

+d (gYn(k)+1> 9Ym(k)+1) ]

@ (O, + ) + ¢ (d (920 )+15 9Zm(r) 1))
¢ (d (9Yn k) +15 9Ym () +1)) -

(2.45)

IN

Since n(k) > m(k), hence g, k) = 9Tm) and gYnk)y = GYm(k), using ([Z2) and

[24), we obtain

@(d (g$n(k)+179$m(k)+1)) d(F(xn(k) yn(k)) ( m(k)s Ym(k ))
(0 (Tn(k)s Un(k)> Trm(k)> Ym(k) ) (2.46)

= (0 (Zn(k)» Yn(k)> Tm(k)» Ym(k)) ) -
By the same way, we also have
@ (d (FYneky» Tnk)) s F (Ym(k)s Tmr)))

< 59 (0 (Yn()s Tnr)s Ym(k)> Tm(k))) (2.47)
=0 (0 (Yn(k)> Tn(k) Ym(k)> Tm(k)

From (Z45), (246]) and (Z47T), we obtain

() < (Ons, + Oma, )

+0 (0 (Yn(k)> Tn(k)> Ym(k) Tm(r))) (2.48)
=20 (0 (Yn(h) Tra(he) s Y (k) » Toma (k)

@ (d (gYnr)+15 9Ym(k)+1))

=

then

limsupy (ry,) < limsup ¢ (5nkp + 5mkp)

p—o0 p—0

Himsup © (0 (Yn(k)s Tnk)> Ym(k) Tm(k)) )

p—0o0

*hgl_jgof 20 (0 (Yn(k)» Ta(k)s Ym(k)s Tm(k))) »

hence
@) Sp(0)+p(e1) —2¢(e1) < pl(e) —2¢ (1)

This implies that ¢ (1) = 0 and so e; = 0, which is a contradiction. This shows
that {gz,} and {gy,} are Cauchy sequences. Since X is a complete metric space,
there exist x,y € X such that

lim F(mn,yn) = hm g, =T (2.49)
n—o0

and
lim F(yn, xn) = hm JYn = Y. (2.50)

n—oo
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Since F' and g are compatible mappings, we have

nlggod (g(F(mna yn) 7F(gxnagyn)) =0 (251)
Jim d (g(F(yn, 2n) , F(gyn, g2n)) = 0. (2.52)

Now, we show that gz = F(x,y) and gy = F(y,x). Suppose that the assumption
(a) holds. For all n > 0, we have

d(gz, F(92n, gyn)) < d(gz, g (F(2n,yn)) +d (g (F(Zn,yn)) s F(9Tn, gyn)) -

Taking the limit as n — oo and using (24), (249), 25I) and by using the fact
that F and g are continuous, we obtain d(gz, F(z,y)) = 0, hence gz = F(z,y).
With the same way, we obtain d(gy, F(y,x)) = 0, hence gy = F(y, ). Combining
the two results above, we get

gr = F(z,y) and gy = F(y, x).

Finally, we suppose (b) holds. By ([2) and from 2:49) , (Z50) , we have {gx, }
is a nondecreasing sequence, gz, — x and {gy,} is a nondecreasing sequence,

9yn — y as n — oo. Hence, by assumption (b), we have for all n > 0:
9rn 2z and gy, = y. (2.53)

Since F' and g are compatible mappings and g is continuous, by (ZX51) and ([Z52)),
we have

Jim g(gn) = gx = Tim g(F(2n,yn)) = lim F(grn, gyn) (2.54)
and
tim g(gyn) = gy = lim g(F(yn, x)) = lim F(gyn, gn). (2.55)

Now, by triangular inequality, we have
d(gx, F(x,y)) < d(g2,9(9n+1)) + d(9(92n11), F(2,9)),
taking n — oo in the above inequality, using (Z4]) and (Z48]) we have

d(gz, F(z,y)) < lim d(gz,9(grnt1)) + lim d(g(g2ni1), F(2,9)) 056
< "l d(F(gzn, gyn), F (1)) (2.56)

n—oo

Using the property of ¢, we get
¢ (d(gz, F(z,y))) < lim ¢ (d(F (g2, gyn), F(2,9))) -

Since the mapping ¢ is monotone and increasing, using (22)) , Z53) and (Z354),
we have, for alln >0 :

p(d(gr, F(r,y)) < Tmsup o (©(g(gra) 9 (90n) 97, 99))

n—o0

~liminfy) (O(g (92n) .9 (9yn) . 97, 99)) ,
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. 1 1
limsupz (©(g9 (92n) , 9 (9yn) 92, 9Y) ) = 3¢ (©(9z, gy, 9, 9y))

n—o0
and
¥ (©(g2, 9y, g, gy) ) < liminfe) (O(g (92n), 9 (9yn) , 97, 9Y)) ,

then
¢ (d(g9z, F(z,y) < 10(9(9z, 9y, 97, 9Y))
- (O(9z, gy, 9z, 9y)) } (2:57)

With the same way and by using ([2I6), we prove that

¢(d(gy, Fly,2))) < 350(0(gz,9y,97,9y) )
— (9(gz, gy, g, gy)) } (2.58)

O(g, 9y, 97, 9y) B +1) (d(gz, F(z,y)) + d(gy, F(y, v))) } (2.59)

=
< d(gz, F(z,y)) +d(gy, F(y,))

and ¢ is nondecreasing, then from (257 , (258),[259) and the property of ¢, we
get

¢ (d(gz, F(z,y)) +d(gy, F(y.2))) < ¢ (d(gz, F(z,y)) +d(gy, F(y,z)))
—2¢ (©(9, 9y, 97, 9y))

Then
O(9z, 9y, 92,9y) = 0= (B + ) (d (92, F(z,y)) + d(9y, F(y,2))) .
This implies that
d(gz, F(z,y)) =0 and d(gy, F(y,z)) =0.

Hence gz = F(x,y) and gy = F(y, x). Thus we proved that F and g have a coupled
coincidence point. O

3 Uniqueness of Coupled Coincidence Point.

In this section, we will prove the uniqueness of the coupled coincidence point.
Note that if (X, <) is a partially ordered set, then we endow the product X x X,
with the following partial order relation, for all (z,y), (u,v) € X x X :

(z,y) = (u,v) if, and only if z < w and y = v.
Theorem 3.1. In addition to hypotheses of theorem [21], Suppose that for every

(z,9), (2,t) in X x X, there exist a element (u,v) in X x X that is comparable to
(z,y) and (z,t), then F has a coupled coincidence point.
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Proof. Suppose (z,y) and (z,t) are coupled coincidence points of F' and g, that
is gr = F(x,y),9y = F(y,x),9z = F(z,t) and gt = F(t, z). We are going to show
that gr = gz and gy = gt. By assumption, there exists (u,v) € X x X, comparable
o (z,y) and (z,t). We define sequences {gx,} and {gy,} as follows:

Uy = Uy V9 =V GUpt1 = F(un,v,) and gu, 1 = F(vy,uy,) for all n > 1.
Since (u,v) is comparable with (x,y), we may assume that
(z,y) = (u,v) = (uo, vo).
Using the mathematical induction, it is easy to prove that
(z,y) = (un,vy) foralln > 1. (3.1)
Using (Z2)) and @I)), we have

o (d(gr, guny1)) = ¢ (d(F(z,y), F (un,vn)))
< 30(0(9%, 9y, gn, gvn)) (3.2)
— (0 (gz, gy, gun, gvn))
We have
0 (9, gy, gun, gvn) = 0 (gUn, gun, gy, gx) . (3.3)
Indeed
Q
0 (92, 9y, gun, gvn) = ) [d(g, gun) + d(gy, gvn)]
B
+5 [d(gun, gunt1) + d(gvn, guni1)]
+

and

0 (9vn, gun, gy, gzr) = d(gun, gx) + d(guvn, 9y)]

[d(gvn, gunt1) + d(gun, gunt1)]

[d(gvn, gy) + d(gun, g)
(gya ganrl) + d(g:L', gunJrl)] )

(d( (Umun) F(y, 7))
¢ (6 (92, 9y, gun, gvn)) (3.4)
=1 (0 (92, 9y, gun, gvn))

Using 2], (34) and the property of ¢, we get
o(d (92, gunt1) + d(gont1,9y)) < @(d (92, gunt1)) + o(d (gvnt1, 9y))

< @ (9 (g9z,9Y, gun, gun))
—2¢ (0 (g, gy, gtin, gvn)) -

+ + 4 IR
AR

then
¢ (d(gvns1,9y) = ¢
< 3
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Since 1) is nonnegative, we obtain

o(d (gz, gunt1) + d(gvni1,9y)) < ¢ (0 (97, gY, g, gvn)) -

Thus, since ¢ is nondecreasing, it follows

d (9, gunt1) + d (gvnt1, gy) < 0 (92, gun, gy, gon)
hence
d (g, gun+1) +d (guns1,9y) < G ld(gz, gun) + d(gy, gun)]
[ (gunagunJrl) + d(gvnaganrl)]
[d

(92, gunt1) + d(gy, gvny1)
(92, gun) + d(gy, gvn)]

+

g (3.5)
3
+d
By using the triangular inequality
d(gun, gun+1) < d(gun, gz) + d(gz, guni1),

d(gvm GUnt1) < d(g'Um gy) + d(gy GUnt1),
we get from (B35

092 gtne) + d (gvns1, gy) < ( ) (d(ge, gun) + d(gy, gva)]  (36)

By iteration, we get

1
d(gz, guns1) + d(guni1,9y) < (%ﬁjﬁ) [d(gz, guo) + d(gy, gvo)] (3.7)

since %ﬁtg < 1, 37) implies that
lim [d (g, gun+1) + d (gvni1,9y)] =0 (3.8)

n—oo

Similarly, we show that

lim [d(g9z,gunt+1) + d(gvnt1,9t)] = 0. (3.9)
n—oo
Using (38) and 39), we have gz = gz and gy = gt. O

4 Application.

Set Y = {w Rt — R¥,4¢ is a Lebesgue integrable which is nonnegative,
satlsﬁes I dt > 0, for each ¢ > 0 and subadditive, that is: fOEJr“z/; (t)dt <
Jo v dt—i—f (t)dt for all € > 0 and u > 0}.



Coupled Coincidence Point for Generalized Monotone Operators ... 383

Example 4.1. We consider 1(z) = T , : RT — R*, 1) is a Lebesque inte-
x

grable which is nonnegative, satisfies fg Y()dt =In(14¢€) > 0, for each e > 0. ¢
is subadditive, indeed: since 1 + e+ pu <1+4+¢c+ pu+ eu, then

foeJru Ppt)dt =In(1+e+p) < In(1+e)(1+p)
= In(l+e)+In(1+p)
JEp)dt + [ (t)dt.

This shows that 1 is an example of subadditive, non-negative, Lebesque integrable
function.

Theorem 4.2. Let (X, <) be a partially ordered set and suppose there exists a
metric d on X such that (X, d) is a complete metric space. Let F : X x X — X be
a continuous mapping having the mixzed monotone property on X such that there
erist two elements xg,yo € X with

gro = F(20,90) and gyo = F(yo, o).

Suppose there exist p € ® and ¢ € ¥y such that

p(d(F(z,y),F(u,v))) 1 0(0(gz,9y,9u,9v)) Y(©(gz,9y,9u,9v))
/ x(t)dt S/ x(t)dt —/ x(t)dt
0 0 0

for all gz = gu and gy < gv.

O(gx, gy, gu, gv) = (97, gu) + d(gy, gv)]

2
+5 [d(gm,F(Jc,y)) + d(gva(y7x))

+d(gu, F(u,v)) + d(gv, F(v,u))]
+% [d(gx, F(u,v)) + d(gy, F(v,u))

+d(gu, F(z,y)) + d(gv, F(y, x))]

[d
B
2

where a > 0 and B,y > 0 such that a+ 25+ 2y < 2. Suppose F (X x X) C g(X),
g continuous and compatible with F also suppose either

(a) F is continuous or
(b) X has the following property

(i) If a nondecreasing sequence {x,} — x, then x, < x, for alln > 1,

(ii) If a non-increasing sequence {yn} — y. then y, =y, for alln > 1,

then there exist x,y € X such that gx = F(x,y) and gy = F(y,x). That is F' and
g have a coupled coincidence point in X.
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Proof. Define A : RT — R¥ by A(e) = [5 (t)dt, where b € Y. Thus A is

continuous and nondecreasing with A (0) = 0. Then 3.1 becomes

Ao (d(F(r9), Fu,n)) < 5@ (Oloz, gy, gu, gv))
—A(¢ (O(g, gy, gu, gv))

which further can be written as

o1 (d(F(z,y), F(u,v))) < %@1 (©(gz, gy, gu, gv)) — ¥1 (0(gz, gy, gu, gv))

where p1=A o ¢ and ¥ = A o), hence by Theorem 2Tl we have the results.
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