Thai Journal of Mathematics Volume 15 (2017) Number 2 : 349–358

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

A Common Fixed Point Theorem for Strongly Tangential and Weakly Compatible Mappings Satisfying Implicit Relations

Said Beloul

Department of Mathematics and Informatics, University of El-Oued, P.O.Box 789, 39000 El-Oued, Algeria e-mail : beloulsaid@gmail.com

Abstract : The aim of this paper is to prove a common fixed point theorem for multivalued mappings satisfying an implicit relation and the strongly tangential property, our results improve those of Sedghi *et al.* [1].

Keywords : common fixed point; weakly compatible; strongly tangential property; implicit relation.

2010 Mathematics Subject Classification : 47H09; 47H10.

1 Introduction

Let (X, d) be a metric space, B(X) is the set of all non-empty bounded subsets of X. For all $A, B \in B(X)$ we define the two functions: $D, \delta : B(X) \times B(X) \to \mathbb{R}_+$ such that

$$D(A,B) = \inf\{d(a,b); a \in A, b \in B\},\$$

$$\delta(A, B) = \sup\{d(a, b); a \in A, b \in B\}.$$

If A consists of a single point a, we write $\delta(A, B) = \delta(a, B)$ and D(A, B) = D(a, B), also if $B = \{b\}$ is a singleton we write

$$\delta(A, B) = D(A, B) = d(a, b).$$

Copyright \bigodot 2017 by the Mathematical Association of Thailand. All rights reserved.

Clearly that δ satisfies the following properties:

$$\begin{split} \delta(A,B) &= \delta(B,A) \geq 0, \\ \delta(A,B) &\leq \delta(A,C) + \delta(C,B), \\ \delta(A,A) &= \operatorname{diam} A, \\ \delta(A,B) &= 0 \text{ implies } A = B = \{a\}, \end{split}$$

for all $A,B,C\in B(X),$ where diam A is the diameter of the set A . Notice that for all $a\in A$ and $b\in B$ we have

$$D(A,B) \le d(a,b) \le \delta(A,B),$$

where $A, B \in B(X)$.

Sessa [2] defined two mappings $S : X \to B(X)$ and $f : X \to X$ are to be weakly commuting on X if $fSx \in B(X)$ and for all $x \in X$:

$$\delta(Sfx, fSx) \le \max\{\delta(fx, Sx), diam(fSx)\}.$$

2 Preliminaries

Liu and Li-Shan^[3] introduced the following definition:

Definition 2.1. Two mappings $f : X \to X$ and $S : X \to B(X)$ on metric space (X, d) are said to be δ -compatible if

$$\lim_{n \to \infty} \delta(Sfx_n, fSx_n) = 0$$

whenever $\{x_n\}$ is a sequence in X such that $fSx_n \in B(X)$, $\lim_{n \to \infty} Sx_n = \{z\}$, and $\lim_{n \to \infty} fx_n = z$ for some $z \in X$.

Jungck and Rhoades [4] generalized the concept of δ -compatible as follows:

Definition 2.2. Let $f: X \to X$ a single mapping of space (X, d) into itself and $S: X \to B(X)$, the pair $\{f, S\}$ is *weakly compatible* if they commute at their coincidence point, i.e if $fu \in Su$ for some $u \in X$, then fSu = Sfu.

Example 2.3. Let X = [0, 2] with the euclidian metric, we define two mappings f, S as follows:

$$fx = \begin{cases} 2-x, & 0 \le x \le 1\\ 0, & 1 < x \le 1 \end{cases} \quad Sx = \begin{cases} \{1\}, & 0 \le x \le 1\\ [1,x], & 1 < x \le 1 \end{cases}$$

1 is the unique coincidence point, we have $f(1) = 1 \in S(1)$ and $fS(1) = Sf(1) = \{1\}$, then f and S are weakly compatible.

Recently, Pathak and Shahzad [5] introduced the concept of tangential mappings as follows:

Let $f, g: X \to X$ two mappings, a point $z \in X$ is said to be a weak tangent point to (f, g) if there exist two sequences $\{x_n\}, \{y_n\}$ in X such

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = z,$$

for some $z \in X$.

In 2011, Sintunavarat and Kumam [6] extended the last notion for single and multi valued maps:

Definition 2.4. Let $f, g : X \to X$ be single mappings and $S, T : X \to B(X)$ two multi-valued mappings on metric space (X, d), the pair $\{f, g\}$ is said to be *tangential with respect to* $\{S, T\}$ if there exists two sequences $\{x_n\}, \{y_n\}$ in X such that

$$\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ty_n = A,$$
$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = z \in A.$$

In their recent paper[7], Chauhan, Imdad, Karapinar and Fisher modified the last definition by adding another condition to introduce a new notion:

Definition 2.5. Let $f, g: X \to X$ be single mappings and $S, T: X \to B(X)$ two multi-valued mappings on metric space (X, d), we said $\{f, g\}$ is strongly tangential with respect to $\{S, T\}$ if there exists two sequences $\{x_n\}, \{y_n\}$ in X such that

 $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ty_n = A, \quad \lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = z \in A$

and $z \in f(X) \cap g(X)$.

Example 2.6. Let $([0,\infty), |.|)$, we define f, g, S and T by:

$$fx = x + 2, \quad gx = 2x,$$

$$Sx = [x, x + 2] \quad Tx = [x, 3x],$$

we have $f(X) \cap g(X) = [2, \infty)$. We consider two sequences $\{x_n\}, \{y_n\}$ which defined for all $n \ge 1$ by:

$$x_n = \frac{1}{n}, \quad y_n = 1 + \frac{1}{n}.$$

Clearly that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} T(y_n = [0,3] \text{ and } \lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} gy_n = 2 \in [0,3]$ also $2 \in [2,\infty) = f(X) \cap g(X)$, then $\{f,g\}$ is strongly tangential with respect to $\{S,T\}$.

For S = T and f = g the last definition becomes:

Definition 2.7. Let $f : X \to X$ and $S : X \to B(X)$ two mappings on metric space (X, d), f is said to be *strongly tangential with respect to* S if

$$\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Sy_n = A$$

and $z \in f(X)$, whenever $\{x_n\}, \{y_n\}$ two sequences in X such that

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} fy_n = z \in A.$$

Example 2.8. Let ([0, 2], |.|), f and S defined by:

$$fx = \begin{cases} 0, & 0 \le x < 1\\ \frac{x+1}{2}, & 1 \le x \le 2 \end{cases} \quad Sx = \begin{cases} \left\{\frac{1}{2}\right\}, & 0 \le x < 1\\ [1,x] & 1 \le x \le 2 \end{cases}$$
$$f(X) = \{0\} \cup [1,\frac{3}{2}].$$

Consider two sequence $\{x_n\}, \{y_n\}$ which defined by:

$$x_n = 1 + \frac{1}{n}$$
, for all $n \ge 1$,
 $x_n = 1 + e^{-n}$, for all $n \ge 1$,

we have:

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} fy_n = 1$$
$$\lim_{n \to \infty} Sy_n = \lim_{n \to \infty} Sx_n = \{1\}$$

also $1 \in f(X)$ then f is strongly tangential to respect S.

Let \mathcal{F} be the set of all continuous functions $F: \mathbb{R}^5_+ \to \mathbb{R}$ satisfying:

 (F_1) : F is non decreasing in t_1 and non increasing in t_2, t_3, t_4, t_5 .

 (F_2) : For all u > 0 we have:

$$F(u, 0, 0, u, u) > 0, F(u, 0, u, 0, u) > 0, F(u, 0, u, 0, 2u) > 0.$$

The aim of this paper is to establish some common fixed point theorem for single and set valued mappings in metric spaces, which satisfying a contractive condition of integral type by using the strongly tangential property with weak compatibility.

3 Main Results

Theorem 3.1. Let $f, g: X \to X$, be single valued mappings and $S, T: X \to B(X)$ multi-valued mappings of metric space (X, d) such for all x, y in X we have:

$$F\Big(\int_0^{\delta(Sx,Ty)}\varphi(t)dt,\int_0^{d(fx,gy)}\varphi(t)dt,\int_0^{D(fx,Sx)}\varphi(t)dt,$$

$$\int_{0}^{D(gy,Ty)} \varphi(t)dt, \int_{0}^{D(fx,Ty)+D(gy,Sx)} \varphi(t)dt \Big) \le 0, \tag{3.1}$$

where $F \in \mathcal{F}$ and $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is a Lebesgue-integrable function which is summable on each compact subset of \mathbb{R}^+ , non-negative, and such that for each $\varepsilon > 0, \int_0^{\varepsilon} \varphi(t) dt > 0$, and satisfying for all a > 0, b > 0:

$$\int_0^{a+b} \varphi(t)dt \le \int_0^a \varphi(t)dt + \int_0^b \varphi(t)dt.$$
(3.2)

Suppose that the pair $\{f, g\}$ is strongly tangential with respect to $\{S, T\}$ and the pairs $\{f, S\}, \{g, T\}$ are weakly compatible, then f, g, S and T have a unique common fixed point in X.

Proof. Suppose $\{f, g\}$ is strongly tangential with respect to $\{S, T\}$, then there exists two sequences $\{x_n\}, \{y_n\}$ such

$$\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ty_n = M, \text{ and } \lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = z \in M,$$

and $z \in f(X) \cap g(X)$, which implies there exists $u, v \in X$ such z = fu = gv. Firstly we claim $z \in Su$, if not by using (3.1) we get

$$F\Big(\int_0^{\delta(Su,Ty_n)}\varphi(t)dt,\int_0^{d(fu,gy_n)}\varphi(t)dt,\int_0^{D(fu,Su)}\varphi(t)dt,\int_0^{D(gy_n,Ty_n)}\varphi(t)dt$$

letting $n \to \infty$, since $z \in M$, $D(M, Su) \le \delta(Su, M)$ and from (F_1) , we get

$$F\Big(\int_0^{\delta(Su,fu)}\varphi(t)dt,0,\int_0^{\delta(fu,Su)}\varphi(t)dt,0,\int_0^{\delta(fu,Su)}\varphi(t)dt\Big) \leq$$

$$F\Big(\int_0^{\delta(Su,M)}\varphi(t)dt,0,\int_0^{D(fu,Su)}\varphi(t)dt,0,\int_0^{D(fu,Su)}\varphi(t)dt\Big)\leq 0,$$

which contradicts (F_2) , then $\delta(Su, fu) = 0$, which implies $Su = \{fu\}$ and u is a strict coincidence point for f and S.

Now we prove $z = gv \in Tv$, if not by using (3.1) we get

$$\begin{split} F\Big(\int_0^{\delta(Sx_n,Tv)}\varphi(t)dt, \int_0^{d(fx_n,gv)}\varphi(t)dt, \int_0^{D(fx_n,Sx_n)}\varphi(t)dt, \int_0^{D(gv,Tv)}\varphi(t)dt, \\ \int_0^{D(fx_n,Tv)+D(gv,Sx_n)}\varphi(t)dt\Big) &\leq 0, \end{split}$$

letting $n \to \infty$, since $z \in M$, $D(M, Tv) \leq \delta(Tv, gv)$ and from (F_1) , we get

$$\begin{split} & F\Big(\int_0^{\delta(gv,Tv)}\varphi(t)dt,0,0,\int_0^{\delta(gv,Tv)}\varphi(t)dt,0,\int_0^{\delta(gv,Tv)}\varphi(t)dt\Big) \leq \\ & F\Big(\int_0^{\delta(Su,M)}\varphi(t)dt,0,0,\int_0^{D(gv,M)}\varphi(t)dt,0,\int_0^{D(gv,M)}\varphi(t)dt\Big) \leq 0, \end{split}$$

which is a contradiction with (F_2) , and so $\delta(gv, Tv) = 0$, then $Tv = \{gv\}$. The pair $\{f, S\}$ is weakly compatible and so fSu = Sfu, then $Sz = \{fz\}$, as well as $\{g, T\}$ since they are weakly compatible and the point v is a strict coincidence point, we obtain $Tz = \{gz\}$.

Nextly we prove z = fz, if not and using (3.1) we get:

$$F\Big(\int_0^{\delta(Sz,Tv)}\varphi(t)dt,\int_0^{d(fz,gv)}\varphi(t)dt,\int_0^{D(fz,Sz)}\varphi(t)dt,\\\int_0^{D(gv,Tv)}\varphi(t)dt,\int_0^{D(fz,Tv)+D(gv,Sz)}\varphi(t)dt\Big) \le 0,$$

by using (3.2) we get:

$$\begin{split} F\Big(\int_0^{d(fz,z)} \varphi(t)dt, \int_0^{d(fz,z)} \varphi(t)dt, 0, 0, 2\int_0^{d(fz,z)} \varphi(t)dt\Big) &\leq \\ F\Big(\int_0^{\delta(Sz,Tv)} \varphi(t)dt, \int_0^{d(fz,gv)} \varphi(t)dt, \int_0^{D(fz,Sz)} \varphi(t)dt, \\ \int_0^{D(gv,Tv)} \varphi(t)dt, \int_0^{D(fz,Tv)+D(gv,Sz)} \varphi(t)dt\Big) &\leq 0, \end{split}$$

which is a contradiction, then $Sz = \{fz\} = \{z\}$. Similarly we claim z = gz, if not by using (3.1) we get:

$$\begin{split} F\Big(\int_0^{\delta(Sz,Tz)}\varphi(t)dt,\int_0^{d(fz,gz)}\varphi(t)dt,\int_0^{D(fz,Sz)}\varphi(t)dt,\\ \int_0^{D(gz,Tz)}\varphi(t)dt,\int_0^{D(fz,Tz)+D(gz,Sz)}\varphi(t)dt\Big) &\leq 0, \end{split}$$

by using (3.1), we get:

$$F\Big(\int_0^{d(gz,z)}\varphi(t)dt,\int_0^{d(gz,z)}\varphi(t)dt,0,0,2\int_0^{d(gz,z)}\varphi(t)dt\Big) \le F\Big(\int_0^{\delta(Sz,Tv)}\varphi(t)dt,\int_0^{d(fz,gv)}\varphi(t)dt,\int_0^{D(fz,Sz)}\varphi(t)dt,$$

$$\int_{0}^{D(gv,Tv)} \varphi(t) dt, \int_{0}^{D(fz,Tv)+D(gv,Sz)} \varphi(t) dt \Big) \le 0,$$

which is a contradiction, then $Tz = \{gz\} = \{z\}$ and z is a common fixed point for f, g, S and T, it is strict for S and T.

For the uniqueness, suppose there is another fixed point w and using (3.1) we get:

$$\begin{split} F\Big(\int_0^{d(z,w)} \varphi(t)dt, \int_0^{d(z,w)} \varphi(t)dt, 0, 0, 2\int_0^{D(z,w)} \varphi(t)dt\Big) &\leq, \\ F\Big(\int_0^{\delta(Sz,Tw)} \varphi(t)dt, \int_0^{d(fz,gw)} \varphi(t)dt, \int_0^{D(fz,Sz)} \varphi(t)dt, \\ \int_0^{D(gw,Tw)} \varphi(t)dt, \int_0^{D(fz,Tw)+D(gw,Sz)} \varphi(t)dt\Big) &\leq 0, \end{split}$$

which contradicts (F_2) , then z is unique.

Remark 3.2. Theorem 3.1 improves and generalizes Theorem 1 of Sedghi, Altun and Shobe in their paper [1] and Theorem 2 in paper [8] to the setting single and multivalued mappings.

If f = g and S = T we obtain the following corollary:

Corollary 3.3.

$$\begin{split} F\Big(\int_0^{\delta(Sx,Sy)}\varphi(t)dt,\int_0^{d(fx,fy)}\varphi(t)dt,\int_0^{D(fx,Sx)}\varphi(t)dt,\\ \int_0^{D(fy,Sy)}\varphi(t)dt,\int_0^{D(fx,Sy)+D(fy,Sx)}\varphi(t)dt\Big) \leq 0, \end{split}$$

where $F \in \mathcal{F}$ and $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is a Lebesgue-integrable function which is summable on each compact subset of \mathbb{R}^+ , non-negative, and such that for each $\varepsilon > 0, \int_0^{\varepsilon} \varphi(t) dt > 0$, and satisfying (3.2).

Suppose that f is strongly tangential with respect to S and the pair $\{f, S\}$ is weakly compatible, then f and S have a unique common fixed point in X.

Corollary 3.4. Let $f, g: X \to X$, and $S, T: X \to B(X)$ be single and set valued mappings of metric space (X, d) such:

$$\int_0^{\delta(Sx,Ty)} \varphi(t) dt \leq \alpha \int_0^{d(fx,fy)} \varphi(t) dt + \beta \int_0^{D(fx,Sx)} \varphi(t) dt + \gamma \int_0^{D(gy,Ty)} \varphi(t) dt$$

where α, β, γ are non negative real numbers satisfying $2\alpha + 2\beta + \delta < 1, \alpha + \beta - \gamma \ge 0$ and $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is a Lebesgue-integrable function which is summable on each compact subset of \mathbb{R}^+ , non-negative, satisfying (3.2) and such that for each $\varepsilon > 0, \int_0^{\varepsilon} \varphi(t) dt > 0$, if $\{f, g\}$ is strongly tangential with respect to $\{S, T\}$, and the two pairs $\{f, S\}$ and $\{g, T\}$ are weakly compatible, then f, g, S and T have a unique common fixed point.

355

Proof. It is clear that the function: $F : \mathbb{R}^5_+ \to \mathbb{R}$ which defined by

$$F(t_1, t_2, t_3, t_4, t_5) = t_1 - (\alpha t_2 + \beta t_3 + \gamma t_4)$$

where $\alpha, \beta, \gamma \ge 0, 2\alpha + 2\beta + \delta < 1$ and $\alpha + \beta - \gamma \ge 0$, satisfies (F_1) and (F_2) , so $F \in \mathcal{F}$.

Corollary 3.5. Let $f, g: X \to X$, and $S, T: X \to B(X)$ be single and set valued mappings of metric space (X, d) such:

$$\begin{split} \int_0^{\delta(Sx,Ty)} \varphi(t)dt &\leq \alpha \max(\int_0^{d(fx,fy)} \varphi(t)dt, \int_0^{D(fx,Sx)} \varphi(t)dt, \int_0^{D(gy,Sy)} \varphi(t)d) \\ &+ \beta \int_0^{D(fx,Ty) + D(gy,Sx)} \varphi(t)dt, \end{split}$$

where $\alpha + 2\beta < 1$ and $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is a Lebesgue-integrable function which is summable on each compact subset of \mathbb{R}^+ , non-negative, satisfying (3.2) such that for each $\varepsilon > 0$, $\int_0^{\varepsilon} \varphi(t) dt > 0$, if $\{f, g\}$ tangential with respect to $\{S, T\}$, and the two pairs $\{f, S\}$ and $\{g, T\}$ are weakly compatible, then f, g, S and T have a unique common fixed point.

Proof. It suffices to show that the function $F : \mathbb{R}^5_+ \to \mathbb{R}$ such

$$F(t_1, t_2, t_3, t_4, t_5) = t_1 - \alpha \max(t_2, t_3, t_4) - \beta t_5,$$

where $\alpha + 2\beta < 1$ satisfies (F_1) and (F_2) . (F_1) : Obviously.

(F₂): For all u > 0, we have $F(u, 0, 0, u, u) = F(u, 0, u, 0, u) = (1 - \alpha - \beta)u > 0$, and $F(u, 0, u, 0, 2u) = (1 - \alpha - 2\beta)u > 0$, consequently $F \in \mathcal{F}$.

Corollary 3.5 generalizes Corollary 2 in paper [1].

Example 3.6. Let X = [0, 4], d(x, y) = |x - y| and f, g, S and T defined by

$$fx = \begin{cases} \frac{x+2}{2}, & 0 \le x \le 2\\ 1, & 1 < x \le 2 \end{cases} \quad gx = \begin{cases} 4-x, & 0 \le x \le 2\\ 0, & 2 < x \le 4 \end{cases}$$
$$Sx = \begin{cases} \{2\}, & 0 \le x \le 2\\ (2, \frac{9}{4}], & 1 < x \le 4 \end{cases} \quad Tx = \{2\}$$

Consider the two sequence: for all $n \ge 1, x_n = 2 - \frac{1}{n}, y_n = 2 - e^{-n}$, it is clear that

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = 2,$$
$$\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ty_n = \{2\},$$

which implies that the pair $\{f, g\}$ is strongly tangential with respect $\{S, T\}$ The point u = 2 satisfy $f(2) = 2 \in S(2), g(2) = 2 \in T(1)$ and $fS(2) = \{2\} = Sf(2),$

and so f and S are weakly compatible, as well as g and T, because $gT(1) = \{1\}$.

We define some

$$F(t_1, t_2, t_3, t_4, t_5) = t_1 - \frac{2}{3}\max(t_2, t_3, t_4, \frac{1}{2}t_5)$$

For all $t \ge 0$, we define $\varphi(t) = 1$, For $x, y \in [0, 1]$, we have:

$$\delta(Sx, Ty) = 0 \le \frac{1}{3}|x - 1| = \frac{2}{3}D(fx, Sx).$$

For $x \in [0, 2)$ and $y \in (1, 2]$, we have:

$$\delta(Sx,Ty) = 0 \le \frac{4}{3} = \frac{2}{3}D(gy,Ty).$$

For $x, y \in]1, 2]$, we have

$$\delta(Sx, Ty) = \frac{1}{4} \le \frac{2}{3} = \frac{2}{3}d(fx, gy).$$

For $x \in [1, 2]$ and $y \in [0, 1]$ we have

$$\delta(Sx, Ty) = \frac{1}{4} \le \frac{2}{3} = \frac{2}{3}D(fx, Sx),$$

then f, g, S and T satisfying (3.1).

Therefore $S(2) = T(2) = \{f(2)\} = \{g(2)\} = \{2\}$, then 2 is the unique fixed point of f, g, S and T and it is strict fixed point for S and T.

References

- S. Sedghi, I. Altun, N. Shobe, A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces, Appl. Anal. Discrete Math. 2 (2008) 189-196.
- [2] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. Beograd 32 (46) (1982), 149-153.
- [3] Liu, Li-Shan, Common fixed points of a pair of single-valued mappings and a pair of set-valued mappings (Chinese), Qufu Shifan Daxue Xuebao Ziran Kexue Ban. 1 (18) (1982) 6-10.
- [4] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998) 27-238.
- [5] H.K. Pathak, N. Shahzad, Gregus type fixed point results for tangential mappings satisfying contractive conditions of integral type, Bull. Belg. Math. Soc. Simon Stevin. 16 (2) (2005) 277-288.

- [6] W. Sintunavarat, P. Kumam, Gregus-type common fixed point theorems for tangential multivalued mappings of integral type in metric spaces, J. Ineq. Appl. 3 (2011) 1-12.
- [7] S. Chauhan, M. Imdad, E. Karapinar, B. Fisher, An integral type fixed point theorem for multi-valued mappings employing strongly tangential property, J. Egyptian Math. Soc. 22 (2) (2014) 258-264.
- [8] I. Altun, D. Türkoğlu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Maths 13 (4) (2009) 1291-1304.

(Received 14 September 2014) (Accepted 10 October 2015)

 $\mathbf{T}_{\mathrm{HAI}} \; \mathbf{J.} \; \mathbf{M}_{\mathrm{ATH.}} \; \mathrm{Online} \; @ \; \mathsf{http://thaijmath.in.cmu.ac.th} \;$