${f T}$ HAI ${f J}$ OURNAL OF ${f M}$ ATHEMATICS VOLUME 15 (2017) NUMBER 2 : 333–347

http://thaijmath.in.cmu.ac.th

Some Results on Vector-Valued S-Type $|A, p, \prod X_k|$ Operators

Amit Maji and Parmeshwary Dayal Srivastava¹

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India e-mail: amit.iitm07@gmail.com (A. Maji) pds@maths.iitkgp.ernet.in (P.D. Srivastava)

Abstract: This paper deals with the class $\mathscr{A}_{vec}^{(s)} - p$ of vector-valued s-type $|A, p, \prod X_k|$ operators, $0 . It is shown that each component of the class <math>\mathscr{A}_{vec}^{(s)} - p$ forms a complete linear space. Some inclusion relations are also obtained.

Keywords: s-numbers; approximation numbers; sequence spaces. **2010 Mathematics Subject Classification:** 47B06; 46A45.

1 Introduction

There has been considerable interest to study s-numbers of operators as they are very powerful tools for estimating eigenvalues of operators in Banach spaces. In 1963, A. Pietsch [1] firstly introduced the approximation numbers of a bounded linear operator in Banach spaces. Subsequently, different s-numbers, namely Kolmogorov numbers, Gel'fand numbers are introduced to the Banach space setting. For the unification of different s-number sequences, A. Pietsch ([2], 1974) developed an axiomatic theory of s-numbers in Banach spaces.

For infinite matrix $A = (a_{nk})$, Rhoades [3] defined A - p space, denoted by

Copyright $\ensuremath{\textcircled{\bigcirc}}\xspace$ 2017 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

|A,p| as

$$|A,p| = \begin{cases} x \in w : \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} |a_{nk}x_k|\right)^p\right)^{\frac{1}{p}} < \infty & \text{for } 0 < p < \infty \\ x \in w : \sup_{n \ge 1} \left(\sum_{k=1}^{\infty} |a_{nk}x_k|\right) < \infty & \text{for } p = \infty, \end{cases}$$

where w is a sequence space of real or complex numbers. Further, Rhoades [4] has shown that if $A=(a_{nk})$ is a triangle, i.e., $a_{nk}=0$ for k>n and $a_{nn}\neq 0$, then the space |A,p| is separable for $1< p<\infty$ and complete for $1< p\leq \infty$. A-p space contains many known sequence spaces as particular case by specifying suitable matrix $A=(a_{nk})$ such as Cesàro sequence space [5] for $1< p<\infty$, l_p sequence space for $0< p\leq \infty$, etc.

Let $\mathscr{L}(E,F)$ be the space of all bounded linear operators from a Banach space E to a Banach space F. Pietsch [1] defined an operator $T \in \mathscr{L}(E,F)$ as l^p type operator if $\sum_{n=1}^{\infty} (a_n(T))^p$ is finite for $0 , where <math>(a_n(T))$ is the sequence of approximation numbers of the bounded linear operator T. Later on Constantin [6] generalized the class of l_p type operators to the class of ces - p type operators by using the Cesàro sequence space, where an operator $T \in \mathscr{L}(E,F)$ is called ces - p type if $\sum_{n=1}^{\infty} \left(\frac{1}{n}\sum_{k=1}^{n} a_n(T)\right)^p$ is finite, 1 . Rhoades [3] further generalized the class of <math>ces - p type operators to the class of A - p type operators, where $A = (a_{nk})$ is an arbitrary infinite matrix. An operator $T \in \mathscr{L}(E,F)$ is said to be A - p type operator if the sequence of approximation numbers $(a_n(T))$ belongs to |A,p| space, $0 . Let <math>A = (a_{nk})$ be a fixed matrix satisfying the condition:

$$|a_{n,2k-1}| + |a_{n,2k}| \le M|a_{nk}|$$
 for each k and n , (1.1)

where M is a constant independent of n and k. Rhoades has shown that for 0 and for each fixed matrix <math>A satisfying the condition (1.1), the set of A-p type operators forms a linear space. Recently, authors [7] have studied some results in the scalar-valued case.

Motivated with the above works, we have studied the A-p type operators in vector-valued case. In fact, this paper deals with the study of a generalized class of operators using the sequence of s-numbers in vector-valued case. We have also shown that each component of the class $\mathscr{A}_{vec}^{(s)}-p$ of vector-valued s-type $|A,p,\prod X_k|$ operators is a complete linear space under certain conditions on the matrix A. Some inclusion relations are also obtained for these spaces.

2 Preliminaries

Throughout this paper we denote E, F as the real or complex Banach spaces and $\mathcal{L}(E, F)$ as the space of all bounded linear operators from E to F. Let \mathcal{L}

be the class of all bounded linear operators between arbitrary Banach spaces. We denote $\mathbb N$ as the set of all natural numbers and $\mathbb R$ as the set of all real numbers.

We now state few results and definitions in scalar case which will be used in the sequel.

Definition 2.1 ([8]). A finite rank operator is a bounded linear operator whose dimension of the range space is finite.

Definition 2.2 ([8], [9]). A non-negative scalar sequence $(s_n(T))_n$, where $s = (s_n) : \mathcal{L} \to \mathbb{R}^{\mathbb{N}}$ assigning to every operator $T \in \mathcal{L}$, is called an *s-number sequence* if the following conditions are satisfied:

- (S1) monotonicity: $||T|| = s_1(T) \ge s_2(T) \ge \cdots \ge 0$, for $T \in \mathcal{L}(E, F)$
- (S2) additivity: $s_{m+n-1}(S+T) \leq s_m(S) + s_n(T)$, for $S, T \in \mathcal{L}(E, F), m, n \in \mathbb{N}$
- (S3) ideal property: $s_n(RST) \leq ||R||s_n(S)||T||$, for some $R \in \mathcal{L}(F, F_0)$, $S \in \mathcal{L}(E, F)$ and $T \in \mathcal{L}(E_0, E)$, where E_0, F_0 are arbitrary Banach spaces
- (S4) rank property: If $rank(T) \leq n$ then $s_n(T) = 0$
- (S5) norming property: $s_n(I: l_2^n \to l_2^n) = 1$, where I denotes the identity operator on the n-dimensional Hilbert space l_2^n .

The *n*-th *s*-number of the operator T is denoted by $s_n(T)$. Various results on *s*-number sequence can be viewed in ([1], [10], [11], [12]). It can be easily shown that the following numbers are *s*-number sequence. Let $T \in \mathcal{L}(E, F)$ and $n \in \mathbb{N}$.

1. The *n*-th approximation number, denoted by $a_n(T)$, is defined as

$$a_n(T) = \inf \Big\{ \|T - L\| : \quad L \in \mathscr{L}(E,F), \ \mathrm{rank}(\mathbf{L}) < \mathbf{n} \Big\}.$$

2. The *n*-th Gel'fand number, denoted by $c_n(T)$, is defined as

$$c_n(T) = \inf \{ ||TJ_M|| : M \subset E, \operatorname{codim}(M) < n \},$$

where $J_M: M \to E$ be the natural embedding from subspace M of E into E.

3. The *n*-th Kolmogorov number, denoted by $d_n(T)$, is defined as

$$d_n(T) = \inf \{ \|Q_N(T)\| : N \subset F, \operatorname{dim}(N) < n \},$$

where $Q_N: E \to E/N$ be the quotient map from E onto E/N.

4. The *n*-th Weyl number, denoted by $x_n(T)$, is defined as

$$x_n(T) = \inf \{ a_n(TA) : ||A : l_2 \to E|| \le 1 \},$$

where $a_n(TA)$ is an *n*-th approximation number of the operator TA.

5. The *n*-th Chang number, denoted by $y_n(T)$, is defined as

$$y_n(T) = \inf \{ a_n(BT) : ||B: F \to l_2|| \le 1 \},$$

where $a_n(BT)$ is an *n*-th approximation number of the operator BT.

6. The *n*-th Hilbert number, denoted by $h_n(T)$, is defined as

$$h_n(T) = \sup \Big\{ a_n(BTA) : ||B: F \to l_2|| \le 1, \ ||A: l_2 \to E|| \le 1 \Big\}.$$

Remark 2.3 ([8]). Among all the s-number sequences defined above, it is easy to verify that the approximation number, $a_n(T)$ is the largest and the Hilbert number, $h_n(T)$ is the smallest s-number sequence i.e., $h_n(T) \leq s_n(T) \leq a_n(T)$ for any bounded linear operator T. If T is defined on a Hilbert space then all the s-numbers coincide with the singular values of T i.e., the eigenvalues of |T|, where $|T| = (T^*T)^{\frac{1}{2}}$.

Proposition 2.4 ([8], p.115). Let $T \in \mathcal{L}(E, F)$. Then

$$h_n(T) \le x_n(T) \le c_n(T) \le a_n(T)$$
 and $h_n(T) \le y_n(T) \le d_n(T) \le a_n(T)$.

Definition 2.5 ([8], p.81). An s-number sequence is called multiplicative if

$$s_{m+n-1}(ST) \le s_m(S)s_n(T)$$

for $T \in \mathcal{L}(E, F)$, $S \in \mathcal{L}(F, F_0)$ and $m, n \in \mathbb{N}$.

Lemma 2.6 ([2]). Let $S,T \in \mathcal{L}(E,F)$, then $|s_n(T) - s_n(S)| \leq ||T - S||$ for $n = 1, 2, \cdots$.

Lemma 2.7 ([8], p. 107). Let $s = (s_n)$ be any s-number sequence and $D_{(\tau_n)}$ be any diagonal operator from the sequence space l_2 to itself with $\tau_1 \geq \tau_2 \geq \ldots \geq 0$. Then $s_n(D_{(\tau_n)}: l_2 \rightarrow l_2) = \tau_n$ for all n.

3 Vector-Valued S-Type $|A, p, \prod X_k|$ Operators

Let $(E_k, \|.\|_{E_k})$ be a sequence of Banach spaces. It is easy to show that $\prod_{k=1}^{\infty} E_k$ is a Banach space with respect to the norm $\|.\|_p$ for $1 \le p \le \infty$, where

$$\begin{split} \|x\|_p &= \Big(\sum_{k=1}^\infty \|x_k\|_{E_k}^p\Big)^{\frac{1}{p}} \qquad \text{for } 1 \leq p < \infty \\ \|x\|_\infty &= \sup_{k \geq 1} \|x_k\|_{E_k} \qquad \quad \text{for } p = \infty. \end{split}$$

Throughout the paper we shall write $\prod E_k$ instead of $\prod_{k=1}^{\infty} E_k$.

Let $(F_k, ||.||_{F_k})$ be another sequence of Banach spaces. A linear operator $T: \prod E_k \to \prod F_k$ is defined by

$$T(x) = T((x_1, x_2, \dots, x_k, \dots)) = (T_1 x_1, T_2 x_2, \dots, T_k x_k, \dots),$$

where $k \in \mathbb{N}$, $x = (x_k) \in \prod X_k$ and $T_k \in \mathcal{L}(E_k, F_k)$. It can be shown that T is a bounded linear operator if and only if $\sup_{k \ge 1} \|T_k\| < \infty$ and the norm $\|T\| = \sup_{k \ge 1} \|T_k\|$.

Let $0 and <math>(X_k, \|.\|_{X_k})$ be a sequence of Banach spaces. For a fixed matrix $A = (a_{nk})$, we define vector-valued A - p space, denoted by $|A, p, \prod X_k|$ as

$$|A, p, \prod X_k| = \begin{cases} x = (x_k) \in \prod X_k &: \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} |a_{nk}| \|x_k\|_{X_k}\right)^p\right)^{\frac{1}{p}} < \infty, \ 0 < p < \infty \\ x = (x_k) \in \prod X_k &: \sup_{n \ge 1} \left(\sum_{k=1}^{\infty} |a_{nk}| \|x_k\|_{X_k}\right) < \infty, \qquad p = \infty. \end{cases}$$

Particular examples:

There are many examples of vector-valued A-p space with the particular choice of the matrix A, e.g.,

- 1. Choose A as an identity matrix and $1 \le p < \infty$ and $X_k = X$, a Banach space for all k, then the space $|A, p, \prod X_k|$ reduces to $l_p(X)$ (see, [13], p. 33), where
- $l_p(X)$ is the set of all X-valued sequences $x=(x_k)$ such that $\Big(\sum_{n=1}^\infty \|x_n\|^p\Big)^{\frac{1}{p}}<\infty.$
- 2. Choose A as a Cesàro matrix of order 1 and $X_k = X$, a Banach space for all k. Then the space $|A, p, \prod X_k|$, 1 becomes <math>X-valued Cesàor sequence space $Ces_p(X)$ (see [14]), where $Ces_p(X)$ is the set of all X-valued sequences $x = (x_k)$

such that $\left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\sum_{k=1}^{n} \|x_n\|\right)^p\right)^{\frac{1}{p}} < \infty.$

If an operator $T \in \mathcal{L}(\prod E_k, \prod F_k)$ satisfying the conditions

$$\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_l(T_k) \right)^p \right)^{\frac{1}{p}} < \infty, \quad 0 < p < \infty \\
\sup_{k \ge 1} \sup_{n \ge 1} \left(\sum_{l=1}^{\infty} |a_{nl}| s_l(T_k) \right) < \infty, \qquad p = \infty,$$
(3.1)

then we call T as a **vector-valued** s**-type** $|A, p, \prod X_k|$ **operator**. In particular if A is a Cesàro matrix of order 1, then (3.1) reduces to

$$\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{l=1}^{n} s_l(T_k) \right)^p \right)^{\frac{1}{p}} < \infty, \quad 0 < p < \infty \\
\sup_{k \ge 1} \sup_{n \ge 1} \left(\frac{1}{n} \sum_{l=1}^{n} s_l(T_k) \right) < \infty, \qquad p = \infty.$$
(3.2)

For A = I, an identity matrix, then (3.1) reduces to

$$\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(s_n(T_k) \right)^p \right)^{\frac{1}{p}} < \infty, \quad 0 < p < \infty \\
\sup_{k \ge 1} \sup_{n \ge 1} \left(s_n(T_k) \right) < \infty, \qquad p = \infty.$$
(3.3)

We shall call an operator $T \in \mathcal{L}(\prod E_k, \prod F_k)$ as a vector-valued s-type ces_p operator and vector-valued s-type l_p operator if the conditions (3.2) and (3.3) hold respectively.

Particular examples:

Here we shall give some vector-valued s-type operators.

1. For A = I, an infinite identity matrix and choose a particular vector-valued A-p space $l_p(l_p)$. Let $T:l_p(l_p)\to l_p(l_p)$, where $T=(T_k)_{k\geq 1}$ and $T_k:l_p\to l_p$ for all k such that for some $n_0 \in \mathbb{N}$ all T_k are finite rank operator for $1 \leq k \leq n_0$ and for $k > n_0$, T_k are zero operator, i.e., $T_k u = 0$ for all $u \in l_p$. Then by the property of s-number (see, Definition 2.2, (S4)), there exists some $n_1 \in \mathbb{N}$ such

that
$$s_n(T_k) = 0$$
 for all $n > n_1$, $1 \le k \le n_0$ and $s_n(T_k) = 0$ for all $k > n_0$ and for all n . Thus $\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} (s_n(T_k))^p \right)^{\frac{1}{p}} = \sup_{1 \le k \le n_0} \left(\sum_{n=1}^{n_1} (s_n(T_k))^p \right)^{\frac{1}{p}} < \infty$. Hence

 $T = (T_k)_{k \ge 1}$ is a vector-valued s-type operators.

2. Consider $T: l_p(l_2) \to l_p(l_2)$ for $1 \leq p < \infty$, where $T = (T_k)_{k \geq 1}$ and each $T_k: l_2 \to l_2$ is a diagonal operator is defined as $T_k(y) = (y_1, \frac{1}{2}y_2, \frac{1}{3}y_3, \ldots)$ for y =

$$(y_n) \in l_p$$
 for all $k \ge 1$. Then each $T_k \in \mathcal{L}(l_2, l_2)$ and $||T_k|| = 1$ for all k . Therefore $T \in \mathcal{L}(l_p(l_2), l_p(l_2))$. Also by using Lemma 2.7, we have $s_n(T_k : l_2 \to l_2) = \frac{1}{n}$ for all k . Thus $\sup_{k \ge 1} \Big(\sum_{n=1}^{\infty} (s_n(T_k))^p\Big)^{\frac{1}{p}} = \sup_{k \ge 1} \Big(\sum_{n=1}^{\infty} \frac{1}{n^p}\Big)^{\frac{1}{p}} < \infty$. Hence $T = (T_k)_{k \ge 1}$ is a vector-valued s -type operator.

We denote the set of all vector-valued s-type $|A, p, \prod X_k|$ operators between any two arbitrary countably infinite product of Banach spaces by $\mathscr{A}_{vec}^{(s)} - p$ and the set of all vector-valued s-type $|A, p, \prod X_k|$ operators from $\prod E_k$ to $\prod F_k$ by $\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$ for $0 . We say <math>\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$ is a component of the class $\mathscr{A}^{(s)}_{vec} - p$. To study the class $\mathscr{A}^{(s)}_{vec} - p$, we will actually study each component of this class.

Proposition 3.1. Let $A = (a_{nk})$ be an infinite matrix, where $a_{nk} = 0$ for k > nand satisfies $\sum_{k=1}^{n} |a_{nk}| \ge \lambda > 0$ for all n. If $T = (T_k)_{k \ge 1}$ is a vector-valued s-type $|A, p, \prod X_k|$ operator, then T is a vector-valued s-type l_p operator for 0 .

Proof. Let $0 and <math>T = (T_k)_{k \ge 1}$ be a vector-valued s-type $|A, p, \prod X_k|$

operator. Consider

$$\sum_{n=1}^{\infty} \left(\sum_{l=1}^{n} |a_{nl}| s_l(T_k) \right)^p \ge \sum_{n=1}^{\infty} \left(s_n(T_k) \sum_{l=1}^{n} |a_{nl}| \right)^p$$

$$\ge \lambda^p \sum_{n=1}^{\infty} \left(s_n(T_k) \right)^p,$$

which gives

$$\lambda \left(\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(s_n(T_k) \right)^p \right)^{\frac{1}{p}} \right) \le \sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{n} |a_{nl}| s_l(T_k) \right)^p \right)^{\frac{1}{p}} < \infty.$$

Thus T is a vector-valued s-type l_p operator. Similarly for $p = \infty$, it can be shown easily. Hence the proof is complete.

Theorem 3.2. Let $0 . For fixed infinite matrix <math>A = (a_{nk})$ satisfying (1.1), each component of the class $\mathscr{A}_{vec}^{(s)} - p$ is a linear space.

Proof. Let $0 . Let <math>\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$ be any one of the component of the class $\mathscr{A}^{(s)}_{vec} - p$. Let $S, T \in \mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$. Consider

$$\sum_{l=1}^{\infty} |a_{nl}s_{l}(T_{k} + S_{k})| = \sum_{l=1}^{\infty} |a_{n,2l-1}s_{2l-1}(T_{k} + S_{k})| + \sum_{l=1}^{\infty} |a_{n,2l}s_{2l}(T_{k} + S_{k})|$$

$$\leq \sum_{l=1}^{\infty} (|a_{n,2l-1}| + |a_{n,2l}|)s_{2l-1}(T_{k} + S_{k})$$

$$\leq M\left(\sum_{l=1}^{\infty} |a_{nl}|s_{l}(T_{k}) + \sum_{l=1}^{\infty} |a_{nl}|s_{l}(S_{k})\right). \tag{3.4}$$

Case I: 0 .

For 0 and <math>a, b > 0, $\left(a + b\right)^p \le \left(a^p + b^p\right)$, $\left(a + b\right)^{\frac{1}{p}} \le C\left(a^{\frac{1}{p}} + b^{\frac{1}{p}}\right)$, where $C \ge 1$ is a constant. So, from (3.4) we have

$$\left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k} + S_{k})\right)^{p}\right)^{\frac{1}{p}} \leq M \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k}) + \sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k})\right)^{p}\right)^{\frac{1}{p}} \\
\leq CM \left[\left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k})\right)^{p}\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k})\right)^{p}\right)^{\frac{1}{p}}\right],$$

where $C \geq 1$ is a constant. Therefore,

$$\sup_{k\geq 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k} + S_{k}) \right)^{p} \right)^{\frac{1}{p}} \leq CM \left[\sup_{k\geq 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k}) \right)^{p} \right)^{\frac{1}{p}} + \sup_{k\geq 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k}) \right)^{p} \right)^{\frac{1}{p}} \right] < \infty.$$

Case II: $1 \le p < \infty$.

Using Minkowski inequality for $1 \le p < \infty$, we have from (3.4)

$$\left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k} + S_{k})\right)^{p}\right)^{\frac{1}{p}} \leq M \left[\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k}) + \sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k})\right)^{p}\right]^{\frac{1}{p}} \\
\leq M \left[\left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k})\right)^{p}\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k})\right)^{p}\right)^{\frac{1}{p}}\right].$$

Therefore

$$\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_l(T_k + S_k) \right)^p \right)^{\frac{1}{p}} \le M \left[\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_l(T_k) \right)^p \right)^{\frac{1}{p}} + \sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_l(S_k) \right)^p \right)^{\frac{1}{p}} \right] < \infty.$$

Thus $S + T \in \mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$.

If $T \in \mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$ and λ be any scalar then it is easy to see that $\lambda T \in \mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$. Hence $\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$ is a linear space. Similarly for $p = \infty$, it can be shown that $\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - \infty$ is a linear space. This completes the proof.

Remark 3.3. The condition (1.1) on the matrix A is no longer necessary for the set of vector-valued s-type $|A, p, \prod X_k|$ operators from $\prod E_k$ to $\prod F_k$ be a linear space. Justification is given as below.

Let $0 and <math>A = (a_{nk})$ be an infinite identity matrix. Clearly identity matrix does not satisfy the condition (1.1) but the triangle inequality can be proved as follows. Let $S = (S_k)_{k \ge 1}$, $T = (T_k)_{k \ge 1} \in \mathcal{L}(\prod E_k, \prod F_k)$ be any two vector-

valued s-type $|A, p, \prod X_k|$ operators. Then

$$\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_{l}(T_{k} + S_{k})| \right)^{p} = \sum_{n=1}^{\infty} \left(s_{n}(T_{k} + S_{k}) \right)^{p}$$

$$= \sum_{n=1}^{\infty} \left(s_{2n-1}(T_{k} + S_{k}) \right)^{p} + \sum_{n=1}^{\infty} \left(s_{2n}(T_{k} + S_{k}) \right)^{p}$$

$$\leq 2 \sum_{n=1}^{\infty} \left(s_{2n-1}(T_{k} + S_{k}) \right)^{p}$$

$$\leq 2 \left(\sum_{n=1}^{\infty} \left(s_{n}(T_{k}) + s_{n}(S_{k}) \right)^{p} \right).$$

Thus

$$\Big(\sum_{n=1}^{\infty}\Big(\sum_{l=1}^{\infty}|a_{nl}s_l(T_k+S_k)|\Big)^p\Big)^{\frac{1}{p}}\leq 2^{\frac{1}{p}}.C\Big[\Big(\sum_{n=1}^{\infty}\Big(s_n(T_k)\Big)^p\Big)^{\frac{1}{p}}+\Big(\sum_{n=1}^{\infty}\Big(s_n(S_k)\Big)^p\Big)^{\frac{1}{p}}\Big],$$

where $C \geq 1$ is a constant. Therefore,

$$\sup_{k\geq 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_l(T_k + S_k)| \right)^p \right)^{\frac{1}{p}} < \infty.$$

Hence S + T belongs to the set of vector-valued s-type $|A, p, \prod X_k|$ operators from $\prod E_k$ to $\prod F_k$. Clearly λT belongs to the set of vector-valued s-type $|A, p, \prod X_k|$ operators, where λ be any scalar. Thus the condition (1.1) on the matrix $A = (a_{nk})$ is not necessary to form a linear space.

Proposition 3.4. For $1 \le p < q \le \infty$, we have $\mathscr{A}_{vec}^{(s)} - p \subseteq \mathscr{A}_{vec}^{(s)} - q$.

Proof. We omit the proof as it is trivial.

Let $\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$ for $0 be a linear space. Define <math>\bar{\beta}^{(s)}_{A,p}$: $\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p \to \mathbb{R}$ as

$$\bar{\beta}_{A,p}^{(s)}(T) = \sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_l(T_k)| \right)^p \right)^{\frac{1}{p}},$$

where $T = (T_k)_{k \ge 1} \in \mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$. It can be shown that $\bar{\beta}^{(s)}_{A,p}$ is a quasi-norm on this linear space.

Remark 3.5. For
$$p = \infty$$
, we define $\bar{\beta}_{A,\infty}^{(s)}(T) = \sup_{k \geq 1} \sup_{n \geq 1} \left(\sum_{l=1}^{\infty} |a_{nl}s_l(T_k)| \right)$

Theorem 3.6. Let $0 . For fixed nonzero matrix <math>A = (a_{nk})$ satisfying the condition (1.1) and $\sum_{n=1}^{\infty} |a_{n1}|^p < \infty$, each component of the class $\mathscr{A}_{vec}^{(s)} - p$ is complete under the normalized quasi-norm $\hat{\beta}_{A,p}^{(s)}$, where

$$\hat{\beta}_{A,p}^{(s)}(.) = \frac{\bar{\beta}_{A,p}^{(s)}(.)}{\left(\sum_{n=1}^{\infty} |a_{n1}|^p\right)^{\frac{1}{p}}}.$$

Proof. Let $\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$ be any one of the component of the class $\mathscr{A}^{(s)}_{vec} - p$ for 0 . We consider

$$\bar{\beta}_{A,p}^{(s)}(T) = \sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_{l}(T_{k})| \right)^{p} \right)^{\frac{1}{p}}$$

$$\ge \sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(|a_{n1}s_{1}(T_{k})| \right)^{p} \right)^{\frac{1}{p}}$$

$$= \sup_{k \ge 1} ||T_{k}|| \left(\sum_{n=1}^{\infty} |a_{n1}|^{p} \right)^{\frac{1}{p}}.$$

$$\Rightarrow ||T|| \le \hat{\beta}_{A,p}^{(s)}(T) \quad \text{for } T \in \mathscr{A}_{(\prod E_k \to \prod F_k)}^{(s)} - p. \tag{3.5}$$

Let (T^m) be a Cauchy sequence in $\mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$. Then for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\hat{\bar{\beta}}_{A\ n}^{(s)}(T^m - T^r) < \epsilon, \quad \forall \ m, r \ge N.$$
(3.6)

Now from (3.5), we have

$$||T^m - T^r|| \le \hat{\beta}_{A,p}^{(s)}(T^m - T^r).$$

Using (3.6), we get

$$||T^m - T^r|| \le \hat{\beta}_{A,p}^{(s)}(T^m - T^r) < \epsilon \quad \forall \ m, r \ge N.$$

Hence (T^m) is a Cauchy sequence in $\mathscr{L}(\prod E_k, \prod F_k)$. Since each F_k is a Banach space, $\mathscr{L}(\prod E_k, \prod F_k)$ is also a Banach space. Therefore $T^m \to T$ as $m \to \infty$ in $\mathscr{L}(\prod E_k, \prod F_k)$. We shall now show that $T^m \to T$ as $m \to \infty$ in $\mathscr{L}^{(s)}_{(\prod E_k \to \prod F_k)} - p$. Using Lemma 2.6, we have for each $k \in \mathbb{N}$

$$|s_n(T_k^r - T_k^m) - s_n(T_k - T_k^m)| \le ||T_k^r - T_k||.$$

Letting $r \to \infty$,

$$s_n(T_k^r - T_k^m) \to s_n(T_k - T_k^m). \tag{3.7}$$

From (3.6), we get

$$\sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl} s_l(T_k^r - T_k^m)| \right)^p \right)^{\frac{1}{p}} < \epsilon \left(\sum_{n=1}^{\infty} |a_{n1}|^p \right)^{\frac{1}{p}}, \quad \forall \ m, r \ge N.$$

Using (3.7), it can be shown that as $r \to \infty$ (keeping $m \ge N$ fixed)

$$\sup_{k\geq 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_l(T_k - T_k^m)| \right)^p \right)^{\frac{1}{p}} \leq \epsilon \left(\sum_{n=1}^{\infty} |a_{n1}|^p \right)^{\frac{1}{p}}$$
$$\Rightarrow \hat{\beta}_{A,p}^{(s)}(T - T^m) \leq \epsilon \quad \forall m \geq N.$$

This implies that $T^m \to T$ under the quasi-norm $\hat{\beta}_{A,p}^{(s)}$. Next we show that $T \in \mathscr{A}_{(\prod E_k \to \prod F_k)}^{(s)} - p$. Consider

$$\sum_{l=1}^{\infty} |a_{nl}s_{l}(T_{k})| = \sum_{l=1}^{\infty} |a_{n,2l-1}s_{2l-1}(T_{k})| + \sum_{l=1}^{\infty} |a_{n,2l}s_{2l}(T_{k})|$$

$$\leq \sum_{l=1}^{\infty} (|a_{n,2l-1}| + |a_{n,2l}|) s_{2l-1}(T_{k}),$$

since $0 \le s_{n+1}(T_k) \le s_n(T_k)$ for all n. Using the inequality (1.1), we have

$$\sum_{l=1}^{\infty} |a_{nl}s_l(T_k)| \le M \Big(\sum_{l=1}^{\infty} |a_{nl}|s_l(T_k - T_k^m) + \sum_{l=1}^{\infty} |a_{nl}|s_l(T_k^m) \Big).$$

Therefore

$$\left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_{l}(T_{k})|\right)^{p}\right)^{\frac{1}{p}} \leq C.M \left[\left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_{l}(T_{k} - T_{k}^{m})|\right)^{p}\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_{l}(T_{k}^{m})|\right)^{p}\right)^{\frac{1}{p}}\right],$$

where $C \geq 1$ is a constant. Thus

$$\sup_{k\geq 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_l(T_k)| \right)^p \right)^{\frac{1}{p}} < \infty,$$

which follows from the fact that $\hat{\beta}_{A,p}^{(s)}(T-T^m) \to 0$ as $m \to \infty$ and $(T^m) \in \mathscr{A}_{(\prod E_k \to \prod F_k)}^{(s)} - p$. Hence $T \in \mathscr{A}_{(\prod E_k \to \prod F_k)}^{(s)} - p$. This completes the proof.

Corollary 3.7. Let $A = (a_{nk})$ be a nonzero infinite matrix satisfying the condition (1.1) and $\sup_{n\geq 1} |a_{n1}| < \infty$, then each component of the class $\mathscr{A}_{vec}^{(s)} - \infty$ is complete

under the normalized quasi-norm $\hat{\beta}_{A,\infty}^{(s)}$, where

$$\hat{\bar{\beta}}_{A,\infty}^{(s)}(.) = \frac{\bar{\beta}_{A,\infty}^{(s)}(.)}{\sup_{n \ge 1} |a_{n1}|}.$$

Proposition 3.8. If $R \in \mathcal{L}(\prod F_k, \prod H_k)$ and $S \in \mathcal{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$, then $RS \in \mathcal{A}^{(s)}_{(\prod E_k \to \prod H_k)} - p$ and $\hat{\beta}^{(s)}_{A,p}(RS) \leq \|R\| \hat{\beta}^{(s)}_{A,p}(S)$. Also if $T \in \mathcal{L}(\prod G_k, \prod E_k)$ and $S \in \mathcal{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p$, then $ST \in \mathcal{A}^{(s)}_{(\prod G_k \to \prod F_k)} - p$ and $\hat{\beta}^{(s)}_{A,p}(ST) \leq \|T\| \hat{\beta}^{(s)}_{A,p}(S)$. Proof. We omit the proof.

Next we derive some inclusion relations.

Theorem 3.9. Let 0 . Then

(I)
$$\mathscr{A}_{vec}^{(a)} - p \subseteq \mathscr{A}_{vec}^{(c)} - p \subseteq \mathscr{A}_{vec}^{(x)} - p \subseteq \mathscr{A}_{vec}^{(h)} - p$$
 and

(II)
$$\mathscr{A}_{vec}^{(a)} - p \subseteq \mathscr{A}_{vec}^{(d)} - p \subseteq \mathscr{A}_{vec}^{(y)} - p \subseteq \mathscr{A}_{vec}^{(h)} - p$$
.

Proof. Let $0 . Suppose that <math>T = (T_k)_{k \ge 1}$ belongs to any one of the component of the class $\mathscr{A}_{vec}^{(a)} - p$. Then

$$\sup_{k\geq 1} \left(\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}a_{l}(T_{k})| \right)^{p} \right)^{\frac{1}{p}} < \infty.$$

Using Proposition 2.4, we have

$$\begin{split} \sum_{n=1}^{\infty} \Big(\sum_{l=1}^{\infty} |a_{nl}h_{l}(T_{k})| \Big)^{p} &\leq \sum_{n=1}^{\infty} \Big(\sum_{l=1}^{\infty} |a_{nl}x_{l}(T_{k})| \Big)^{p} \leq \sum_{n=1}^{\infty} \Big(\sum_{l=1}^{\infty} |a_{nl}c_{l}(T_{k})| \Big)^{p} \\ &\leq \sum_{n=1}^{\infty} \Big(\sum_{l=1}^{\infty} |a_{nl}a_{l}(T_{k})| \Big)^{p}. \end{split}$$

Hence the proof of (I) follows for $0 . It is trivial to check for <math>p = \infty$. We omit the proof of (II) as it is similar to the previous one.

There are some converse estimates among s-number sequences as given below.

Lemma 3.10 ([15], p.165). Let $T \in \mathcal{L}(E, F)$. Then $a_n(T) \leq 2n^{\frac{1}{2}}c_n(T)$ and $a_n(T) \leq 2n^{\frac{1}{2}}d_n(T)$.

We now define the class $\mathcal{L}_{vec}^{(s)} - (r, p)$ of vector-valued s-type $l_{r,p}$ operators as follows:

$$\mathscr{L}_{vec}^{(s)} - (r, p) = \{ T = (T_k)_{k \ge 1} \in \mathscr{L} : \sup_{k \ge 1} \left(\sum_{n=1}^{\infty} \left(n^{\frac{1}{r} - \frac{1}{p}} s_n(T_k) \right)^p \right)^{\frac{1}{p}} < \infty \}$$

for $0 < r, p < \infty$.

Theorem 3.11. Let $0 < r, p < \infty$ and $A = (a_{nl})$ be a diagonal matrix, where

$$a_{nl} = \begin{cases} n^{\frac{1}{r} - \frac{1}{p} - \frac{1}{2}} & : \quad l = n \\ 0 & : \quad l \neq n. \end{cases}$$

If a bounded linear operator T belongs to $\mathcal{L}_{(\prod E_k \to \prod F_k)}^{(c)} - (r, p)$, then T belongs to $\mathcal{L}_{(\prod E_k \to \prod F_k)}^{(a)} - p$.

Proof. For 0 , we have

$$\sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}a_{l}(T_{k})| \right)^{p} = \sum_{n=1}^{\infty} \left(n^{\frac{1}{r} - \frac{1}{p} - \frac{1}{2}} a_{n}(T_{k}) \right)^{p}$$

$$\leq \sum_{n=1}^{\infty} \left(n^{\frac{1}{r} - \frac{1}{p} - \frac{1}{2}} . 2n^{\frac{1}{2}} c_{n}(T_{k}) \right)^{p} \qquad \text{(Using Lemma 3.10.)}$$

$$= 2^{p} \sum_{n=1}^{\infty} \left(n^{\frac{1}{r} - \frac{1}{p}} c_{n}(T_{k}) \right)^{p}.$$

Thus
$$\sup_{k\geq 1} \Big(\sum_{n=1}^{\infty} \Big(\sum_{l=1}^{\infty} |a_{nl}a_{l}(T_{k})|\Big)^{p}\Big)^{\frac{1}{p}} \leq 2\sup_{k\geq 1} \Big(\sum_{n=1}^{\infty} \Big(n^{\frac{1}{p}-\frac{1}{p}}c_{n}(T_{k})\Big)^{p}\Big)^{\frac{1}{p}} < \infty.$$
 Hence the result follows.

Theorem 3.12. Let $0 < r, p < \infty$ and $A = (a_{nl})$ be a diagonal matrix, where

$$a_{nl} = \begin{cases} n^{\frac{1}{r} - \frac{1}{p} - \frac{1}{2}} & : \quad l = n \\ 0 & : \quad l \neq n. \end{cases}$$

If a bounded linear operator T belongs to $\mathcal{L}^{(d)}_{(\prod E_k \to \prod F_k)} - (r, p)$, then T belongs to $\mathcal{L}^{(a)}_{(\prod E_k \to \prod F_k)} - p$.

Proof. The proof is similar to the preceding Theorem 3.11. \Box

Theorem 3.13. If $T = (T_k) \in \mathscr{A}^{(s)}_{(\prod E_k \to \prod F_k)} - p \text{ and } S = (S_k) \in \mathscr{A}^{(s)}_{(\prod F_k \to \prod H_k)} - q$, then $ST = (S_k T_k)_{k \ge 1} \in \mathscr{A}^{(s)}_{(\prod E_k \to \prod H_k)} - r$, where

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{a}.$$

Proof. Here we use the generalized Hölder inequality, i.e., if $x \in l_p$ and $y \in l_q$ then

$$\left\{ \sum_{n=1}^{\infty} |x_n y_n|^r \right\}^{\frac{1}{r}} \le \left\{ \sum_{n=1}^{\infty} |x_n|^p \right\}^{\frac{1}{p}} \left\{ \sum_{n=1}^{\infty} |y_n|^q \right\}^{\frac{1}{q}}.$$

Now we have

$$\sum_{l=1}^{\infty} |a_{nl}s_{l}(S_{k}T_{k})| \leq \sum_{l=1}^{\infty} \left(|a_{n,2l-1}| + |a_{n,2l}| \right) s_{2l-1}(S_{k}T_{k})$$

$$\leq M \sum_{l=1}^{\infty} |a_{nl}| s_{2l-1}(S_{k}T_{k})$$

$$\leq M \sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k}) s_{l}(T_{k}) \qquad \text{(Using Definition 2.5)}.$$

Therefore

$$\left\{ \sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl} s_{l}(S_{k} T_{k})| \right)^{r} \right\}^{\frac{1}{r}} \leq M \left\{ \sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k}) s_{l}(T_{k}) \right)^{r} \right\}^{\frac{1}{r}} \\
\leq M \left\{ \sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(T_{k}) \right)^{p} \right\}^{\frac{1}{p}} \left\{ \sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}| s_{l}(S_{k}) \right)^{q} \right\}^{\frac{1}{q}}.$$

Thus
$$\sup_{k\geq 1} \left\{ \sum_{n=1}^{\infty} \left(\sum_{l=1}^{\infty} |a_{nl}s_l(S_k T_k)| \right)^r \right\}^{\frac{1}{r}}$$

$$\leq M \sup_{k \geq 1} \Big\{ \sum_{n=1}^{\infty} \Big(\sum_{l=1}^{\infty} |a_{nl} s_l(T_k)| \Big)^p \Big\}^{\frac{1}{p}} \sup_{k \geq 1} \Big\{ \sum_{n=1}^{\infty} \Big(\sum_{l=1}^{\infty} |a_{nl} s_l(S_k)| \Big)^q \Big\}^{\frac{1}{q}} < \infty.$$

This completes the proof.

Acknowledgement : The authors are thankful to the referee for his/her careful reading and making some valuable comments which improved the presentation of the paper.

References

- [1] A. Pietsch, Einige neue klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. (Bucarest) 8 (1963) 427-447.
- [2] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. 51 (1974) 201-223.
- [3] B.E. Rhoades, Operators of A-p type, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (3-4) (1975) 238-241.
- [4] B.E. Rhoades, Some sequence spaces which include the l^p spaces, Tamkang J. Math. 10 (2) (1979) 263-267.

- [5] J.S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math. 1 (1) (1970) 19-25.
- [6] Gh. Constantin, operators of ces-p type, Rend. Acc. Naz. Lincei. 52 (8) (1972) 875-878.
- [7] A. Maji, P.D. Srivastava, Some results of operator ideals on s-type |A, p| operators, Tamkang J. Math. 45 (2) (2014) 119-136.
- [8] A. Pietsch, Eigenvalues and s-Numbers, Cambridge University Press, New York, NY, USA, 1986.
- [9] B. Carl, A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull. Lond. Math. Soc. 41 (2) (2009) 332-340.
- [10] B. Carl, On s-numbers, quasi s-numbers, s-moduli and Weyl inequalities of operators in Banach spaces, Rev. Mat. Complut. 23 (2) (2010) 467-487.
- [11] M. Gupta, L.R. Acharya, Approximation numbers of matrix transformations and inclusion maps, Tamkang J. Math. 42 (2) (2011) 193-203.
- [12] Z.M. Abd El-Kader, s-numbers of shift operators on decomposable Banach spaces, J. Egyptian Math. Soc. 13 (1) (2005) 1-6.
- [13] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
- [14] C. Sudsukh, P. Pantaragphong, O. Arunphalungsanti, Matrix transformations on Cesàro vector-valued sequence space, Kyungpook Math. J. 44 (2) (2004) 157-166.
- [15] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

(Received 3 May 2013) (Accepted 15 June 2016)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th