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1 Introduction

There has been considerable interest to study s-numbers of operators as they
are very powerful tools for estimating eigenvalues of operators in Banach spaces.
In 1963, A. Pietsch [1] firstly introduced the approximation numbers of a bounded
linear operator in Banach spaces. Subsequently, different s-numbers, namely Kol-
mogorov numbers, Gel’fand numbers are introduced to the Banach space setting.
For the unification of different s-number sequences, A. Pietsch ([2], 1974) devel-
oped an axiomatic theory of s-numbers in Banach spaces.

For infinite matrix A = (ank), Rhoades [3] defined A — p space, denoted by
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|A, p| as

rEw :(Z(Zmnkmk) )E<oo for0<p<oo

|Aap|: n=1 0021
reEw :s 1; (Z ankxko for p = oo,

where w is a sequence space of real or complex numbers. Further, Rhoades [4]
has shown that if A = (a,k) is a triangle, i.e., a,r = 0 for k > n and ay,, # 0,
then the space |4, p| is separable for 1 < p < oo and complete for 1 < p < oo.
A — p space contains many known sequence spaces as particular case by specifying
suitable matrix A = (an) such as Cesaro sequence space [5] for 1 < p < o0, I,
sequence space for 0 < p < oo, etc.

Let Z(E, F) be the space of all bounded linear operators from a Banach space
E to a Banach space F. Pietsch [I] defined an operator T' € Z(E, F) as I? type

o)
operator if > (an(T))? is finite for 0 < p < oo, where (a,(T)) is the sequence of
n=1

approximatio_n numbers of the bounded linear operator T'. Later on Constantin [6]
generalized the class of [, type operators to the class of ces — p type operators by

using the Cesaro sequence space, where an operator T € Z(E, F) is called ces —p
n

o9 P

type if > (% > an(T)> is finite, 1 < p < co. Rhoades [3] further generalized
n=1 k=1

the class of ces — p type operators to the class of A — p type operators, where

A = (ank) is an arbitrary infinite matrix. An operator T' € Z(FE, F') is said to be
A — p type operator if the sequence of approximation numbers (a, (7)) belongs to
|A, p| space, 0 < p < co. Let A = (ank) be a fixed matrix satisfying the condition:

|an 2k—1] + |an,2k] < Mlank]| for each k and n, (1.1)

where M is a constant independent of n and k. Rhoades has shown that for
0 < p < oo and for each fixed matrix A satisfying the condition (1), the set of
A — p type operators forms a linear space. Recently, authors [7] have studied some
results in the scalar-valued case.

Motivated with the above works, we have studied the A — p type operators
in vector-valued case. In fact, this paper deals with the study of a generalized
class of operators using the sequence of s-numbers in vector-valued case. We have
also shown that each component of the class %ec — p of vector-valued s-type
|A, p, [T Xk| operators is a complete linear space under certain conditions on the
matrix A. Some inclusion relations are also obtained for these spaces.

2 Preliminaries

Throughout this paper we denote E, F' as the real or complex Banach spaces
and .Z(E, F) as the space of all bounded linear operators from E to F. Let .&
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be the class of all bounded linear operators between arbitrary Banach spaces. We
denote N as the set of all natural numbers and R as the set of all real numbers.

We now state few results and definitions in scalar case which will be used in
the sequel.

Definition 2.1 ([§]). A finite rank operator is a bounded linear operator whose
dimension of the range space is finite.

Definition 2.2 ([8], [9]). A non-negative scalar sequence (s, (T)),, where s =
(sn) : £ — RY assigning to every operator T' € .Z, is called an s-number sequence
if the following conditions are satisfied:

(S1) monotonicity: ||T| = s1(T) > s2(T) >--->0, forT e ZL(E,F)
(52) additivity: Smin—1(S+T) < $m(S)+s,(T), forS,T € X(E,F),m,neN

(S3) ideal property: s,(RST) < ||R||sn(S)|T||, for some R € Z(F,Fy), S €
Z(E,F)and T € Z(Ey, E), where Ey, Fj are arbitrary Banach spaces

(S4) rank property: If rank(T) < n then s,(T) =0

(S5) norming property: sn(I : 1§ — 13) = 1, where I denotes the identity operator
on the n-dimensional Hilbert space [3.

The n-th s-number of the operator T' is denoted by s,(T"). Various results on
s-number sequence can be viewed in ([1], [10], [I1], [I2]). It can be easily shown
that the following numbers are s-number sequence. Let T' € Z(E, F) and n € N.

1. The n-th approzimation number, denoted by a,,(T'), is defined as
an(T) = inf {||T —L|: Le.%(BF), rank(L) < n}.
2. The n-th Gel’fand number, denoted by ¢, (T), is defined as
en(T) = inf{”TJMH : M CE, codim(M) < n},

where Jy; : M — E be the natural embedding from subspace M of E into
E.

3. The n-th Kolmogorov number, denoted by d,(T), is defined as
d,(T) = inf {||QN(T)|| . N CF, dim(N) < n},

where Qn : E — E/N be the quotient map from F onto E/N.

4. The n-th Weyl number, denoted by x,,(T), is defined as

n(T) = inf {an(TA) Al — B < 1},
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where a, (T A) is an n-th approximation number of the operator T A.

5. The n-th Chang number, denoted by y,(T), is defined as
yn(T) = inf{an(BT) B:F = || < 1},

where a,(BT) is an n-th approximation number of the operator BT.

6. The n-th Hilbert number, denoted by h,,(T'), is defined as
h(T) = sup {an(BTA) B:F =0l <1, |A:lo— E| < 1}.

Remark 2.3 ([8]). Among all the s-number sequences defined above, it is easy to
verify that the approzimation number, a,(T') is the largest and the Hilbert number,
hn(T) is the smallest s-number sequence i.e., hp(T) < $,(T) < an(T) for any
bounded linear operator T. If T is defined on a Hilbert space then all the s-

numbers coincide with the singular values of T i.e., the eigenvalues of |T'|, where
1

|T| = (T*T)=.
Proposition 2.4 ([§], p.115). Let T € L (E,F). Then
hn(T) < 2, (T) < cn(T) < an(T) and hp(T) < yn(T) < dp(T) < an(T).
Definition 2.5 ([§], p.81). An s-number sequence is called multiplicative if
Sman—1(ST) < 8m(S)sn(T)
for T € Z(E,F), S € Z(F,Fy) and m,n € N.

Lemma 2.6 ([2]). Let S,T € Z(E,F), then |s,(T) — sn(S)| < |T = S|| for
n=1,2---.

Lemma 2.7 ([8], p. 107). Let s = (s,) be any s-number sequence and D,y be
any diagonal operator from the sequence space lo to itself with 71 > 7 > ... > 0.
Then s, (D(r,y : la = l2) = T, for all n.

3 Vector-Valued S-Type |A,p, [] Xi| Operators

o0
Let (Eg, ||-||z,) be a sequence of Banach spaces. It is easy to show that H Ey
k=1
is a Banach space with respect to the norm .||, for 1 < p < oo, where

1

o0
(Z ||:ck|\§;k)p for 1<p< oo
k=1

[zlloc = sup |lzk | &, for p = oo.
k>1

1l
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Throughout the paper we shall write [] Ex instead of H Ey.
k=1

Let (Fy, ||.]|r,) be another sequence of Banach spaces. A linear operator T :

11 Ex — ][ Fx is defined by
T(I’) — T((ﬂ?l,l’Q, B 7 )) = (TIZI,TQI'Q, N 7Tk1'k7 e )7
where k € N, = (2) € [[ X and T}, € Z(Ek, Fy). It can be shown that T is a
bounded linear operator if and only if sup ||T%|| < oo and the norm ||T'|| = sup ||T%|.
k>1 k>1

Let 0 < p < o0 and (X%, ||.||x,) be a sequence of Banach spaces. For a fixed
matrix A = (an), we define vector-valued A — p space, denoted by |A, p, [[ Xk| as

oo oo P %
v=@)el1Xe (X ((Xlamllorlx,) ) < o0, 0<p <o
1 Mk=1

|A,p,| |Xk|: n= [e'e]
x = (z) € [[ Xk :Sl;p( E |ank|||:ck||xk) < 00, p = 0.
n>1
Zl =1

Particular examples:

There are many examples of vector-valued A — p space with the particular
choice of the matrix A, e.g.,
1. Choose A as an identity matrix and 1 < p < oo and X = X, a Banach space
for all k, then the space |A,p, [][ Xk| reduces to [,(X) (see, [I3], p. 33), where

o0 1
1,(X) is the set of all X-valued sequences x = (zj) such that (Z ||£En||p> " < .
n=1
2. Choose A as a Cesaro matrix of order 1 and X = X, a Banach space for all k.

Then the space |A, p, [ Xk|, 1 < p < 0o becomes X-valued Cesaor sequence space
Cesp(X) (see [14]), where Ces,(X) is the set of all X-valued sequences z = ()

o 1 n P 1
such that ( g (— g ||acn||> )p < 00.
n
n=1 k=1

If an operator Te Z(I1 Bk, I Fr) satisfying the conditions

1

o0 o0
L
sup (Z (Z |anl|sl(Tk)) )p <oo, O0<p<oo
E>1 NSt N
ot =7 (3.1)
supsup (S [anlsi(Th)) < o, p=c0,
k>1n>1 N1y
then we call T as a vector-valued s-type |A,p, [[ Xi| operator. In particular
if A is a Cesaro matrix of order 1, then (31 reduces to

oo 1 n p %
Sgp(Z(EZSl(T’“)) ) <oo, O0<p<o
k21 n=1 nl:1 (32)
1
sup sup (5 sl(Tk)) < 00, p = oo.

k>1n>1 =
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For A = I, an identity matrix, then (B3I reduces to

1

zlgl) (i (sn(Tk))p) f<oo, 0<p<oo 53

sup sup sn(Tk)) < 00, p = 0.
k>1n>1

We shall call an operator T' € Z([] Ex, [[ Fx) as a vector-valued s-type ces,
operator and vector-valued s-type [, operator if the conditions (3:2]) and (B3] hold
respectively.

Particular examples:
Here we shall give some vector-valued s-type operators.

1. For A = I, an infinite identity matrix and choose a particular vector-valued
A —p space lp(lp). Let T : ,(I,) = l,(l,), where T' = (Ti)p>1 and Ty : [, — [,
for all k such that for some ng € N all T}, are finite rank operator for 1 < k < ng
and for k > ng, T} are zero operator, i.e., Tju = 0 for all v € [,. Then by the
property of s-number (see, Definition 22 (54)), there exists some ny € N such
that $,(Tx) = 0 for all n > ny, 1 < k < ng and s,(T;) = 0 for all k& > ng and

1 n1 1

for all n. Thus sup(i(sn(Tk))p); = sup (Z(sn(Tk))p); < o0o. Hence

k>1 N 1<k<ng

T = (Tk)r>1 is a vector-valued s-type operators.

2. Consider T : ly(l2) — Ip(l2) for 1 < p < oo, where T = (Ty)r>1 and each
Ty : 12 — I3 is a diagonal operator is defined as Ty (y) = (y1, 5Y2, 3¥3, . ..) for y =
(yn) €1, for all k > 1. Then each T}, € Z(ls,12) and | Tk|| = 1 for all k. Therefore
T € Z(ly(l2),15(12)). Also by using Lemma 27 we have s, (T) : I — l) = < for

oo 1 o0 1

» 1y\» .

all k. Thus it;}:; (Z(sn(Tk))P) = ig}f (Z ﬁ) < 00. Hence T' = (T} )k>1 is
= n=1 = n=1

a vector-valued s-type operator.

We denote the set of all vector-valued s-type |A,p, [[ Xk| operators between

any two arbitrary countably infinite product of Banach spaces by Jafv(esc) — p and
the set of all vector-valued s-type |4, p, ] Xk| operators from [] Ex to J[ Fx by

JZ{((I_SI)Ek—’H Ry P for 0 < p < 0. We say JZ{((IEI)EkﬁH Ry P is a component of the

class szfv(é’c) —p. To study the class sz/y(éz —p, we will actually study each component
of this class.

Proposition 3.1. Let A = (an) be an infinite matriz, where an, =0 for k > n
n

and satisfies Y |ank| > XA >0 for alln. If T = (Ty)k>1 is a vector-valued s-type
k=1

|A,p, T Xk| op_emtor, then T is a vector-valued s-type 1, operator for 0 < p < co.

Proof. Let 0 < p < oo and T = (T})k>1 be a vector-valued s-type |4, p, [[ Xk
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operator. Consider

n

i(z|am|sl(7’k) i (sn(T0) Z|am|)”

k>1

n=1 [=1 n=1 =
SO
which gives
(g (2 (o))) < un (35 (3 et ) <o

n=1 [=1

Thus T is a vector-valued s-type [, operator.
Similarly for p = oo, it can be shown easily. Hence the proof is complete. O

Theorem 3.2. Let 0 < p < co. For fized infinite matric A = (anr) satisfying
(@T1), each component of the class szfv(gc) — p is a linear space.

Proof. Let 0 < p < co. Let A

(H Ep—T1 Fx)
class «!%(esc)- —p. Let 5,T € "Z{(H Er—[] Fr)

— p be any one of the component of the

— p. Consider

o0
|an,21—1521-1(Tx + Sk)| + Z |an 21801(Tk + Sk)|
=1

WE

> lansi(Tr + Sk)| =

=1

Il
-

M

(lan,2i-1] + an,21])s21-1(Tx + Sk)

1

M(Z st (Te) + > |anl|sl(Sk)). (3.4)

=1 =1

IN

Case I: 0 <p< 1.

P »
For0 <p<1landa,b>0, (aer) < (aerbp), <a+b) §C(a%+b%),where
C > 1 is a constant. So, from ([B4]) we have

(i(immsl (T +54))" ) §M(i(i|anl|sl )+ Y lalsi(Sk) ) )%
n=1 I[=1 n=1 [=1 =1

Il
—

|

_l’_
N
WE
o

8 S

B
X
B
e
N—

3=
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where C' > 1 is a constant. Therefore,

sup (i (i |ant|si(Th + Sk)>p)% < CM[SUII’ (i (i |anl|8l(Tk)>p)%

k21230 Y= k212021 YVi=

Case II: 1 < p < .
Using Minkowski inequality for 1 < p < oo, we have from (3.4)

(i (i lani]si(Tk + Sk)>p>% < M[i (i lani|si(Tk) + i |anl|3l(Sk))p}%

n=1 I=1 n=1 I=1 =1

Therefore
[e%e] p 1
> laulsi(10)")

wn
=
ol
—
[~
—
B
g
£}
)
+
n
ol
Nl
~
<=
A\
;=
Lo} >
\\/%
Mg —
pq hgk
Mg —
=
=
E3
™
ol
N
S
~—
<=

(s)
Thus S+T€’Q{(HE;C—>HF;C) —p.

T e "Q{((lf[)Ek%H R P and A be any scalar then it is easy to see that
PVARS JZ{((I_SI)Ek‘*H P — P Hence "Q{((lf[)Ek%H F) P is a linear space. Similarly for

p = 00, it can be shown that ,52%(1—[ By F) — 00 182 linear space. This completes
the proof. O

Remark 3.3. The condition ([ILI)) on the matriz A is no longer necessary for the
set of vector-valued s-type |A,p, [ Xk| operators from [[ Ex to [[ Fx be a linear
space. Justification is given as below.

Let 0 < p < 0o and A = (ank) be an infinite identity matriz. Clearly identity
matriz does not satisfy the condition (L) but the triangle inequality can be proved
as follows. Let S = (Sk)ik>1, T = (Tk)k>1 € L[] Bk, [[ Fx) be any two vector-
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valued s-type |A, p, [ Xk| operators. Then

Z<Z|anl5l (Tk + Sk)| ) i(sn Tk—i-Sk)
5 (st 50) + 3 (san(ti + 50"
i (32n (T + Sk))

n=1
o0

3

IA
N

(sn(Ti) + sn(sk))”).

IN
)
—

Thus
(32 (S mentrirso)) <28 [( 3 (onm)) (3 (entsn) )]

where C > 1 is a constant. Therefore,

21;[1) (i (i |anisi (T + Sk)|)p>% < oo.
2L Y1 Y=

Hence S+ T belongs to the set of vector-valued s-type |A,p, [ Xk| operators from
1 Ex to [ Fx. Clearly AT belongs to the set of vector-valued s-type |A,p, ] Xk
operators, where X be any scalar. Thus the condition (L) on the matriz A = (ank)
is not necessary to form a linear space.

Proposition 3.4. For 1 < p < q < 00, we have 42%1,(;0) —p C 42%1,(;0) —q

Proof. We omit the proof as it is trivial. [l
)Let Qf((ﬁ)E L[ F P for 0 < p < oo be a linear space. Define ﬂ_f;)p :
A poring — PR s

5, (i_’f@amsl @m)),

where T' = (Ty)k>1 € Qf(l—[ Er[]Fe) P It can be shown that 51(45,);) is a quasi-norm
on this linear space.

Remark 3.5. For p = oo, we define BSLO(T) = sup sup (Z |anisi( Tk)|)
’ k>1n>1 N =
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Theorem 3.6. Let 0 < p < co. For fixzed nonzero matrix A = (ank) satisfying
&)

the condition (L) and Y |an1|P < oo, each component of the class A —pis
n=1

complete under the normalized quasi-norm BSL, where

3(s)
2(s) ( ) A,p(') .

A,p 0o 1
P
( > |an1|p)
n=1

Proof. Let sz/((lf[) BuoT] Fe) — P be any one of the component of the class 42%1,(;0) —p
for 0 < p < co. We consider

o

ffm = sup (i (Z |anisi(Tk) ) )

=

> sup (i_": (|an131 Ti)| )p)

k>1

= sup ||7T; ( a p>5
o 1013 o

8=

= T < BYLT) for T € 7y 11 — P (3.5)

Let (T™) be a Cauchy sequence in JZ{((IEI)Ek%H Fo — P Then for all € > 0, there
exists NV € N such that

B,(:,)I,(Tm —T")<e, VY m,r>N. (3.6)
Now from (3], we have
| =17 < B, (T — 7).
Using (3.0), we get
T — 17| < B (T~ T7) <€ ¥ m,r>N.

Hence (1) is a Cauchy sequence in Z(][ Ex, [[ F)- Since each Fj, is a Banach
space, Z(]] Ex, [ Fr) is also a Banach space. Therefore T™ — T as m — oo in

L1 Ek, I Fr). We shall now show that 7™ — T as m — oo in dHEk—d_[ £ P
Using Lemma [2.6] we have for each k € N

lsn (T, = T§") — sn(Th = Ti")| < || Tx — T |-
Letting r — oo,

(T =TI = 5, (Tpe — TI™). (3.7)
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From (B8], we get

o0 [es] N o0 1
sup (Z ( |anisi(Th — T,z”)|> )p < G(Z |an1|p> ", Vm,r>N.
k21 n=1 [=1 n=1
Using (30), it can be shown that as r — oo ( keeping m > N fixed)
sup (Z (Z |anisi(T — T,:")|) ) < e(z |an1|p)
k21 n=1 [=1 n=1
= BT -T™ <e Ym=>N.
This implies that T™ — T under the quasi-norm 5,(45,);;~
Next we show that T € JZ{((IEI)EkﬁH Ry~ P Consider
oo [ee] [ee]
> lansi(Te)] = lan2-152-1(T)l + 3 lan 2s2(T)]
1=1 1=1 1=1

o
<> (lan a1l + lanl ) sz (Th),
=1

since 0 < $,41(Tk) < s, (T%) for all n. Using the inequality (1), we have

(o) (o) o0
> lamsi (Tl < MY lanlsi (T = T+ lamlsi(T)
=1

=1 =1
Therefore
0 0 Py L 0 0 oL
(Z <Z|anlsl(Tk)|) ) < C.M[(Z (Zmnlsl(Tk_T,;ﬂﬂ) )
n=1 I=1 n=1 [=1
o0 o0 1
+ (3 (X lawsimin) ).
n=1 [=1
where C > 1 is a constant. Thus
sup (Z (Z |anlsl(Tk)|) ) < 0,
L= e

which follows from the fact that BS’L(T —T™) -0 asm — oo and (T™) €

J%((lf[)Ek—)H £y — P Hence T € !SZ{((IEI)Ek—)H Ry — P This completes the proof. ([l

Corollary 3.7. Let A = (ank) be a nonzero infinite matriz satisfying the condition

(@) and sup |an1| < oo, then each component of the class A — o0 is complete
n>1
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under the normalized quasi-norm ﬁA wo» Where

) 36)
a(s) ( ) o A,oo( )

Aot = S|
n>1

Proposition 3.8. If R € X(H Fy,[[ Hg) and S € Qf(l—[ BeoT[Fy — P then RS €
oY —p and ﬁ H(1S) < ||R||ﬂ(6) (S). Also if T € Z(I]1 Gk, [[ Ex) and
Se uqf(gfwanF , =P, then ST € T a1 —P and B (ST) < | T(IBS(S).
Proof. We omit the proof. O
Next we derive some inclusion relations.

Theorem 3.9. Let 0 < p < oco. Then

(1) A —pC ol —pC ) —pCal)—p and

(1) &) —p C el —p C Al —pC el —p
Proof. Let 0 < p < oo. Suppose that T = (T))r>1 belongs to any one of the
component of the class ,va(gc) — p. Then

sup (Z <Z|anlal Tx) ) ) < 00.

k21 n=1

=

Using Proposition 224 we have

o0 oo

i (Z|anlhl Tk) ) i (Zmnlfﬂl T:) )

n=1 I[=1 n=1 [=1

(i |anici( Tk)|>p

(i aman(Ti)])”

Hence the proof of (I) follows for 0 < p < co. It is trivial to check for p = co. We
omit the proof of (IT) as it is similar to the previous one. O

There are some converse estimates among s-number sequences as given below.
Lemma 3.10 ([I5], p.165). Let T € Z(E,F). Then an(T) < 2nzcy(T) and
an(T) < 2n2d,(T).

We now define the class ,,Z,(esz — (r,p) of vector-valued s-type I, operators as
follows:

8=

L= (rp) ={T = (Ti)>1 € £ sup (g:l ( 550 (Th) >p> < o0}

for 0 <r,p<oo.
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Theorem 3.11. Let 0 < r,p < oo and A = (an;) be a diagonal matriz, where

- nrTETI . |=n
" 0 . l#n.

If (a )bounded linear operator T belongs to "?Q(IE[)E;CAH )~ (r,p), then T belongs to
J%(HEIC—H_[ F) P

Proof. For 0 < p < oo, we have

> > p s 1_1_1 p
> (X lawaTl)” = 37 (073 Fan(Li)
n=1 [=1 n=1
< (n%_%_i 2n? cn(Tk)) (Using Lemma 3101)
n=1
> 1 p
=2y (W ()
n=1
[ee] [ee] P 1 [ee] . . p 1
Thus sup( ( aniar (T} ) )p < 2S11p( <n7_50n T ) )p < 00.
0 (32 (3 (1) (2 (1)
Hence the result follows. O

Theorem 3.12. Let 0 < r,p < co and A = (an;) be a diagonal matriz, where

ot — nrTETI . |=n
nl 0 . l#n.

If a bounded linear operator T belongs to g((l%)Ek‘)H Fo) (r,p), then T belongs to

(a)
J%(HEkHH Fo) P

Proof. The proof is similar to the preceding Theorem B.111 O
Theorem 3.13. If T = (T}) € d((lfl)Ek‘}HFk) —pand S = (Sk) € JZ{((IEI)F;C%HH;C) -
q, then ST = (SkTk)k>1 € 'Q{((IEI)E;C%H my 7 where

1 1 1

=4,

r p 4q

Proof. Here we use the generalized Holder inequality, i.e., if x € I, and y € [, then

o0 1 o0 1 o0 1
{ X el } < { Xl {3 Il
n=1 n=1 n=1
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Now we have
Z |anisi(SkTk)| < Z (|an,2171| + |an,21|)52171(Ska)
1

=1 =

MZ|anl|521 1(SkTk)
=1

<M Z |ani|si(Sk)si1(Tk) (Using Definition [Z.5]).
1=1

IN

Therefore
130 (X lewsntsim)) ) < {3 (S laadsutss ()}
n=1 [=1 n=1 =1
<3 (3 landsu(m) } {3 (iwl 50)"}.
n=1 [=1 n=1 I[=1
Thus

w0
=
T
— =
Nk
/N
B
g
&
—~
n
e
=
—
—
31

This completes the proof. O
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