Some Results on Vector-Valued s-Type $\left|A, p, \prod_{k}\right|$ Operators

Amit Maji and Parmeshwary Dayal Srivastava ${ }^{1}$
Department of Mathematics, Indian Institute of Technology
Kharagpur, Kharagpur 721 302, West Bengal, India
e-mail : amit.iitm07@gmail.com (A. Maji)
pds@maths.iitkgp.ernet.in (P.D. Srivastava)

Abstract

This paper deals with the class $\mathscr{A}_{v e c}^{(s)}-p$ of vector-valued s-type $\left|A, p, \Pi X_{k}\right|$ operators, $0<p \leq \infty$. It is shown that each component of the class $\mathscr{A}_{v e c}^{(s)}-p$ forms a complete linear space. Some inclusion relations are also obtained.

Keywords : s-numbers; approximation numbers; sequence spaces.
2010 Mathematics Subject Classification : 47B06; 46A45.

1 Introduction

There has been considerable interest to study s-numbers of operators as they are very powerful tools for estimating eigenvalues of operators in Banach spaces. In 1963, A. Pietsch [1] firstly introduced the approximation numbers of a bounded linear operator in Banach spaces. Subsequently, different s-numbers, namely Kolmogorov numbers, Gel'fand numbers are introduced to the Banach space setting. For the unification of different s-number sequences, A. Pietsch ($[2,1974$) developed an axiomatic theory of s-numbers in Banach spaces.

For infinite matrix $A=\left(a_{n k}\right)$, Rhoades [3] defined $A-p$ space, denoted by

[^0]$|A, p|$ as
\[

|A, p|=\left\{$$
\begin{array}{lll}
x \in w & :\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\left|a_{n k} x_{k}\right|\right)^{p}\right)^{\frac{1}{p}}<\infty & \text { for } 0<p<\infty \\
x \in w & : \sup _{n \geq 1}\left(\sum_{k=1}^{\infty}\left|a_{n k} x_{k}\right|\right)<\infty & \text { for } p=\infty
\end{array}
$$\right.
\]

where w is a sequence space of real or complex numbers. Further, Rhoades 4 has shown that if $A=\left(a_{n k}\right)$ is a triangle, i.e., $a_{n k}=0$ for $k>n$ and $a_{n n} \neq 0$, then the space $|A, p|$ is separable for $1<p<\infty$ and complete for $1<p \leq \infty$. $A-p$ space contains many known sequence spaces as particular case by specifying suitable matrix $A=\left(a_{n k}\right)$ such as Cesàro sequence space [5] for $1<p<\infty, l_{p}$ sequence space for $0<p \leq \infty$, etc.

Let $\mathscr{L}(E, F)$ be the space of all bounded linear operators from a Banach space E to a Banach space F. Pietsch [1] defined an operator $T \in \mathscr{L}(E, F)$ as l^{p} type operator if $\sum_{n=1}^{\infty}\left(a_{n}(T)\right)^{p}$ is finite for $0<p<\infty$, where $\left(a_{n}(T)\right)$ is the sequence of approximation numbers of the bounded linear operator T. Later on Constantin 6] generalized the class of l_{p} type operators to the class of ces $-p$ type operators by using the Cesàro sequence space, where an operator $T \in \mathscr{L}(E, F)$ is called ces $-p$ type if $\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{n}(T)\right)^{p}$ is finite, $1<p<\infty$. Rhoades [3] further generalized the class of ces $-p$ type operators to the class of $A-p$ type operators, where $A=\left(a_{n k}\right)$ is an arbitrary infinite matrix. An operator $T \in \mathscr{L}(E, F)$ is said to be $A-p$ type operator if the sequence of approximation numbers $\left(a_{n}(T)\right)$ belongs to $|A, p|$ space, $0<p \leq \infty$. Let $A=\left(a_{n k}\right)$ be a fixed matrix satisfying the condition:

$$
\begin{equation*}
\left|a_{n, 2 k-1}\right|+\left|a_{n, 2 k}\right| \leq M\left|a_{n k}\right| \quad \text { for each } k \text { and } n, \tag{1.1}
\end{equation*}
$$

where M is a constant independent of n and k. Rhoades has shown that for $0<p \leq \infty$ and for each fixed matrix A satisfying the condition (1.1), the set of $A-p$ type operators forms a linear space. Recently, authors [7 have studied some results in the scalar-valued case.

Motivated with the above works, we have studied the $A-p$ type operators in vector-valued case. In fact, this paper deals with the study of a generalized class of operators using the sequence of s-numbers in vector-valued case. We have also shown that each component of the class $\mathscr{A}_{\text {vec }}^{(s)}-p$ of vector-valued s-type $\left|A, p, \prod X_{k}\right|$ operators is a complete linear space under certain conditions on the matrix A. Some inclusion relations are also obtained for these spaces.

2 Preliminaries

Throughout this paper we denote E, F as the real or complex Banach spaces and $\mathscr{L}(E, F)$ as the space of all bounded linear operators from E to F. Let \mathscr{L}
be the class of all bounded linear operators between arbitrary Banach spaces. We denote \mathbb{N} as the set of all natural numbers and \mathbb{R} as the set of all real numbers.

We now state few results and definitions in scalar case which will be used in the sequel.

Definition 2.1 ([8]). A finite rank operator is a bounded linear operator whose dimension of the range space is finite.

Definition 2.2 (8 , 9). A non-negative scalar sequence $\left(s_{n}(T)\right)_{n}$, where $s=$ $\left(s_{n}\right): \mathscr{L} \rightarrow \mathbb{R}^{\mathbb{N}}$ assigning to every operator $T \in \mathscr{L}$, is called an s-number sequence if the following conditions are satisfied:
(S1) monotonicity: $\|T\|=s_{1}(T) \geq s_{2}(T) \geq \cdots \geq 0, \quad$ for $T \in \mathscr{L}(E, F)$
(S2) additivity: $s_{m+n-1}(S+T) \leq s_{m}(S)+s_{n}(T), \quad$ for $S, T \in \mathscr{L}(E, F), m, n \in \mathbb{N}$
(S3) ideal property: $s_{n}(R S T) \leq\|R\| s_{n}(S)\|T\|, \quad$ for some $R \in \mathscr{L}\left(F, F_{0}\right), S \in$ $\mathscr{L}(E, F)$ and $T \in \mathscr{L}\left(E_{0}, E\right)$, where E_{0}, F_{0} are arbitrary Banach spaces
(S4) rank property: If $\operatorname{rank}(T) \leq n$ then $s_{n}(T)=0$
(S5) norming property: $s_{n}\left(I: l_{2}^{n} \rightarrow l_{2}^{n}\right)=1$, where I denotes the identity operator on the n-dimensional Hilbert space l_{2}^{n}.

The n-th s-number of the operator T is denoted by $s_{n}(T)$. Various results on s-number sequence can be viewed in (1], 10, [11, [12]). It can be easily shown that the following numbers are s-number sequence. Let $T \in \mathscr{L}(E, F)$ and $n \in \mathbb{N}$.

1. The n-th approximation number, denoted by $a_{n}(T)$, is defined as

$$
a_{n}(T)=\inf \{\|T-L\|: \quad L \in \mathscr{L}(E, F), \operatorname{rank}(\mathrm{L})<\mathrm{n}\} .
$$

2. The n-th Gel'fand number, denoted by $c_{n}(T)$, is defined as

$$
c_{n}(T)=\inf \left\{\left\|T J_{M}\right\|: \quad M \subset E, \operatorname{codim}(\mathrm{M})<\mathrm{n}\right\}
$$

where $J_{M}: M \rightarrow E$ be the natural embedding from subspace M of E into E.
3. The n-th Kolmogorov number, denoted by $d_{n}(T)$, is defined as

$$
d_{n}(T)=\inf \left\{\left\|Q_{N}(T)\right\|: \quad N \subset F, \operatorname{dim}(\mathrm{~N})<\mathrm{n}\right\}
$$

where $Q_{N}: E \rightarrow E / N$ be the quotient map from E onto E / N.
4. The n-th Weyl number, denoted by $x_{n}(T)$, is defined as

$$
x_{n}(T)=\inf \left\{a_{n}(T A):\left\|A: l_{2} \rightarrow E\right\| \leq 1\right\}
$$

where $a_{n}(T A)$ is an n-th approximation number of the operator $T A$.
5. The n-th Chang number, denoted by $y_{n}(T)$, is defined as

$$
y_{n}(T)=\inf \left\{a_{n}(B T):\left\|B: F \rightarrow l_{2}\right\| \leq 1\right\}
$$

where $a_{n}(B T)$ is an n-th approximation number of the operator $B T$.
6. The n-th Hilbert number, denoted by $h_{n}(T)$, is defined as

$$
h_{n}(T)=\sup \left\{a_{n}(B T A):\left\|B: F \rightarrow l_{2}\right\| \leq 1,\left\|A: l_{2} \rightarrow E\right\| \leq 1\right\}
$$

Remark 2.3 (8). Among all the s-number sequences defined above, it is easy to verify that the approximation number, $a_{n}(T)$ is the largest and the Hilbert number, $h_{n}(T)$ is the smallest s-number sequence i.e., $h_{n}(T) \leq s_{n}(T) \leq a_{n}(T)$ for any bounded linear operator T. If T is defined on a Hilbert space then all the s numbers coincide with the singular values of T i.e., the eigenvalues of $|T|$, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$.

Proposition 2.4 (8, p.115). Let $T \in \mathscr{L}(E, F)$. Then

$$
h_{n}(T) \leq x_{n}(T) \leq c_{n}(T) \leq a_{n}(T) \quad \text { and } \quad h_{n}(T) \leq y_{n}(T) \leq d_{n}(T) \leq a_{n}(T)
$$

Definition 2.5 ([8], p.81). An s-number sequence is called multiplicative if

$$
s_{m+n-1}(S T) \leq s_{m}(S) s_{n}(T)
$$

for $T \in \mathscr{L}(E, F), S \in \mathscr{L}\left(F, F_{0}\right)$ and $m, n \in \mathbb{N}$.
Lemma 2.6 ([2]). Let $S, T \in \mathscr{L}(E, F)$, then $\left|s_{n}(T)-s_{n}(S)\right| \leq\|T-S\|$ for $n=1,2, \cdots$.

Lemma 2.7 ($\left[8\right.$, p. 107). Let $s=\left(s_{n}\right)$ be any s-number sequence and $D_{\left(\tau_{n}\right)}$ be any diagonal operator from the sequence space l_{2} to itself with $\tau_{1} \geq \tau_{2} \geq \ldots \geq 0$. Then $s_{n}\left(D_{\left(\tau_{n}\right)}: l_{2} \rightarrow l_{2}\right)=\tau_{n}$ for all n.

3 Vector-Valued S-Type $\left|A, p, \prod X_{k}\right|$ Operators

Let $\left(E_{k},\|\cdot\|_{E_{k}}\right)$ be a sequence of Banach spaces. It is easy to show that $\prod_{k=1}^{\infty} E_{k}$ is a Banach space with respect to the norm $\|\cdot\|_{p}$ for $1 \leq p \leq \infty$, where

$$
\begin{aligned}
\|x\|_{p}=\left(\sum_{k=1}^{\infty}\left\|x_{k}\right\|_{E_{k}}^{p}\right)^{\frac{1}{p}} & \text { for } 1 \leq p<\infty \\
\|x\|_{\infty}=\sup _{k \geq 1}\left\|x_{k}\right\|_{E_{k}} & \text { for } p=\infty
\end{aligned}
$$

Throughout the paper we shall write $\prod E_{k}$ instead of $\prod_{k=1}^{\infty} E_{k}$.
Let $\left(F_{k},\|\cdot\|_{F_{k}}\right)$ be another sequence of Banach spaces. A linear operator T : $\prod E_{k} \rightarrow \prod F_{k}$ is defined by

$$
T(x)=T\left(\left(x_{1}, x_{2}, \cdots, x_{k}, \cdots\right)\right)=\left(T_{1} x_{1}, T_{2} x_{2}, \cdots, T_{k} x_{k}, \cdots\right)
$$

where $k \in \mathbb{N}, x=\left(x_{k}\right) \in \prod X_{k}$ and $T_{k} \in \mathscr{L}\left(E_{k}, F_{k}\right)$. It can be shown that T is a bounded linear operator if and only if $\sup _{k \geq 1}\left\|T_{k}\right\|<\infty$ and the norm $\|T\|=\sup _{k \geq 1}\left\|T_{k}\right\|$.

Let $0<p \leq \infty$ and $\left(X_{k},\|\cdot\|_{X_{k}}\right)$ be a sequence of Banach spaces. For a fixed matrix $A=\left(a_{n k}\right)$, we define vector-valued $A-p$ space, denoted by $\left|A, p, \Pi X_{k}\right|$ as
$\left|A, p, \prod X_{k}\right|= \begin{cases}x=\left(x_{k}\right) \in \prod X_{k} & :\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty}\left|a_{n k}\right|\left\|x_{k}\right\|_{X_{k}}\right)^{p}\right)^{\frac{1}{p}}<\infty, 0<p<\infty \\ x=\left(x_{k}\right) \in \prod X_{k} & : \sup _{n \geq 1}\left(\sum_{k=1}^{\infty}\left|a_{n k}\right|\left\|x_{k}\right\|_{X_{k}}\right)<\infty, \quad p=\infty .\end{cases}$

Particular examples:

There are many examples of vector-valued $A-p$ space with the particular choice of the matrix A, e.g.,

1. Choose A as an identity matrix and $1 \leq p<\infty$ and $X_{k}=X$, a Banach space for all k, then the space $\left|A, p, \prod X_{k}\right|$ reduces to $l_{p}(X)$ (see, [13], p. 33), where $l_{p}(X)$ is the set of all X-valued sequences $x=\left(x_{k}\right)$ such that $\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{\frac{1}{p}}<\infty$.
2. Choose A as a Cesàro matrix of order 1 and $X_{k}=X$, a Banach space for all k. Then the space $\left|A, p, \prod X_{k}\right|, 1<p<\infty$ becomes X-valued Cesàor sequence space $\operatorname{Ces}_{p}(X)$ (see [14), where $\operatorname{Ces}_{p}(X)$ is the set of all X-valued sequences $x=\left(x_{k}\right)$ such that $\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{n}\right\|\right)^{p}\right)^{\frac{1}{p}}<\infty$.

If an operator $T \in \mathscr{L}\left(\prod E_{k}, \prod F_{k}\right)$ satisfying the conditions

$$
\left.\begin{array}{lc}
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}<\infty, & 0<p<\infty \tag{3.1}\\
\sup _{k \geq 1} \sup _{n \geq 1}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)<\infty, & p=\infty
\end{array}\right\}
$$

then we call T as a vector-valued s-type $\left|A, p, \prod X_{k}\right|$ operator. In particular if A is a Cesàro matrix of order 1 , then (3.1) reduces to

$$
\left.\begin{array}{lc}
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{l=1}^{n} s_{l}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}<\infty, & 0<p<\infty \tag{3.2}\\
\sup _{k \geq 1} \sup _{n \geq 1}\left(\frac{1}{n} \sum_{l=1}^{n} s_{l}\left(T_{k}\right)\right)<\infty, & p=\infty
\end{array}\right\}
$$

For $A=I$, an identity matrix, then (3.1) reduces to

$$
\left.\begin{array}{lc}
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}<\infty, & 0<p<\infty \tag{3.3}\\
\sup _{k \geq 1} \sup _{n \geq 1}\left(s_{n}\left(T_{k}\right)\right)<\infty, & p=\infty
\end{array}\right\}
$$

We shall call an operator $T \in \mathscr{L}\left(\prod E_{k}, \Pi F_{k}\right)$ as a vector-valued s-type ces $_{p}$ operator and vector-valued s-type l_{p} operator if the conditions (3.2) and (3.3) hold respectively.

Particular examples:

Here we shall give some vector-valued s-type operators.

1. For $A=I$, an infinite identity matrix and choose a particular vector-valued $A-p$ space $l_{p}\left(l_{p}\right)$. Let $T: l_{p}\left(l_{p}\right) \rightarrow l_{p}\left(l_{p}\right)$, where $T=\left(T_{k}\right)_{k \geq 1}$ and $T_{k}: l_{p} \rightarrow l_{p}$ for all k such that for some $n_{0} \in \mathbb{N}$ all T_{k} are finite rank operator for $1 \leq k \leq n_{0}$ and for $k>n_{0}, T_{k}$ are zero operator, i.e., $T_{k} u=0$ for all $u \in l_{p}$. Then by the property of s-number (see, Definition 2.2, (S4)), there exists some $n_{1} \in \mathbb{N}$ such that $s_{n}\left(T_{k}\right)=0$ for all $n>n_{1}, 1 \leq k \leq n_{0}$ and $s_{n}\left(T_{k}\right)=0$ for all $k>n_{0}$ and for all n. Thus $\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}=\sup _{1 \leq k \leq n_{0}}\left(\sum_{n=1}^{n_{1}}\left(s_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}<\infty$. Hence $T=\left(T_{k}\right)_{k \geq 1}$ is a vector-valued s-type operators.
2. Consider $T: l_{p}\left(l_{2}\right) \rightarrow l_{p}\left(l_{2}\right)$ for $1 \leq p<\infty$, where $T=\left(T_{k}\right)_{k \geq 1}$ and each $T_{k}: l_{2} \rightarrow l_{2}$ is a diagonal operator is defined as $T_{k}(y)=\left(y_{1}, \frac{1}{2} y_{2}, \frac{1}{3} y_{3}, \ldots\right)$ for $y=$ $\left(y_{n}\right) \in l_{p}$ for all $k \geq 1$. Then each $T_{k} \in \mathscr{L}\left(l_{2}, l_{2}\right)$ and $\left\|T_{k}\right\|=1$ for all k. Therefore $T \in \mathscr{L}\left(l_{p}\left(l_{2}\right), l_{p}\left(l_{2}\right)\right)$. Also by using Lemma 2.7, we have $s_{n}\left(T_{k}: l_{2} \rightarrow l_{2}\right)=\frac{1}{n}$ for all k. Thus $\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}=\sup _{k \geq 1}\left(\sum_{n=1}^{\infty} \frac{1}{n^{p}}\right)^{\frac{1}{p}}<\infty$. Hence $T=\left(T_{k}\right)_{k \geq 1}$ is a vector-valued s-type operator.

We denote the set of all vector-valued s-type $\left|A, p, \prod X_{k}\right|$ operators between any two arbitrary countably infinite product of Banach spaces by $\mathscr{A}_{v e c}^{(s)}-p$ and the set of all vector-valued s-type $\left|A, p, \Pi X_{k}\right|$ operators from $\prod E_{k}$ to $\prod F_{k}$ by $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ for $0<p \leq \infty$. We say $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ is a component of the class $\mathscr{A}_{\text {vec }}^{(s)}-p$. To study the class $\mathscr{A}_{\text {vec }}^{(s)}-p$, we will actually study each component of this class.

Proposition 3.1. Let $A=\left(a_{n k}\right)$ be an infinite matrix, where $a_{n k}=0$ for $k>n$ and satisfies $\sum_{k=1}^{n}\left|a_{n k}\right| \geq \lambda>0$ for all n. If $T=\left(T_{k}\right)_{k \geq 1}$ is a vector-valued s-type $\left|A, p, \prod X_{k}\right|$ operator, then T is a vector-valued s-type l_{p} operator for $0<p \leq \infty$.

Proof. Let $0<p<\infty$ and $T=\left(T_{k}\right)_{k \geq 1}$ be a vector-valued s-type $\left|A, p, \Pi X_{k}\right|$
operator. Consider

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\sum_{l=1}^{n}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p} & \geq \sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right) \sum_{l=1}^{n}\left|a_{n l}\right|\right)^{p} \\
& \geq \lambda^{p} \sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right)\right)^{p}
\end{aligned}
$$

which gives

$$
\lambda\left(\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right) \leq \sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{n}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}<\infty
$$

Thus T is a vector-valued s-type l_{p} operator.
Similarly for $p=\infty$, it can be shown easily. Hence the proof is complete.
Theorem 3.2. Let $0<p \leq \infty$. For fixed infinite matrix $A=\left(a_{n k}\right)$ satisfying (1.1), each component of the class $\mathscr{A}_{\text {vec }}^{(s)}-p$ is a linear space.

Proof. Let $0<p<\infty$. Let $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ be any one of the component of the class $\mathscr{A}_{\text {vec }}^{(s)}-p$. Let $S, T \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$. Consider

$$
\begin{align*}
\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}+S_{k}\right)\right| & =\sum_{l=1}^{\infty}\left|a_{n, 2 l-1} s_{2 l-1}\left(T_{k}+S_{k}\right)\right|+\sum_{l=1}^{\infty}\left|a_{n, 2 l} s_{2 l}\left(T_{k}+S_{k}\right)\right| \\
& \leq \sum_{l=1}^{\infty}\left(\left|a_{n, 2 l-1}\right|+\left|a_{n, 2 l}\right|\right) s_{2 l-1}\left(T_{k}+S_{k}\right) \\
& \leq M\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)+\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right) \tag{3.4}
\end{align*}
$$

Case I: $0<p<1$.
For $0<p<1$ and $a, b>0,(a+b)^{p} \leq\left(a^{p}+b^{p}\right),(a+b)^{\frac{1}{p}} \leq C\left(a^{\frac{1}{p}}+b^{\frac{1}{p}}\right)$, where $C \geq 1$ is a constant. So, from (3.4) we have

$$
\begin{aligned}
\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}+S_{k}\right)\right)^{p}\right)^{\frac{1}{p}} \leq & M\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)+\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right)^{p}\right)^{\frac{1}{p}} \\
\leq & C M\left[\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right. \\
& \left.+\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right]
\end{aligned}
$$

where $C \geq 1$ is a constant. Therefore,

$$
\begin{aligned}
& \sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}+S_{k}\right)\right)^{p}\right)^{\frac{1}{p}} \leq C M\left[\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right. \\
&\left.+\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right] \\
&<\infty
\end{aligned}
$$

Case II: $1 \leq p<\infty$.
Using Minkowski inequality for $1 \leq p<\infty$, we have from (3.4)

$$
\begin{aligned}
\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}+S_{k}\right)\right)^{p}\right)^{\frac{1}{p}} \leq & M\left[\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)+\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right)^{p}\right]^{\frac{1}{p}} \\
\leq & M\left[\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right. \\
& \left.+\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}+S_{k}\right)\right)^{p}\right)^{\frac{1}{p}} \leq & M\left[\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right. \\
& \left.+\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right] \\
< & \infty
\end{aligned}
$$

Thus $S+T \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$.
If $T \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ and λ be any scalar then it is easy to see that $\lambda T \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$. Hence $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ is a linear space. Similarly for $p=\infty$, it can be shown that $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-\infty$ is a linear space. This completes the proof.

Remark 3.3. The condition (1.1) on the matrix A is no longer necessary for the set of vector-valued s-type $\left|A, p, \Pi X_{k}\right|$ operators from ΠE_{k} to ΠF_{k} be a linear space. Justification is given as below.

Let $0<p<\infty$ and $A=\left(a_{n k}\right)$ be an infinite identity matrix. Clearly identity matrix does not satisfy the condition (1.1) but the triangle inequality can be proved as follows. Let $S=\left(S_{k}\right)_{k \geq 1}, T=\left(T_{k}\right)_{k \geq 1} \in \mathscr{L}\left(\prod E_{k}, \prod F_{k}\right)$ be any two vector-
valued s-type $\left|A, p, \Pi X_{k}\right|$ operators. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}+S_{k}\right)\right|\right)^{p} & =\sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}+S_{k}\right)\right)^{p} \\
& =\sum_{n=1}^{\infty}\left(s_{2 n-1}\left(T_{k}+S_{k}\right)\right)^{p}+\sum_{n=1}^{\infty}\left(s_{2 n}\left(T_{k}+S_{k}\right)\right)^{p} \\
& \leq 2 \sum_{n=1}^{\infty}\left(s_{2 n-1}\left(T_{k}+S_{k}\right)\right)^{p} \\
& \leq 2\left(\sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right)+s_{n}\left(S_{k}\right)\right)^{p}\right)
\end{aligned}
$$

Thus
$\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}+S_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}} \leq 2^{\frac{1}{p}} . C\left[\left(\sum_{n=1}^{\infty}\left(s_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=1}^{\infty}\left(s_{n}\left(S_{k}\right)\right)^{p}\right)^{\frac{1}{p}}\right]$,
where $C \geq 1$ is a constant. Therefore,

$$
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}+S_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}}<\infty
$$

Hence $S+T$ belongs to the set of vector-valued s-type $\left|A, p, \prod X_{k}\right|$ operators from $\prod E_{k}$ to $\prod F_{k}$. Clearly λT belongs to the set of vector-valued s-type $\left|A, p, \prod X_{k}\right|$ operators, where λ be any scalar. Thus the condition (1.1) on the matrix $A=\left(a_{n k}\right)$ is not necessary to form a linear space.

Proposition 3.4. For $1 \leq p<q \leq \infty$, we have $\mathscr{A}_{\text {vec }}^{(s)}-p \subseteq \mathscr{A}_{\text {vec }}^{(s)}-q$.
Proof. We omit the proof as it is trivial.
Let $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ for $0<p<\infty$ be a linear space. Define $\bar{\beta}_{A, p}^{(s)}$: $\mathscr{A}_{\left(\prod E_{k} \rightarrow \prod F_{k}\right)}^{(s)}-p \rightarrow \mathbb{R} \quad$ as

$$
\bar{\beta}_{A, p}^{(s)}(T)=\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}}
$$

where $T=\left(T_{k}\right)_{k \geq 1} \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$. It can be shown that $\bar{\beta}_{A, p}^{(s)}$ is a quasi-norm on this linear space.

Remark 3.5. For $p=\infty$, we define $\bar{\beta}_{A, \infty}^{(s)}(T)=\sup _{k \geq 1} \sup _{n \geq 1}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right|\right)$

Theorem 3.6. Let $0<p<\infty$. For fixed nonzero matrix $A=\left(a_{n k}\right)$ satisfying the condition (1.1) and $\sum_{n=1}^{\infty}\left|a_{n 1}\right|^{p}<\infty$, each component of the class $\mathscr{A}_{v e c}^{(s)}-p$ is complete under the normalized quasi-norm $\hat{\bar{\beta}}_{A, p}^{(s)}$, where

$$
\hat{\bar{\beta}}_{A, p}^{(s)}(.)=\frac{\bar{\beta}_{A, p}^{(s)}(.)}{\left(\sum_{n=1}^{\infty}\left|a_{n 1}\right|^{p}\right)^{\frac{1}{p}}}
$$

Proof. Let $\mathscr{A}_{\left(\prod E_{k} \rightarrow \prod F_{k}\right)}^{(s)}-p$ be any one of the component of the class $\mathscr{A}_{\text {vec }}^{(s)}-p$ for $0<p<\infty$. We consider

$$
\begin{align*}
& \bar{\beta}_{A, p}^{(s)}(T)=\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}} \\
& \geq \sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\left|a_{n 1} s_{1}\left(T_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}} \\
&=\sup _{k \geq 1}\left\|T_{k}\right\|\left(\sum_{n=1}^{\infty}\left|a_{n 1}\right|^{p}\right)^{\frac{1}{p}} \\
& \Rightarrow\|T\| \leq \hat{\bar{\beta}}_{A, p}^{(s)}(T) \quad \text { for } T \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p \tag{3.5}
\end{align*}
$$

Let $\left(T^{m}\right)$ be a Cauchy sequence in $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$. Then for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\hat{\bar{\beta}}_{A, p}^{(s)}\left(T^{m}-T^{r}\right)<\epsilon, \quad \forall m, r \geq N \tag{3.6}
\end{equation*}
$$

Now from (3.5), we have

$$
\left\|T^{m}-T^{r}\right\| \leq \hat{\bar{\beta}}_{A, p}^{(s)}\left(T^{m}-T^{r}\right)
$$

Using (3.6), we get

$$
\left\|T^{m}-T^{r}\right\| \leq \hat{\bar{\beta}}_{A, p}^{(s)}\left(T^{m}-T^{r}\right)<\epsilon \quad \forall m, r \geq N
$$

Hence $\left(T^{m}\right)$ is a Cauchy sequence in $\mathscr{L}\left(\prod E_{k}, \prod F_{k}\right)$. Since each F_{k} is a Banach space, $\mathscr{L}\left(\prod E_{k}, \Pi F_{k}\right)$ is also a Banach space. Therefore $T^{m} \rightarrow T$ as $m \rightarrow \infty$ in $\mathscr{L}\left(\prod E_{k}, \prod F_{k}\right)$. We shall now show that $T^{m} \rightarrow T$ as $m \rightarrow \infty$ in $\mathscr{A}_{\left(\prod E_{k} \rightarrow \prod F_{k}\right)}^{(s)}-p$. Using Lemma 2.6, we have for each $k \in \mathbb{N}$

$$
\left|s_{n}\left(T_{k}^{r}-T_{k}^{m}\right)-s_{n}\left(T_{k}-T_{k}^{m}\right)\right| \leq\left\|T_{k}^{r}-T_{k}\right\|
$$

Letting $r \rightarrow \infty$,

$$
\begin{equation*}
s_{n}\left(T_{k}^{r}-T_{k}^{m}\right) \rightarrow s_{n}\left(T_{k}-T_{k}^{m}\right) \tag{3.7}
\end{equation*}
$$

From (3.6), we get

$$
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}^{r}-T_{k}^{m}\right)\right|\right)^{p}\right)^{\frac{1}{p}}<\epsilon\left(\sum_{n=1}^{\infty}\left|a_{n 1}\right|^{p}\right)^{\frac{1}{p}}, \quad \forall m, r \geq N
$$

Using (3.7), it can be shown that as $r \rightarrow \infty$ (keeping $m \geq N$ fixed)

$$
\begin{aligned}
& \sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}-T_{k}^{m}\right)\right|\right)^{p}\right)^{\frac{1}{p}} \leq \epsilon\left(\sum_{n=1}^{\infty}\left|a_{n 1}\right|^{p}\right)^{\frac{1}{p}} \\
& \quad \Rightarrow \overline{\hat{\beta}}_{A, p}^{(s)}\left(T-T^{m}\right) \leq \epsilon \quad \forall m \geq N
\end{aligned}
$$

This implies that $T^{m} \rightarrow T$ under the quasi-norm $\hat{\bar{\beta}}_{A, p}^{(s)}$.
Next we show that $T \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$. Consider

$$
\begin{aligned}
\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right| & =\sum_{l=1}^{\infty}\left|a_{n, 2 l-1} s_{2 l-1}\left(T_{k}\right)\right|+\sum_{l=1}^{\infty}\left|a_{n, 2 l} s_{2 l}\left(T_{k}\right)\right| \\
& \leq \sum_{l=1}^{\infty}\left(\left|a_{n, 2 l-1}\right|+\left|a_{n, 2 l}\right|\right) s_{2 l-1}\left(T_{k}\right)
\end{aligned}
$$

since $0 \leq s_{n+1}\left(T_{k}\right) \leq s_{n}\left(T_{k}\right)$ for all n. Using the inequality (1.1), we have

$$
\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right| \leq M\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}-T_{k}^{m}\right)+\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}^{m}\right)\right)
$$

Therefore

$$
\begin{aligned}
\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}} \leq C \cdot M & {\left[\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}-T_{k}^{m}\right)\right|\right)^{p}\right)^{\frac{1}{p}}\right.} \\
+ & \left.\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}^{m}\right)\right|\right)^{p}\right)^{\frac{1}{p}}\right]
\end{aligned}
$$

where $C \geq 1$ is a constant. Thus

$$
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}}<\infty
$$

which follows from the fact that $\hat{\bar{\beta}}_{A, p}^{(s)}\left(T-T^{m}\right) \rightarrow 0 \quad$ as $m \rightarrow \infty$ and $\left(T^{m}\right) \in$ $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$. Hence $T \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$. This completes the proof.
Corollary 3.7. Let $A=\left(a_{n k}\right)$ be a nonzero infinite matrix satisfying the condition (1.1) and $\sup _{n \geq 1}\left|a_{n 1}\right|<\infty$, then each component of the class $\mathscr{A}_{\text {vec }}^{(s)}-\infty$ is complete
under the normalized quasi-norm $\hat{\bar{\beta}}_{A, \infty}^{(s)}$, where

$$
\hat{\bar{\beta}}_{A, \infty}^{(s)}(.)=\frac{\bar{\beta}_{A, \infty}^{(s)}(.)}{\sup _{n \geq 1}\left|a_{n 1}\right|}
$$

Proposition 3.8. If $R \in \mathscr{L}\left(\prod F_{k}, \Pi H_{k}\right)$ and $S \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}$ - p, then $R S \in$ $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi H_{k}\right)}^{(s)}-p$ and $\hat{\bar{\beta}}_{A, p}^{(s)}(R S) \leq\|R\| \hat{\bar{\beta}}_{A, p}^{(s)}(S)$. Also if $T \in \mathscr{L}\left(\prod G_{k}, \prod E_{k}\right)$ and $S \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$, then $S T \in \mathscr{A}_{\left(\prod G_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ and $\hat{\bar{\beta}}_{A, p}^{(s)}(S T) \leq\|T\| \hat{\bar{\beta}}_{A, p}^{(s)}(S)$.
Proof. We omit the proof.
Next we derive some inclusion relations.
Theorem 3.9. Let $0<p \leq \infty$. Then
(I) $\mathscr{A}_{\text {vec }}^{(a)}-p \subseteq \mathscr{A}_{\text {vec }}^{(c)}-p \subseteq \mathscr{A}_{\text {vec }}^{(x)}-p \subseteq \mathscr{A}_{\text {vec }}^{(h)}-p \quad$ and
(II) $\mathscr{A}_{\text {vec }}^{(a)}-p \subseteq \mathscr{A}_{\text {vec }}^{(d)}-p \subseteq \mathscr{A}_{\text {vec }}^{(y)}-p \subseteq \mathscr{A}_{\text {vec }}^{(h)}-p$.

Proof. Let $0<p<\infty$. Suppose that $T=\left(T_{k}\right)_{k \geq 1}$ belongs to any one of the component of the class $\mathscr{A}_{\text {vec }}^{(a)}-p$. Then

$$
\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} a_{l}\left(T_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}}<\infty
$$

Using Proposition 2.4, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} h_{l}\left(T_{k}\right)\right|\right)^{p} \leq \sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} x_{l}\left(T_{k}\right)\right|\right)^{p} & \leq \sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} c_{l}\left(T_{k}\right)\right|\right)^{p} \\
& \leq \sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} a_{l}\left(T_{k}\right)\right|\right)^{p}
\end{aligned}
$$

Hence the proof of (I) follows for $0<p<\infty$. It is trivial to check for $p=\infty$. We omit the proof of $(I I)$ as it is similar to the previous one.

There are some converse estimates among s-number sequences as given below.
Lemma 3.10 ([15), p.165). Let $T \in \mathscr{L}(E, F)$. Then $a_{n}(T) \leq 2 n^{\frac{1}{2}} c_{n}(T)$ and $a_{n}(T) \leq 2 n^{\frac{1}{2}} d_{n}(T)$.

We now define the class $\mathscr{L}_{\text {vec }}^{(s)}-(r, p)$ of vector-valued s-type $l_{r, p}$ operators as follows:

$$
\mathscr{L}_{v e c}^{(s)}-(r, p)=\left\{T=\left(T_{k}\right)_{k \geq 1} \in \mathscr{L}: \sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(n^{\frac{1}{r}-\frac{1}{p}} s_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}<\infty\right\}
$$

for $0<r, p<\infty$.

Theorem 3.11. Let $0<r, p<\infty$ and $A=\left(a_{n l}\right)$ be a diagonal matrix, where

$$
a_{n l}=\left\{\begin{array}{lll}
n^{\frac{1}{r}-\frac{1}{p}-\frac{1}{2}} & : l=n \\
0 & : & l \neq n .
\end{array}\right.
$$

If a bounded linear operator T belongs to $\mathscr{L}_{\left(\prod E_{k} \rightarrow \prod F_{k}\right)}^{(c)}-(r, p)$, then T belongs to $\mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(a)}-p$.

Proof. For $0<p<\infty$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} a_{l}\left(T_{k}\right)\right|\right)^{p} & =\sum_{n=1}^{\infty}\left(n^{\frac{1}{r}-\frac{1}{p}-\frac{1}{2}} a_{n}\left(T_{k}\right)\right)^{p} \\
& \leq \sum_{n=1}^{\infty}\left(n^{\frac{1}{r}-\frac{1}{p}-\frac{1}{2}} \cdot 2 n^{\frac{1}{2}} c_{n}\left(T_{k}\right)\right)^{p} \quad(\text { Using Lemma 3.10.) } \\
& =2^{p} \sum_{n=1}^{\infty}\left(n^{\frac{1}{r}-\frac{1}{p}} c_{n}\left(T_{k}\right)\right)^{p}
\end{aligned}
$$

Thus $\sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} a_{l}\left(T_{k}\right)\right|\right)^{p}\right)^{\frac{1}{p}} \leq 2 \sup _{k \geq 1}\left(\sum_{n=1}^{\infty}\left(n^{\frac{1}{r}-\frac{1}{p}} c_{n}\left(T_{k}\right)\right)^{p}\right)^{\frac{1}{p}}<\infty$.
Hence the result follows.
Theorem 3.12. Let $0<r, p<\infty$ and $A=\left(a_{n l}\right)$ be a diagonal matrix, where

$$
a_{n l}=\left\{\begin{array}{lll}
n^{\frac{1}{r}-\frac{1}{p}-\frac{1}{2}} & : & l=n \\
0 & : & l \neq n
\end{array}\right.
$$

If a bounded linear operator T belongs to $\mathscr{L}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(d)}-(r, p)$, then T belongs to $\mathscr{A}_{\left(\prod E_{k} \rightarrow П F_{k}\right)}^{(a)}-p$.

Proof. The proof is similar to the preceding Theorem 3.11.
Theorem 3.13. If $T=\left(T_{k}\right) \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi F_{k}\right)}^{(s)}-p$ and $S=\left(S_{k}\right) \in \mathscr{A}_{\left(\prod F_{k} \rightarrow \Pi H_{k}\right)}^{(s)}-$ q, then $S T=\left(S_{k} T_{k}\right)_{k \geq 1} \in \mathscr{A}_{\left(\prod E_{k} \rightarrow \Pi H_{k}\right)}^{(s)}-r$, where

$$
\frac{1}{r}=\frac{1}{p}+\frac{1}{q}
$$

Proof. Here we use the generalized Hölder inequality, i.e., if $x \in l_{p}$ and $y \in l_{q}$ then

$$
\left\{\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right|^{r}\right\}^{\frac{1}{r}} \leq\left\{\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left|y_{n}\right|^{q}\right\}^{\frac{1}{q}}
$$

Now we have

$$
\begin{aligned}
\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(S_{k} T_{k}\right)\right| & \leq \sum_{l=1}^{\infty}\left(\left|a_{n, 2 l-1}\right|+\left|a_{n, 2 l}\right|\right) s_{2 l-1}\left(S_{k} T_{k}\right) \\
& \leq M \sum_{l=1}^{\infty}\left|a_{n l}\right| s_{2 l-1}\left(S_{k} T_{k}\right) \\
& \leq M \sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right) s_{l}\left(T_{k}\right) \quad \text { (Using Definition [2.5). }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\{\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(S_{k} T_{k}\right)\right|\right)^{r}\right\}^{\frac{1}{r}} \leq M\left\{\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right) s_{l}\left(T_{k}\right)\right)^{r}\right\}^{\frac{1}{r}} \\
& \leq M\left\{\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(T_{k}\right)\right)^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l}\right| s_{l}\left(S_{k}\right)\right)^{q}\right\}^{\frac{1}{q}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sup _{k \geq 1}\left\{\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(S_{k} T_{k}\right)\right|\right)^{r}\right\}^{\frac{1}{r}} \\
& \quad \leq M \sup _{k \geq 1}\left\{\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(T_{k}\right)\right|\right)^{p}\right\}^{\frac{1}{p}} \sup _{k \geq 1}\left\{\sum_{n=1}^{\infty}\left(\sum_{l=1}^{\infty}\left|a_{n l} s_{l}\left(S_{k}\right)\right|\right)^{q}\right\}^{\frac{1}{q}}<\infty .
\end{aligned}
$$

This completes the proof.

Acknowledgement : The authors are thankful to the referee for his/her careful reading and making some valuable comments which improved the presentation of the paper.

References

[1] A. Pietsch, Einige neue klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. (Bucarest) 8 (1963) 427-447.
[2] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. 51 (1974) 201-223.
[3] B.E. Rhoades, Operators of $A-p$ type, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (3-4) (1975) 238-241.
[4] B.E. Rhoades, Some sequence spaces which include the l^{p} spaces, Tamkang J. Math. 10 (2) (1979) 263-267.
[5] J.S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math. 1 (1) (1970) 19-25.
[6] Gh. Constantin, operators of ces $-p$ type, Rend. Acc. Naz. Lincei. 52 (8) (1972) 875-878.
[7] A. Maji, P.D. Srivastava, Some results of operator ideals on s-type $|A, p|$ operators, Tamkang J. Math. 45 (2) (2014) 119-136.
[8] A. Pietsch, Eigenvalues and s-Numbers, Cambridge University Press, New York, NY, USA, 1986.
[9] B. Carl, A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull. Lond. Math. Soc. 41 (2) (2009) 332-340.
[10] B. Carl, On s-numbers, quasi s-numbers, s-moduli and Weyl inequalities of operators in Banach spaces, Rev. Mat. Complut. 23 (2) (2010) 467-487.
[11] M. Gupta, L.R. Acharya, Approximation numbers of matrix transformations and inclusion maps, Tamkang J. Math. 42 (2) (2011) 193-203.
[12] Z.M. Abd El-Kader, s-numbers of shift operators on decomposable Banach spaces, J. Egyptian Math. Soc. 13 (1) (2005) 1-6.
[13] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995.
[14] C. Sudsukh, P. Pantaragphong, O. Arunphalungsanti, Matrix transformations on Cesàro vector-valued sequence space, Kyungpook Math. J. 44 (2) (2004) 157-166.
[15] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
(Received 3 May 2013)
(Accepted 15 June 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

