Thai Journal of Mathematics Volume 15 (2017) Number 2 : 297–321

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Upper Bound for the Crossing Number of $Q_n \times K_3$

Aroonwan Suebsriwichai and Thanasak Mouktonglang¹

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : aroonwanamth85@gmail.com (A. Suebsriwichai) thanasak@chiangmai.ac.th (T. Mouktonglang)

Abstract: In this paper, we describe a method of finding the upper bound for the crossing Number of $Q_n \times K_3$. We construct a drawing of $Q_n \times K_3$, called a 3-axes drawing of $Q_n \times K_3$. A 3-axes drawing of $Q_n \times K_3$ is a representation of $Q_n \times K_3$ on the plane such that its vertices are placed on 3 straight lines L_i where i = 1, 2, 3 with a fixed vertex ordering.

Keywords : graph; hypercube; crossing number; drawing. 2010 Mathematics Subject Classification : 68R10; 05C62.

1 Introduction

Let G be a simple connected graph with a vertex set $V(G) = \{v_1, v_2, v_3, ..., v_n\}$ and an edge set $E(G) = \{e_1, e_2, e_3, ..., e_m\}$. The crossing number of a graph G, denoted cr(G), is the minimum number of pairwise intersections of edge crossing on a plane drawing of the graph G. Clearly, cr(G) = 0 if and only if G is planar. It is known that the exact crossing numbers of graphs are very difficult to compute. In 1973, Erdös and Guy [1] wrote, "Almost all questions that one can ask about crossing numbers remain unsolved". In fact, Garey and Johnson [2] proved that computing

Copyright 2017 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

the crossing number is NP-complete.

The n-cube or n-dimensional hypercube graph Q_n is defined recursively in terms of the cartesian products. The one dimension cube Q_1 is simply K_2 where K_2 is a complete graph with 2 vertices. For $n \ge 2$, Q_n is defined recursively as $Q_{n-1} \times K_2$. The order of Q_n is $|V(Q_n)| = 2^n$ and its size is $|E(Q_n)| = n2^{n-1}$.

Figure 1: n - cube graphs for n = 1, 2, 3, 4

In 1969, Harary [3] mentioned that there does not even exist a conjecture about the crossing number of the hypercube. In 1970, Eggleton and Guy [4] constructed a drawing of Q_n which implies that for $n \geq 3$,

$$cr(Q_n) \le \frac{5}{32}4^n - \lfloor \frac{n^2 + 1}{2} \rfloor 2^{n-2}.$$
 (1.1)

In 2008, Faria, Figueiredo, Sykora and Vrto [5] announced a drawing for which the number of crossings coincides with $\frac{5}{32}4^n - \lfloor \frac{n^2+1}{2} \rfloor 2^{n-2}$ which would imply the inequality above. Yuanshen Yang, Guoqing Wang, Haoli Wang and Yan Zhou [6] presented a new strategy to construct a drawing of Q_n with fewer crossings than the values conjecture by Eggleton and Guy [4], which implies that

$$cr(Q_n) \leq \frac{5}{32} 4^n - \lfloor \frac{n^2 + 1}{2} \rfloor 2^{n-2}.$$
 (1.2)

They prove the following upper bound for the crossing number of hypercube graph,

$$cr(Q_n) \leq \begin{cases} \frac{139}{896} 4^n - \lfloor \frac{n^2 + 1}{2} \rfloor 2^{n-2} + \frac{4}{7} \cdot 2^{3\lfloor \frac{n}{2} \rfloor - n}, & 5 \leq n \leq 10, \\ \frac{26695}{172032} 4^n - \lfloor \frac{n^2 + 1}{2} \rfloor 2^{n-2} - \frac{n^2 + 2}{3} \cdot 2^{n-2} + \frac{4}{7} \cdot 2^{3\lfloor \frac{n}{2} \rfloor - n}, & n \geq 11. \end{cases}$$

$$(1.3)$$

The graph $Q_n \times K_3$ is the cartesian product of Q_n and K_3 , where K_3 is a complete graph with 3 vertices and Q_n is an n-dimensional hypercube graph. The order of $Q_n \times K_3$ is $|V(Q_n \times K_3)| = 3 \cdot 2^n$ and its size is $|E(Q_n \times K_3)| = 3[2^n + n2^{n-1}].$

Figure 2: $Q_n \times K_3$ graphs for n = 1, 2

As the graph $Q_n \times K_3$, it is formed by 3 copies of Q_n 's linked together with multiple edges. As shown in Figure 2, it can be observed that the calculation of crossing number of $Q_n \times K_3$ is quite complicated. We define the crossing number of a graph G to be the minimum number of crosses of a graph isomorphic to G. We have thusly invented another drawing of the graph $Q_n \times K_3$, also known as 3 - axes drawing of $Q_n \times K_3$, by taking the formula shown below into account,

$$Q_n \times K_3 = (Q_{n-1} \times K_2) \times K_3$$

= $(Q_{n-1} \times K_3) \times K_2.$ (1.4)

We notice that the graph $Q_n \times K_3$ is defined recursively as $(Q_{n-1} \times K_3) \times K_2$.

2 3 - Axes Drawing of $Q_n \times K_3$

A 3 – axes drawing of $Q_n \times K_3$ is a representation of $Q_n \times K_3$ on the plane such that its vertices are placed on 3 straight lines L_i where i = 1, 2, 3 with a fixed vertex ordering.

According to the formula (1.4), the graph $Q_n \times K_3$ is generated from the two copies of $Q_{n-1} \times K_3$ linked together with multiple edges. The next procedure of drawing is to embed one copy of the graph $Q_{n-1} \times K_3$ into the other with the condition that all edges must remain at the same position. Several examples of drawings are illustrated below in Figure 3 and 4.

Figure 3: $Q_2 \times K_3$ graph and $Q_2 \times K_3$ which is embedded

Figure 4: $Q_3 \times K_3$ and $Q_3 \times K_3$ which is embedded

We can observe that this drawing consists of multiple complete graphs (K_3) . Next, we construct the straight lines L_i where i = 1, 2, 3, also known as 3 - axes. We place L_i where i = 1, 2, 3 on the edge which connect all

corresponding vertices of K_3 . We see that there are some edges of $Q_n \times K_3$ overlapped on 3-axes. As for the edges on 3-axes, we redraw the edges need to be drawn in semicircle and never cross L_i . Notice that no edge crosses itself, no adjacent edges cross each other, no two edges cross more than once, and no three edges cross in a point. The 3-axes drawing of $Q_n \times K_3$ where n = 1, 2, 3 and their crossing numbers can be seen in Figure 5 and 6.

Figure 5: 3 - axes drawing of $Q_n \times K_3$ where n = 1, 2

Figure 6: 3 - axes drawing of $Q_3 \times K_3$

After the semicircles have been drawn, we can define this procedure of drawing as 3-axes drawing. We denote without loss of generality that Π_n

is a 3-axes drawing of $Q_n \times K_3$.

3 Construction of Π_n

In this section, we discuss a construction of Π_n . We notice that in the 3-axes drawing of $Q_n \times K_3$, the appearance of each axis is identical. This means that we can calculate the crossing number in a more simplistic fashion. That is, by considering from only one axis. First, we define Π_n as follow,

$$\Pi_n = \Delta_n \bigcup \Omega_n. \tag{3.1}$$

Given Δ_n is a perimeter graph which consists of 2^n complete graphs (K₃),

$$\Delta_n = 2^n K_3. \tag{3.2}$$

The vertex set of Δ_n is the same as the vertex set of Π_n and the edge set of Δ_n is a subset of Π_n , where $|V(\Delta_n)| = |E(\Delta_n)| = 3 \cdot 2^n$. In Π_n without the set of edges of Δ_n , we see that the graph Π_n remains the set of semicircle edges. Since the appearance of each *axis* is identical, we can only determine from *one axis*. We notice that it is a hypercube graph (Q_n) . Therefore we call Π_n without the set of edges of Δ_n as Ω_n and define as follow,

$$\Omega_n = 3Q_n. \tag{3.3}$$

The vertex set of Ω_n is the same as the vertex set of Π_n and the edge set of Ω_n is a subset of Π_n , where $|V(\Omega_n)| = 3 \cdot 2^n$ and $|E(\Omega_n)| = 3 \cdot n2^{n-1}$. We notice that the set of all vertices of Δ_n and Ω_n are the same as Π_n .

Figure 7: Δ_1 and Ω_1

Figure 9: Δ_3 and Ω_3

4 Construction of S_n^i

In this paper, we describe a method of finding the upper bound for the crossing number of $Q_n \times K_3$ by considering from Π_n 's drawing. It can be calculated from a cross of Δ_n and Ω_n edges and Ω_n edges crossing themselves. For the cross of Δ_n and Ω_n edges, even if we move the semicircle edges of Ω_n to either way, the number of crossing remains the same. But it is not true for the cross from Ω_n edges crossing themselves. For that, to find the upper bound for crossing number in Π_n , we mention on Ω_n edges crossing themselves.

Next, we introduce a construction of S_n^i for i = 1, 2, 3. Given S_n^i where i = 1, 2, 3 is a subgraph of Ω_n which is on the 3 - axes,

$$\Omega_n = S_n^1 \bigcup S_n^2 \bigcup S_n^3. \tag{4.1}$$

Figure 10: Ω_1 and Ω_2

Figure 11: Ω_3

Next, we explain a drawing on graph S_n^i . The vertices lie on i - axis and the edges have to be drawn as semicircles. We begin to explain the drawing of S_n^i by using the examples of S_3^i 's drawing.

Step 1. We start drawing S_1^i . S_1^i is a graph with 2 vertices and only one edge. First, we locate the vertices on the i - axis by fixed vertex ordering. Then the edge (semicircle) that connects between 2 vertices is drawn on the right side of i - axis.

Step 2. We draw S_2^i . S_2^i is a graph that consists of 2 copies of S_1^i . We put the second copy of S_1^i above the first one. The edges connecting the copies are on the left side of i - axis.

Step 3. Finally S_3^i 's drawing is similarly to Step 2. We locate the second copy of S_2^i above the first one but the edges connecting between 2 copies are on the right.

Figure 12: The construction of S_n^i for n = 1, 2, 3

Definition 4.1. A set of edges connecting of 2 copies of S_{n-1}^i is called graph Φ_n where n = 1, 2, 3, ... The order of Φ_n is $|V(\Phi_n)| = 2^n$ and its size is $|E(\Phi_n)| = 2^{n-1}$.

We define the edges connecting of 2 copies of S_{n-1}^i when n is odd as Φ_{2j-1} and the edges connecting of 2 copies of S_{n-1}^i when n is even as Φ_{2j} for j = 1, 2, ... In Figure 12, we observe that the edges connecting of 2 copies of S_1^i are located on the right and the edges connecting of 2 copies of S_2^i are located on the left. Also the edges connecting of 2 copies of S_3^i are located on the right. We conclude that Φ_{2j-1} edges have to be located on the opposite side of Φ_{2j} for j = 1, 2, ...

Definition 4.2. For the S_n^i 's drawing, the location of the edges of Φ_{2j-1} which locate on the opposite side of Φ_{2j} is called *correct side*, apart from that is called *wrong side*.

5 Good Drawing of Ω_n

In this section, we want to show that the construction of Ω_n is a drawing which the minimum number of a cross in Π_n . We called this drawing **Good Drawing of** Ω_n . Since $\Omega_n = S_n^1 \bigcup S_n^2 \bigcup S_n^3$ and S_n^1 , S_n^2 , and S_n^3 drawings are similar, a consideration of any part is optional. From Figure 12, S_1^i , S_2^i , S_3^i where i = 1, 2, 3 have no crossing number.

Since graph S_n^i is drawn from 2 copies of graph S_{n-1}^i linked together with graph Φ_n , that is

$$S_n^i = 2S_{n-1}^i \bigcup \Phi_n. \tag{5.1}$$

Next, we order the vertices of S_n^i where $|V(S_n^i)| = 2^n$ so as to prove that Ω_n drawing is good. We define the first copy of S_n^i as *lower of* S_n^i , while the other copy, so called *upper of* S_n^i denoted by $\mathbf{L}S_n^i$ and $\mathbf{U}S_n^i$ respectively. Then we place $\mathbf{L}S_n^i$ next to origin of i - axis and place $\mathbf{U}S_n^i$ next to $\mathbf{L}S_n^i$ copy to positive axis. For the plotting order, we start ordering from *lower of* S_n^i to *upper of* S_n^i that is

$$V(\mathbf{L}S_n^i) = \{v_0, v_1, ..., v_{2^{n-1}-1}\},$$

$$V(\mathbf{U}S_n^i) = \{v_{2^{n-1}}, v_{2^{n-1}+1}, ..., v_{2^n-1}\}.$$
(5.2)

For multiple edges, e_{ij} 's $\in \Phi_n$, which link between $\mathbf{L}S_n^i$ and $\mathbf{U}S_n^i$, they have to follow to the condition below,

$$i + j = 2^n - 1. (5.3)$$

Figure 13: Construction of S_4^i

It is noticable that in graph S_n^i is composed of graph Φ_j where j = 1, 2, 3, ..., n and number of Φ_j in S_n^i equals 2^{n-j} copies. This fact follows the fact that Φ_{2j-1} must be on the opposite side of Φ_{2j} .

Figure 14: S_4^i and S_5^i

Lemma 5.1. The graph S_{n-k}^i is a subgraph of S_n^i . In particular, there are 2^k copies of S_{n-k}^i , for k = 1, 2, 3, ..., n - 1.

Proof. From (5.1), graph S_n^i is made up of 2 copies of graph S_{n-1}^i , graph S_{n-1}^i is made up of 2 copies of graph S_{n-2}^i ,

graph S_{n-k+1}^i is made up of 2 copies of graph S_{n-k}^i .

Therefore, S_n^i graph contains S_{n-k}^i graph where k = 1, 2, 3, ..., n - 1, equaling number of $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^k$ copies.

Lemma 5.2. The graph Φ_j is a subgraph of S_n^i . In particular, there are 2^{n-j} copies of Φ_j for j = 1, 2, 3, ..., n.

Proof. From Lemma 5.1 and (5.1), graph S_n^i contains 2^k copies of S_{n-k}^i and S_{n-k}^i contains 1 of graph Φ_{n-k} . So S_n^i consists of Φ_{n-k} equal to number of S_{n-k}^i in S_n^i , that is 2^k . We let j = n - k so k = n - j, therefore graph S_n^i consists of Φ_j where j = 1, 2, 3, ..., n equaling number of 2^{n-j} copies.

Definition 5.1. For graph S_n^i , we define $\underline{pc}(\Phi_k, \Phi_l)$ as the number of potential crossing which is created from crossing between graph Φ_k and graph Φ_l by considering only graph Φ_l which in S_n^i where k = 2, 3, 4, ..., n and l < k.

Lemma 5.3. For any integer $2 \le k \le n$ and l < k,

$$\underline{pc}(\Phi_k, \Phi_l) = (2^{l-1} - 1)(2^{l-1}).$$
(5.4)

From (5.4), we see that $pc(\Phi_k, \Phi_l)$ only depends on Φ_l , so

$$\underline{pc}(\Phi_{k_1}, \Phi_l) = \underline{pc}(\Phi_{k_2}, \Phi_l), \tag{5.5}$$

where $l < \min\{k_1, k_2\}$.

Proof. We let e_{mn} and e_{op} be edges of Φ_k and Φ_l respectively. By ordering vertices of graph S_n^i and $|V(\Phi_n)| = 2^n$, $|E(\Phi_n)| = 2^{n-1}$, we have

$$V(\mathbf{L}\Phi_{k}) = \{v_{0}, v_{1}, ..., v_{2^{k-1}-1}\}, V(\mathbf{U}\Phi_{k}) = \{v_{2^{k-1}}, v_{2^{k-1}+1}, ..., v_{2^{k}-1}\}, V(\mathbf{L}\Phi_{l}) = \{v_{0}, v_{1}, ..., v_{2^{l-1}-1}\}, V(\mathbf{U}\Phi_{l}) = \{v_{2^{l-1}}, v_{2^{l-1}+1}, ..., v_{2^{l}-1}\}.$$

$$(5.6)$$

We can see that $m + n = 2^k - 1$ and $o + p = 2^l - 1$ where $m \in V(\mathbf{L}\Phi_k)$, $n \in V(\mathbf{U}\Phi_k)$, $o \in V(\mathbf{L}\Phi_l)$ and $p \in V(\mathbf{U}\Phi_l)$. The edges e_{mn} and e_{op} are potential crossing if and only if $v_m < v_o < v_n < v_p$ or $v_o < v_m < v_p < v_n$.

Next, we consider the number of potential crossing between Φ_k and Φ_l from all of edges in Φ_l .

The edge $e_{0,2^l-1}$ crosses with some edges in Φ_k when $0 < m < 2^l - 1 < n$. We find the number of m that correspond to the condition $0 < m < 2^l - 1 < n$. We let $M_0 = \{m \mid 0 < m < 2^l - 1 < n\}$ and we see that m can be $1, 2, 3, ..., 2^l - 2$, that is

$$|M_0| = 2^l - 2. (5.7)$$

The edge $e_{1,2^l-2}$ crosses with edges in Φ_k when $1 < m < 2^l - 2 < n$. We find the number of m that correspond to $1 < m < 2^l - 2 < n$. We let

 $M_1 = \{m \mid 1 < m < 2^l - 2 < n\}$ and we see that m can be $2, 3, 4, ..., 2^l - 3,$ that is

$$|M_1| = 2^l - 4. (5.8)$$

309

The edge $e_{2,2^l-3}$ crosses with edges in Φ_k when $2 < m < 2^l - 3 < n$. We find the number of m that correspond to $2 < m < 2^l - 3 < n$. We let $M_2 = \{m \mid 2 < m < 2^l - 3 < n\}$ and we see that m can be $3, 4, 5, ..., 2^l - 4$, that is

$$|M_2| = 2^l - 6. (5.9)$$

Similarly to the edge $e_{2^{l-1}-2,2^{l-1}+1}$ crosses with edges in Φ_k when $2^{l-1}-2 < m < 2^{l-1}+1 < n$. We let $M_{2^{l-1}-2} = \{m \mid 2^{l-1}-2 < m < 2^{l-1}+1 < n\}$. We see that m can be $2^{l-1}-1$ and 2^{l-1} , that is

$$|M_{2^{l-1}-2}| = 2. (5.10)$$

Finally, for the edge $e_{2^{l-1}-1,2^{l-1}}$, we can see that this edge can not cross with edges in Φ_k , So

$$\mid M_{2^{l-1}-1} \mid = 0. \tag{5.11}$$

From (5.7)-(5.11), that is all a number of potential crossing between Φ_k and Φ_l , so

$$\underline{pc}(\Phi_k, \Phi_l) = |M_0| + |M_1| + |M_2| + \dots + |M_{2^{l-1}-2}| + |M_{2^{l-1}-1}|$$

$$= (2^l - 2) + (2^l - 4) + (2^l - 6) + \dots + 2 + 0$$

$$= \frac{(2^{l-1})}{2}(0 + 2^l - 2)$$

$$= (2^{l-1} - 1)(2^{l-1}).$$

$$\Box$$

Definition 5.2. For graph S_n^i , we define $\overline{pc}(\Phi_k, \Phi_l)$ as the number of potential crossing which is created from crossing between graph Φ_k and graph Φ_l by considering from the whole of graph Φ_k which in S_n^i where k = 2, 3, 4, ..., n and l < k. That is a crossing of a creation of every copy of graph Φ_l in graph Φ_k .

Lemma 5.4. For any integer $2 \le k \le n$ and l < k,

$$\overline{pc}(\Phi_k, \Phi_l) = 2^{k-1}(2^{l-1} - 1).$$
(5.13)

Proof. The number of potential crossing between graph Φ_k and graph Φ_l when we fix k depends on the number of all subgraph of Φ_l in Φ_k , that equal to 2^{k-l} copy. That is

$$\overline{pc}(\Phi_k, \Phi_l) = 2^{k-l} \cdot \underline{pc}(\Phi_k, \Phi_l) = 2^{k-l} (2^{l-l} - 1) (2^{l-l})$$
(5.14)
$$= 2^{k-1} (2^{l-l} - 1).$$

By Lemma 5.4, it is notable that

$$\overline{pc}(\Phi_n, \Phi_l) > \overline{pc}(\Phi_{n-1}, \Phi_l) > \overline{pc}(\Phi_{n-2}, \Phi_l) > \dots > \overline{pc}(\Phi_3, \Phi_l) > \overline{pc}(\Phi_2, \Phi_l).$$
(5.15)

Definition 5.3. For graph S_n^i , we define $pc^{(n)}(\Phi_k, \Phi_l)$ as the number of potential crossing which is created from crossing between graph Φ_k and graph Φ_l by considering from the whole of graph S_n^i which in S_n^i where k = 2, 3, 4, ..., n and l < k. That is a crossing of a creation of every copy of graph Φ_l in graph Φ_k and every copy of graph Φ_k in graph S_n^i .

Lemma 5.5. For any integer $2 \le k \le n$ and l < k,

$$pc^{(n)}(\Phi_k, \Phi_l) = 2^{n-1}(2^{l-l} - 1).$$
 (5.16)

Proof. Consider,

310

$$pc^{(n)}(\Phi_k, \Phi_l) = 2^{n-k} \cdot \overline{pc}(\Phi_k, \Phi_l) = 2^{n-k}(2^{k-1})(2^{l-l} - 1) = 2^{n-1}(2^{l-l} - 1).$$

Lemma 5.6. For n = 3, 4, 5, ... and j < n - 1, we have

$$pc^{(n)}(\Phi_n, \Phi_{j+1}) > pc^{(n)}(\Phi_n, \Phi_j).$$
 (5.17)

Proof. Consider,

$$\begin{aligned} pc^{(n)}(\Phi_n, \Phi_{j+1}) - pc^{(n)}(\Phi_n, \Phi_j) &= [2^{n-(j+1)} \cdot \underline{pc}(\Phi_n, \Phi_{j+1})] - [2^{n-j} \cdot \underline{pc}(\Phi_n, \Phi_j)] \\ &= [2^{n-(j+1)}(2^{(j+1)-1} - 1)(2^{(j+1)-1})] \\ &- [2^{n-j}(2^{j-1} - 1)(2^{j-1})] \\ &= [2^{n-(j+1)+(j+1)-1}(2^{(j+1)-1} - 1)] \\ &- [2^{n-j+j-1}(2^{j-1} - 1)] \\ &= [2^{n-1}(2^j - 1)] - [2^{n-1}(2^{j-1} - 1)] \\ &= (2^j - 1) - (2^{j-1} - 1) \\ &= 2^j - 2^{j-1} > 0. \end{aligned}$$

Thus, $pc^{(n)}(\Phi_n, \Phi_j) - pc^{(n)}(\Phi_n, \Phi_{j+1}) > 0$ is true for all n = 3, 4, 5, ...

Definition 5.4. For graph Π_n , we define $pc^{(n)}(\Delta_n, \Phi_m)$ as the number of potential crossing which is created from crossing between graph Δ_n and graph Φ_m , m = 1, 2, ..., n, by considering from the whole of graph Π_n .

Lemma 5.7. For any integer $1 \le m \le n$,

$$pc^{(n)}(\Delta_n, \Phi_m) = 3(2^{n-1})(2^{m-1} - 1).$$
 (5.18)

Proof. We let $e_{i,j}$ and $e_{k,*}$ be edges of Φ_m and Δ_n respectively. We note that * refers to the vertex on other axis. By ordering vertices of graph S_n^i in (5.6) and $|V(\Phi_m)| = 2^m$, $|E(\Phi_m)| = 2^{m-1}$, we have the edge set of graph Φ_m ,

$$E(\Phi_m) = \{e_{0,2^m-1}, e_{1,2^m-2}, e_{2,2^m-3}, \dots, e_{2^{m-1}-2,2^{m-1}+1}, e_{2^{m-1}-1,2^{m-1}}\}.$$
(5.19)

The edge set of graph Δ_n ,

$$E(\Delta_n) = \{e_{0,*}, e_{1,*}, e_{2,*}, \dots, e_{2^{n-1}-2,*}, e_{2^{n-1}-1,*}, \dots, e_{2^n-2,*}, e_{2^n-1,*}\}.$$
 (5.20)

The edges e_{ij} and e_{kl} are potential crossing if and only if $v_i < v_k < v_j < v_l$ or $v_k < v_i < v_l < v_j$. Next, we consider the number of potential crossing between Δ_n and Φ_m .

The edge $e_{0,2^m-1}$ in Φ_m crosses with some edges in Δ_n when $0 < k < 2^m - 1 < *$. We find the number of k that correspond to the condition $0 < k < 2^m - 1 < *$. We let $K_0 = \{k \mid 0 < k < 2^m - 1 < *\}$ and we see that k can be $1, 2, 3, ..., 2^m - 2$, that is

$$|K_0| = 3(2^m - 2). (5.21)$$

The edge $e_{1,2^m-2}$ in Φ_m crosses with some edges in Δ_n when $1 < k < 2^m - 2 < *$. We find the number of k that correspond to the condition $1 < k < 2^m - 2 < *$. We let $K_1 = \{k \mid 1 < k < 2^m - 2 < *\}$ and we see that k can be 2, 3, 4, ..., $2^m - 3$, that is

$$|K_1| = 3(2^m - 4). (5.22)$$

The edge $e_{2,2^m-3}$ in Φ_m crosses with some edges in Δ_n when $2 < k < 2^m - 3 < *$. We find the number of k that correspond to the condition $2 < k < 2^m - 3 < *$. We let $K_2 = \{k \mid 2 < k < 2^m - 3 < *\}$ and we see that k can be $3, 4, 5, ..., 2^m - 4$, that is

$$|K_2| = 3(2^m - 6). (5.23)$$

Thai $J.\ M$ ath. 15 (2017)/ A. Suebsriwichai and T. Mouktonglang

Similarly to the edge $e_{2^{m-1}-2,2^{m-1}+1}$ in Φ_m crosses with edges in Δ_n when $2^{m-1}-2 < k < 2^{m-1}+1 < *$. We let $K_{2^{m-1}-2} = \{k \mid 2^{m-1}-2 < k < 2^{m-1}+1 < *\}$. We see that k can be $2^{m-1}-1$ and 2^{m-1} , that is

$$|K_{2^{m-1}-2}| = 3(2). (5.24)$$

Finally, for the edge $e_{2^{m-1}-1,2^{m-1}}$ in Φ_m , we can see that this edge can not cross with edges in Δ_n , So

$$|K_{2^{m-1}-1}| = 0. (5.25)$$

From (5.21)-(5.25) and Lemma 5.2, we see that the number of each subgraph Φ_m of S_n^i , that equal to 2^{n-m} . That is the number of potential crossing between Φ_m and Δ_n depends on the number of subgraph Φ_m , so

$$pc^{(n)}(\Delta_n, \Phi_m) = 2^{n-m}(|K_0| + |K_1| + |K_2| + \dots + |K_{2^{m-1}-2}| + |K_{2^{m-1}-1}|)$$

$$= 2^{n-m}(3(2^m - 2) + 3(2^m - 4) + 3(2^m - 6) + \dots + 3(2) + 0)$$

$$= 2^{n-m}(3[2^m - 2 + 2^m - 4 + 2^m - 6 + \dots + 2 + 0])$$

$$= 2^{n-m}(3\frac{(2^{m-1})}{2}(0 + 2^m - 2))$$
(5.26)

$$= 2^{n-m}(3(2^{m-1} - 1)(2^{m-1}))$$

$$= (2^{n-m+m-1})(3(2^{m-1} - 1))$$

$$= 3(2^{n-1})(2^{m-1} - 1).$$

Theorem 5.8. A graph Ω_n is called **Good Drawing of** Ω_n with the minimum number of a cross in Π_n under the following condition:

(A) If moving every edges in Φ_n to wrong side, i.e., moving Φ_n to Φ_{n-1} side, the number of a cross will increase.

(B) If moving every edges in Φ_{n-1} to wrong side, i.e., moving Φ_{n-1} to Φ_n side, the number of a cross will increase.

(C) If moving every edges in Φ_j where $2 \leq j \leq n-2$ to wrong side, the number of a cross will increase.

Proof. In order to prove, the approch that we use is we move all edges in Φ_j where j = 2, 3, ..., n to the *wrong side*. Then the number of a cross between Φ_j and other Φ 's in the *correct side* will disappear. However, the number of a cross between Φ_j and other Φ 's in the *wrong side* will appear, that is the number of a cross of graph S_n^i will decrease and increase. That

is, we are proving that the decreased number of a cross of graph S_n^i is less than the increased number of a cross of graph S_n^i .

According to (A), we can prove in 2 cases; n is even and n is odd. We prove when n is even. After all edges in Φ_n have been moved to the *wrong* side, we can observe that the number of a cross between Φ_n and Φ_{2j} has disappeared. Nevertheless, the number of a cross between Φ_n and Φ_{2j-1} will appear. Next we define Φ_{2j} as Φ_{n-2k} and Φ_{2j-1} as $\Phi_{n-(2k-1)}$ where n is even and $k = 1, 2, ..., \lfloor \frac{n-1}{2} \rfloor$. That is, it is sufficient to show that,

$$\sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} pc^{(n)}(\Phi_n, \Phi_{n-(2k-1)}) > \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} pc^{(n)}(\Phi_n, \Phi_{n-2k}).$$

We consider,

$$\begin{split} &\sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} pc^{(n)}(\Phi_n, \Phi_{n-(2k-1)}) - \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} pc^{(n)}(\Phi_n, \Phi_{n-2k}) \\ &= pc^{(n)}(\Phi_n, \Phi_{n-1}) + pc^{(n)}(\Phi_n, \Phi_{n-3}) + \ldots + pc^{(n)}(\Phi_n, \Phi_{n-(2k-1)}) + \ldots \\ &+ pc^{(n)}(\Phi_n, \Phi_6) + pc^{(n)}(\Phi_n, \Phi_4) + pc^{(n)}(\Phi_n, \Phi_2) - pc^{(n)}(\Phi_n, \Phi_{n-2}) \\ &- pc^{(n)}(\Phi_n, \Phi_{n-4}) - \ldots - pc^{(n)}(\Phi_n, \Phi_{n-2k}) - \ldots - pc^{(n)}(\Phi_n, \Phi_5) \\ &- pc^{(n)}(\Phi_n, \Phi_{3}) - pc^{(n)}(\Phi_n, \Phi_{1}) \\ &= [pc^{(n)}(\Phi_n, \Phi_{n-1}) - pc^{(n)}(\Phi_n, \Phi_{n-2})] + [pc^{(n)}(\Phi_n, \Phi_{n-3}) - pc^{(n)}(\Phi_n, \Phi_{n-4})] \\ &+ \ldots + [pc^{(n)}(\Phi_n, \Phi_{n-(2k-1)}) - pc^{(n)}(\Phi_n, \Phi_{n-2k})] + \ldots \\ &+ [pc^{(n)}(\Phi_n, \Phi_6) - pc^{(n)}(\Phi_n, \Phi_5)] + [pc^{(n)}(\Phi_n, \Phi_4) - pc^{(n)}(\Phi_n, \Phi_3)] \\ &+ [pc^{(n)}(\Phi_n, \Phi_2) - pc^{(n)}(\Phi_n, \Phi_1)] \\ &> 0 \end{split}$$

by grouping and from Lemma 5.6.

Therefore, if we move Φ_n where *n* is even to the *wrong side*, the number of a cross which is in S_n^i will increase. In the case of proving *n* is odd, the method is similar.

According to (**B**), the approch is similar to (**A**). We only prove in case n is even. After all edges in Φ_{n-1} have been moved to the *wrong side*, we can observe that the number of a cross between Φ_n and Φ_{2j-1} has disappeared. Nevertheless, the number of a cross between Φ_{n-1} and Φ_{2j} will appear. Next we define Φ_{2j-1} as $\Phi_{n-(2k+1)}$ and Φ_{2j} as Φ_{n-2k} where n is even and

Thai $J.\ M$ ath. 15 (2017)/ A. Suebsriwichai and T. Mouktonglang

 $k = 1, 2, ..., \lfloor \frac{n-2}{2} \rfloor$. That is, it is sufficient to show that,

$$\sum_{k=1}^{\lfloor \frac{n-2}{2} \rfloor} pc^{(n)}(\Phi_{n-1}, \Phi_{n-2k}) > \sum_{k=1}^{\lfloor \frac{n-2}{2} \rfloor} pc^{(n)}(\Phi_{n-1}, \Phi_{n-(2k+1)}).$$

We consider,

$$\begin{split} &\sum_{k=1}^{\lfloor \frac{n-2}{2} \rfloor} pc^{(n)}(\Phi_{n-1}, \Phi_{n-2k}) - \sum_{k=1}^{\lfloor \frac{n-2}{2} \rfloor} pc^{(n)}(\Phi_{n-1}, \Phi_{n-(2k+1)}) \\ &= pc^{(n)}(\Phi_n, \Phi_{n-1}) + pc^{(n)}(\Phi_{n-1}, \Phi_{n-2}) + pc^{(n)}(\Phi_{n-1}, \Phi_{n-4}) + \dots \\ &+ pc^{(n)}(\Phi_{n-1}, \Phi_{n-2k}) + \dots + pc^{(n)}(\Phi_{n-1}, \Phi_{6}) + pc^{(n)}(\Phi_{n-1}, \Phi_{4}) \\ &+ pc^{(n)}(\Phi_{n-1}, \Phi_{2}) - pc^{(n)}(\Phi_{n-1}, \Phi_{n-3}) - pc^{(n)}(\Phi_{n-1}, \Phi_{n-5}) - \dots \\ &- pc^{(n)}(\Phi_{n-1}, \Phi_{n-(2k+1)}) - \dots - pc^{(n)}(\Phi_{n-1}, \Phi_{5}) - pc^{(n)}(\Phi_{n-1}, \Phi_{3}) \\ &- pc^{(n)}(\Phi_{n-1}, \Phi_{n-1}) + [pc^{(n)}(\Phi_{n-1}, \Phi_{n-2}) - pc^{(n)}(\Phi_{n-1}, \Phi_{n-3})] \\ &+ [pc^{(n)}(\Phi_{n-1}, \Phi_{n-4}) - pc^{(n)}(\Phi_{n-1}, \Phi_{n-5})] + \dots + [pc^{(n)}(\Phi_{n-1}, \Phi_{5})] \\ &- pc^{(n)}(\Phi_{n-1}, \Phi_{n-(2k+1)})] + \dots + [pc^{(n)}(\Phi_{n-1}, \Phi_{6}) - pc^{(n)}(\Phi_{n-1}, \Phi_{5})] \\ &+ [pc^{(n)}(\Phi_{n-1}, \Phi_{4}) - pc^{(n)}(\Phi_{n-1}, \Phi_{3})] + [pc^{(n)}(\Phi_{n-1}, \Phi_{2}) - pc^{(n)}(\Phi_{n-1}, \Phi_{1})] \\ &> 0 \end{split}$$

by grouping and from Lemma 5.6.

Therefore, if we move Φ_{n-1} where *n* is even to the *wrong side*, the number of a cross which is in S_n^i will increase. In the case of proving *n* is odd, the method is similar.

Finally, for (C), 4 cases can be proved as follows;

- (i) n is odd and j is odd,
- (ii) n is odd and j is even,
- (iii) n is even and j is odd,
- (iv) n is even and j is even.

First, we prove when n and j are odd. After all edges in Φ_j where j is odd and 1 < j < n have been moved to the *wrong side*, we can observe that the number of a cross between Φ_j and Φ_{2j-1} has disappeared. Nevertheless, the number of a cross between Φ_j and Φ_{2j} will appear.

That is, we are going to show that the inequality below is true.

$$\sum_{\substack{i=1,i-odd\\n-j}}^{n-j-1} pc^{(n)}(\Phi_{j+i},\Phi_j) + \sum_{\substack{i=1,i-odd\\j-1}}^{j-2} pc^{(n)}(\Phi_j,\Phi_{j-i})$$
$$> \sum_{\substack{n-j\\i=2,i-even}}^{n-j} pc^{(n)}(\Phi_{j+i},\Phi_j) + \sum_{\substack{i=2,i-even\\i=2,i-even}}^{j-1} pc^{(n)}(\Phi_j,\Phi_{j-i}).$$

We will consider,

$$\begin{split} &\sum_{i=1,i-odd}^{n-j-1} pc^{(n)}(\Phi_{j+i},\Phi_j) + \sum_{i=1,i-odd}^{j-2} pc^{(n)}(\Phi_j,\Phi_{j-i}) \\ &- \sum_{i=2,i-even}^{n-j} pc^{(n)}(\Phi_{j+i},\Phi_j) - \sum_{i=2,i-even}^{j-1} pc^{(n)}(\Phi_j,\Phi_{j-i}) \\ &= pc^{(n)}(\Phi_{j+1},\Phi_j) + pc^{(n)}(\Phi_{j+3},\Phi_j) + pc^{(n)}(\Phi_{j+5},\Phi_j) + \dots + pc^{(n)}(\Phi_{n-3},\Phi_j) \\ &+ pc^{(n)}(\Phi_{n-1},\Phi_j) + pc^{(n)}(\Phi_j,\Phi_{j-1}) + pc^{(n)}(\Phi_j,\Phi_{j-3}) + pc^{(n)}(\Phi_j,\Phi_{j-5}) \\ &+ \dots + pc^{(n)}(\Phi_j,\Phi_4) + pc^{(n)}(\Phi_j,\Phi_2) - pc^{(n)}(\Phi_{j+2},\Phi_j) - pc^{(n)}(\Phi_{j+4},\Phi_j) \\ &- pc^{(n)}(\Phi_{j+6},\Phi_j) - \dots - pc^{(n)}(\Phi_{n-2},\Phi_j) - pc^{(n)}(\Phi_n,\Phi_j) - pc^{(n)}(\Phi_j,\Phi_{j-2}) \\ &- pc^{(n)}(\Phi_{j+1},\Phi_j) + pc^{(n)}(\Phi_{j+3},\Phi_j) + pc^{(n)}(\Phi_{j+5},\Phi_j) + \dots + pc^{(n)}(\Phi_{n-3},\Phi_j) \\ &+ pc^{(n)}(\Phi_{n-1},\Phi_j) - pc^{(n)}(\Phi_{j+2},\Phi_j) - pc^{(n)}(\Phi_{j+4},\Phi_j) - pc^{(n)}(\Phi_{j+6},\Phi_j) \\ &- \dots - pc^{(n)}(\Phi_{n-2},\Phi_j) - pc^{(n)}(\Phi_n,\Phi_j) + [pc^{(n)}(\Phi_j,\Phi_{j-1}) - pc^{(n)}(\Phi_j,\Phi_{j-2})] \\ &+ [pc^{(n)}(\Phi_j,\Phi_{j-3}) - pc^{(n)}(\Phi_j,\Phi_{j-4})] + [pc^{(n)}(\Phi_j,\Phi_{j-5}) - pc^{(n)}(\Phi_j,\Phi_{j-6})] \\ &+ \dots + [pc^{(n)}(\Phi_j,\Phi_4) - pc^{(n)}(\Phi_j,\Phi_3)] + [pc^{(n)}(\Phi_j,\Phi_2) - pc^{(n)}(\Phi_j,\Phi_{j-6})] \\ &+ \dots + [pc^{(n)}(\Phi_j,\Phi_4) - pc^{(n)}(\Phi_j,\Phi_3)] + [pc^{(n)}(\Phi_j,\Phi_2) - pc^{(n)}(\Phi_j,\Phi_1)] \\ &> 0. \end{split}$$

Next, we are going to case(*ii*), n is odd and j is even. After all edges in Φ_j where j is even and 1 < j < n - 1 have been moved to the *wrong side*, we can observe that the number of a cross between Φ_j and Φ_{2j} has disappeared. Nevertheless, the number of a cross between Φ_j and Φ_{2j-1} will appear.

That is, we are going to show that the inequality below is true.

$$\sum_{\substack{i=1,i-odd\\n-j-1}}^{n-j} pc^{(n)}(\Phi_{j+i},\Phi_j) + \sum_{\substack{i=1,i-odd\\j-2}}^{j-1} pc^{(n)}(\Phi_j,\Phi_{j-i})$$
$$> \sum_{\substack{i=2,i-even\\i=2,i-even}}^{n-j-1} pc^{(n)}(\Phi_{j+i},\Phi_j) + \sum_{\substack{i=2,i-even\\i=2,i-even}}^{j-1} pc^{(n)}(\Phi_j,\Phi_{j-i}).$$

We will consider,

$$\begin{split} &\sum_{i=1,i-odd}^{n-j} pc^{(n)}(\Phi_{j+i},\Phi_j) + \sum_{i=1,i-odd}^{j-1} pc^{(n)}(\Phi_j,\Phi_{j-i}) \\ &- \sum_{i=2,i-even}^{n-j-1} pc^{(n)}(\Phi_{j+i},\Phi_j) - \sum_{i=2,i-even}^{j-2} pc^{(n)}(\Phi_j,\Phi_{j-i}) \\ &= pc^{(n)}(\Phi_{j+1},\Phi_j) + pc^{(n)}(\Phi_{j+3},\Phi_j) + pc^{(n)}(\Phi_{j+5},\Phi_j) + \dots + pc^{(n)}(\Phi_{n-2},\Phi_j) \\ &+ pc^{(n)}(\Phi_n,\Phi_j) + pc^{(n)}(\Phi_j,\Phi_{j-1}) + pc^{(n)}(\Phi_j,\Phi_{j-3}) + pc^{(n)}(\Phi_j,\Phi_{j-5}) \\ &+ \dots + pc^{(n)}(\Phi_j,\Phi_5) + pc^{(n)}(\Phi_j,\Phi_3) + pc^{(n)}(\Phi_j,\Phi_1) - pc^{(n)}(\Phi_{j+2},\Phi_j) \\ &- pc^{(n)}(\Phi_{j+4},\Phi_j) - pc^{(n)}(\Phi_{j+6},\Phi_j) - \dots - pc^{(n)}(\Phi_{n-3},\Phi_j) - pc^{(n)}(\Phi_{n-1},\Phi_j) \\ &- pc^{(n)}(\Phi_j,\Phi_{j-2}) - pc^{(n)}(\Phi_{j+3},\Phi_j) + pc^{(n)}(\Phi_{j+5},\Phi_j) + \dots + pc^{(n)}(\Phi_{n-2},\Phi_j) \\ &+ pc^{(n)}(\Phi_n,\Phi_j) - pc^{(n)}(\Phi_{j+2},\Phi_j) - pc^{(n)}(\Phi_{j+4},\Phi_j) - pc^{(n)}(\Phi_{j+6},\Phi_j) \\ &- \dots - pc^{(n)}(\Phi_{n-3},\Phi_j) - pc^{(n)}(\Phi_{n-1},\Phi_j) + [pc^{(n)}(\Phi_j,\Phi_{j-1}) - pc^{(n)}(\Phi_j,\Phi_{j-2})] \\ &+ [pc^{(n)}(\Phi_j,\Phi_{j-3}) - pc^{(n)}(\Phi_j,\Phi_{j-1})] + [pc^{(n)}(\Phi_j,\Phi_{j-5}) - pc^{(n)}(\Phi_j,\Phi_{j-6})] \\ &+ \dots + [pc^{(n)}(\Phi_j,\Phi_5) - pc^{(n)}(\Phi_j,\Phi_4)] + [pc^{(n)}(\Phi_j,\Phi_3) - pc^{(n)}(\Phi_j,\Phi_2)] \\ &+ pc^{(n)}(\Phi_j,\Phi_1) \\ &> 0. \end{split}$$

6 Calculation of the Upper Bound for Crossing Number in Π_n

The reason why we mention to draw in 3-axes form is that we are able to notice that we have the same drawing from each *axis*. Therefore, the calculation of the upper bound for crossing number in Π_n is easier. That is, the result can be calculated from just one *axis*.

The upper bound for crossing number in Π_n can be calculated from a cross of graph Δ_n and graph Ω_n edges and graph Ω_n edges crossing themselves. We define $|\Delta_n cr\Omega_n|$ is the number of crosses for graph Δ_n cross graph Ω_n and $|cr\Omega_n|$ is the number of a cross in graph Ω_n .

Theorem 6.1. For any integer $n \ge 1$,

$$|\Delta_n cr\Omega_n| = 3(2^{n-1})(2^n - n - 1), \tag{6.1}$$

where $|\Delta_n cr\Omega_n|$ is the number of crosses for graph Δ_n cross graph Ω_n .

Proof. We prove by mathematical induction that, for all $n \in \mathbb{I}^+$. We precise by induction on n. For n = 1, 2, it can be easily seen $|\Delta_1 cr\Omega_1| = 0$ and $|\Delta_2 cr\Omega_2| = 6$ by directly counting. Assume $|\Delta_n cr\Omega_n|$ holds true. Now we consider $|\Delta_{n+1} cr\Omega_{n+1}|$ which is the number of crosses for graph Δ_{n+1} cross graph Ω_{n+1} .

The number of crosses for graph Δ_{n+1} cross graph Ω_{n+1} is calculated from the number of potential crossing between graph Δ_{n+1} and all subgraphs Φ_m in Ω_{n+1} , where m = 1, 2, ..., n + 1. By Lemma 5.7,

$$|\Delta_{n+1}cr\Omega_{n+1}| = \sum_{m=1}^{n+1} pc^{(n+1)}(\Delta_{n+1}, \Phi_m)$$

= $pc^{(n+1)}(\Delta_{n+1}, \Phi_1) + pc^{(n+1)}(\Delta_{n+1}, \Phi_2) + \dots$
+ $pc^{(n+1)}(\Delta_{n+1}, \Phi_{n+1})$
= $3(2^{(n+1)-1})(2^{1-1} - 1) + 3(2^{(n+1)-1})(2^{2-1} - 1) + \dots$
+ $3(2^{(n+1)-1})(2^{n-1} - 1) + 3(2^{(n+1)-1})(2^{(n+1)-1} - 1)$
= $3(2^n)(2^0 - 1) + 3(2^n)(2^1 - 1) + \dots + 3(2^n)(2^n - 1)$
= $3(2^n)[2^0 + 2^1 + 2^2 + \dots + 2^{n-1} + 2^n - 1 - 1 - \dots - 1]$
= $3(2^n)[\frac{2^0(2^{n+1} - 1)}{2 - 1} - (n + 1)]$
= $3(2^{(n+1)-1})[2^{n+1} - (n + 1) - 1].$

Theorem 6.2. For any integer $n \ge 4$,

$$|cr\Omega_n| = \begin{cases} 3(2^{n-1})[\frac{16}{9}(2^{n-4}-1) + \frac{8}{9}(2^{n-2}-1) - \frac{3n-10}{3} - \frac{(n-2)^2}{4}], & n\text{-even,} \\ 3(2^{n-1})[\frac{24}{9}(2^{n-3}-1) - n + 3 - \frac{(n-3)(n-1)}{4}], & n\text{-odd,} \end{cases}$$
(6.2)

where $| cr\Omega_n |$ is the number of crosses in graph Ω_n .

Proof. We start proving for case n is even, we let n = 2k where $k \in \mathbb{I}^+$. We prove by mathematical induction on k, for all $k \in \mathbb{I}^+$. If k = 1, it can be easily seen $|cr\Omega_2| = 0$. For k = 2, $|cr\Omega_4| = 24$ by directly counting. Assume $|cr\Omega_{2k}|$ holds true, that is

$$|cr\Omega_{2k}| = 3(2^{2k-1})\left[\frac{16}{9}(2^{2k-4}-1) + \frac{8}{9}(2^{2k-2}-1) - \frac{3(2k)-10}{3} - \frac{(2k-2)^2}{4}\right].$$

We must show that $|cr\Omega_{2k}|$ implies $|cr\Omega_{2(k+1)}|$. Now we consider $|cr\Omega_{2(k+1)}|$ which is the number of crosses in graph $\Omega_{2(k+1)}$. $|cr\Omega_{2(k+1)}|$ is a result from the number of potential crossing which is created from crossing between all subgraphs Φ_i and Φ_j in $\Omega_{2(k+1)}$, where both of i and j are odd, including in case both of i and j are even. That is

 $|cr\Omega_{2(k+1)}|$

$$\begin{split} &= 3[pc^{(2k+2)}(\Phi_3,\Phi_1) + pc^{(2k+2)}(\Phi_5,\Phi_1) + \ldots + pc^{(2k+2)}(\Phi_{2k+1},\Phi_1)] \\ &+ 3[pc^{(2k+2)}(\Phi_5,\Phi_3) + pc^{(2k+2)}(\Phi_7,\Phi_3) + \ldots + pc^{(2k+2)}(\Phi_{2k+1},\Phi_3)] \\ &+ 3[pc^{(2k+2)}(\Phi_7,\Phi_5) + pc^{(2k+2)}(\Phi_9,\Phi_5) + \ldots + pc^{(2k+2)}(\Phi_{2k+1},\Phi_5)] + \ldots \\ &+ 3[pc^{(2k+2)}(\Phi_{2k-1},\Phi_{2k-3}) + pc^{(2k+2)}(\Phi_{2k+1},\Phi_{2k-3}) + pc^{(2k+2)}(\Phi_{2k+1},\Phi_{2k-1})] \\ &+ 3[pc^{(2k+2)}(\Phi_4,\Phi_2) + pc^{(2k+2)}(\Phi_6,\Phi_2) + \ldots + pc^{(2k+2)}(\Phi_{2k+2},\Phi_2)] \\ &+ 3[pc^{(2k+2)}(\Phi_6,\Phi_4) + pc^{(2k+2)}(\Phi_8,\Phi_4) + \ldots + pc^{(2k+2)}(\Phi_{2k+2},\Phi_4)] \\ &+ 3[pc^{(2k+2)}(\Phi_8,\Phi_6) + pc^{(2k+2)}(\Phi_{10},\Phi_6) + \ldots + pc^{(2k+2)}(\Phi_{2k+2},\Phi_6)] + \ldots \\ &+ 3[pc^{(2k+2)}(\Phi_{2k},\Phi_{2k-2}) + pc^{(2k+2)}(\Phi_{2k+2},\Phi_{2k-2}) + pc^{(2k+2)}(\Phi_{2k+2},\Phi_{2k})] \\ &= 3(2^{2k+1})[(2^{1-1}-1) + (2^{1-1}-1) + (2^{1-1}-1) + \ldots + (2^{3-1}-1) + (2^{3-1}-1))] \\ &+ 3(2^{2k+1})[(2^{5-1}-1) + (2^{5-1}-1) + (2^{5-1}-1) + \ldots + (2^{5-1}-1) + (2^{5-1}-1)] \\ &+ \ldots + 3(2^{2k+1})[(2^{(2k-3)-1}-1) + (2^{2-1}-1) + \ldots + (2^{2-1}-1) + (2^{2-1}-1)] \\ &+ \ldots + 3(2^{2k+1})[(2^{4-1}-1) + (2^{4-1}-1) + (2^{4-1}-1) + \ldots + (2^{4-1}-1) + (2^{4-1}-1)] \\ &+ \ldots + 3(2^{2k+1})[(2^{(2k-2)-1}-1) + (2^{(2k-2)-1}-1)] \\ &+ 3(2^{2k+1})[(2^{2k+2}) + \ldots + 2^{2k-1}) - (1+1+1)] \\ \end{aligned}$$

$$\begin{split} &+3(2^{2k+1})[(2^{4}+2^{4}+...+2^{4})-(1+1+...+1)]\\ &+...+3(2^{2k+1})[(2^{2k-4}+2^{2k-4})-(1+1)]+3(2^{2k+1})[(2^{2k-2}-1)]\\ &+3(2^{2k+1})[(2^{1}+2^{1}+...+2^{1})-(1+1+...+1)]\\ &+3(2^{2k+1})[(2^{2}+2^{3}+...+2^{3})-(1+1)+...+1)]\\ &+3(2^{2k+1})[(2^{5}+2^{5}+...+2^{5})-(1+1+...+1)]\\ &+...+3(2^{2k+1})[(2^{2k-3}+2^{2k-3})-(1+1)]+3(2^{2k+1})[(2^{2k-1}-1)]\\ &=3(2^{2k+1})[2^{2}(k-1)-(k-1)]+3(2^{2k+1})[(2^{2k-2}(1)-1)]\\ &+...+3(2^{2k+1})[2^{2}(k-2)-2]+3(2^{2k+1})[(2^{2k-2}(1)-1)]\\ &+...+3(2^{2k+1})[2^{2k-3}(2)-2]+3(2^{2k+1})[(2^{2k-1}(1)-1)]\\ &=3(2^{2k+1})[(2^{2}(k-1)+2^{4}(k-2)+...+2^{2k-4}(2)+2^{2k-2}(1))\\ &-((k-1)+(k-2)+...+2+1)]\\ &+3(2^{2k+1})[(2^{1}(k)+2^{3}(k-1)+...+2^{2k-3}(2)+2^{2k-1}(1))\\ &-((k)+(k-1)+...+2+1)]\\ &=3(2^{2k+1})[\frac{16}{9}(2^{2k-2}-1)-\frac{4}{3}(k-1)-\frac{(k-1)(k)}{2}]\\ &+3(2^{2k+1})[\frac{16}{9}(2^{2k-2}-1)+\frac{8}{9}(2^{2k}-1)-(\frac{4}{3}(k-1)+\frac{2}{3}k)-(\frac{(k-1)k}{2}+\frac{k(k+1)}{2})]\\ &=3(2^{2k+1})[\frac{16}{9}(2^{2k-2}-1)+\frac{8}{9}(2^{2k}-1)-\frac{4k-4+2k}{3}-\frac{k^{2}-k+k^{2}+k}{2}]\\ &=3(2^{2k+1})[\frac{16}{9}(2^{2k-2}-1)+\frac{8}{9}(2^{2k}-1)-\frac{6k-4}{3}-k^{2}]\\ &=3(2^{2k+1})[\frac{16}{9}(2^{2k-2}-1)+\frac{8}{9}(2^{2k+2}-2-1)-\frac{6k-4+10-10}{3}-(\frac{(2k+2-2)}{2})^{2}]\\ &=3(2^{2(k+1)-1})[\frac{16}{9}(2^{2(k+1)-4}-1)+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1))-10}{3}-(\frac{(2(k+1)-2)^{2}}{4}-\frac{1}{4}-1)^{2k}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}-\frac{1}{4}+\frac{8}{9}(2^{2(k+1)-2}-1)-\frac{3(2(k+1)-10}{3}-(\frac{2(k+1)-2)^{2}}{4}-\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{$$

The result of the upper bound for crossing number in Π_n can be calcu-

Upper Bound for the Crossing Number of $Q_n imes K_3$

lated from the Theorem 6.1 and 6.2. We present in the next theorem.

Theorem 6.3. For any integer $n \ge 4$, the upper bound of crossing number of $Q_n \times K_3$ satisfies the inequality

$$cr(Q_n \times K_3) \leq \begin{cases} 3(2^{n-1})[2^n + \frac{16}{9}(2^{n-4} - 1) + \frac{8}{9}(2^{n-2} - 1) - \frac{6n-7}{3} - \frac{(n-2)^2}{4}], & n\text{-even,} \\ 3(2^{n-1})[2^n + \frac{24}{9}(2^{n-3} - 1) - 2n + 2 - \frac{(n-3)(n-1)}{4}], & n\text{-odd.} \end{cases}$$

$$(6.3)$$

7 Numerical Result

In this section, we consider the cartesian product of Q_n and K_3 for n = 3, 4, ..., 12. Then we give some results for the upper bound of crossing number of $Q_n \times K_3$ in the form (6.3) in the Table below.

n	$ \Delta_n cr\Omega_n $	$ cr\Omega_n $	Upper bound of $cr(Q_n \times K_3)$
3	48	0	48
4	264	24	288
5	1,248	192	1,440
6	$5,\!472$	$1,\!152$	6,624
7	23,040	5,760	28,800
8	94,848	26,496	121,344
9	$385,\!536$	$115,\!200$	500,736
10	$1,\!555,\!968$	$485,\!376$	2,041,344
11	$6,\!254,\!592$	2,003,200	8,257,792
12	25,085,952	8,165,376	33,251,328

Table 1: The upper bound for crossing number of $Q_n \times K_3$ for n = 3, ..., 12

8 Concluding Remarks

In this paper, we consider the cartesian product of Q_n and K_3 . We present a drawing of $Q_n \times K_3$ called, a 3 - axes drawing of $Q_n \times K_3$ for finding the upper bound for the crossing number of $Q_n \times K_3$. Then we construct a graph Π_n and prove that Π_n is a good drawing which the minimum number of a cross in Π_n .

Acknowledgement : The authors would like to thank Chiang Mai University, Chiang Mai, Thailand, for the financial support.

References

- P. Erodös, R.K. Guy, Crossing number problem, Amer. Math. Monthly 80 (1973) 52-58.
- [2] M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Alg. Disc. Meth. 4 (1983) 312-316.
- [3] F. Harary, J.P. Hayes, H.J. Wu, A survey of the theory of hypercube graphs, Computers and Mathematics with Applications 15 (4) (1988) 277-289.
- [4] R.B. Eggleton, R.P. Guy, The crossing number of the n-cube, Amer Math Soc Notices 17 (1970) 757.
- [5] L. Faria, C.M.H. de Figueiredo, O. Sykora, I. Vrto, An improved upper bound on the crossing number of the hypercube, J. Graph Theory 59 (2008) 145-159.
- [6] Y. Yang, G. Wang, H. Wang, Y. Zhou, The Erdös and Guy's conjectured equality on the crossing number of hypercubes, preprint arXiv:1201.4700 (2012).

(Received 21 February 2017) (Accepted 22 April 2017)

 $\mathbf{T}_{\mathrm{HAI}}\; \mathbf{J.}\; \mathbf{M}_{\mathrm{ATH.}}\; \mathrm{Online} @$ http://thaijmath.in.cmu.ac.th