Upper Bound for the Crossing Number of $Q_{n} \times K_{3}$

Aroonwan Suebsriwichai and Thanasak Mouktonglang ${ }^{11}$

Department of Mathematics, Faculty of Science, Chiang Mai
University, Chiang Mai 50200, Thailand
e-mail : aroonwanamth85@gmail.com (A. Suebsriwichai)
thanasak@chiangmai.ac.th (T. Mouktonglang)

Abstract

In this paper, we describe a method of finding the upper bound for the crossing Number of $Q_{n} \times K_{3}$. We construct a drawing of $Q_{n} \times K_{3}$, called a 3 - axes drawing of $Q_{n} \times K_{3}$. A $3-$ axes drawing of $Q_{n} \times K_{3}$ is a representation of $Q_{n} \times K_{3}$ on the plane such that its vertices are placed on 3 straight lines L_{i} where $i=1,2,3$ with a fixed vertex ordering.

Keywords : graph; hypercube; crossing number; drawing.
2010 Mathematics Subject Classification : 68R10; 05C62.

1 Introduction

Let G be a simple connected graph with a vertex set $V(G)=\left\{v_{1}\right.$, $\left.v_{2}, v_{3}, \ldots, v_{n}\right\}$ and an edge set $E(G)=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{m}\right\}$. The crossing number of a graph G, denoted $\operatorname{cr}(G)$, is the minimum number of pairwise intersections of edge crossing on a plane drawing of the graph G. Clearly, $\operatorname{cr}(G)=0$ if and only if G is planar. It is known that the exact crossing numbers of graphs are very difficult to compute. In 1973, Erdös and Guy [1] wrote, "Almost all questions that one can ask about crossing numbers remain unsolved". In fact, Garey and Johnson [2] proved that computing

[^0]the crossing number is NP-complete.
The n - cube or n-dimensional hypercube graph Q_{n} is defined recursively in terms of the cartesian products. The one dimension cube Q_{1} is simply K_{2} where K_{2} is a complete graph with 2 vertices. For $n \geq 2, Q_{n}$ is defined recursively as $Q_{n-1} \times K_{2}$. The order of Q_{n} is $\left|V\left(Q_{n}\right)\right|=2^{n}$ and its size is $\left|E\left(Q_{n}\right)\right|=n 2^{n-1}$.

Figure 1: n - cube graphs for $n=1,2,3,4$
In 1969, Harary [3] mentioned that there does not even exist a conjecture about the crossing number of the hypercube. In 1970, Eggleton and Guy [4] constructed a drawing of Q_{n} which implies that for $n \geq 3$,

$$
\begin{equation*}
\operatorname{cr}\left(Q_{n}\right) \leq \frac{5}{32} 4^{n}-\left\lfloor\frac{n^{2}+1}{2}\right\rfloor 2^{n-2} . \tag{1.1}
\end{equation*}
$$

In 2008, Faria, Figueiredo, Sykora and Vrto [5] announced a drawing for which the number of crossings coincides with $\frac{5}{32} 4^{n}-\left\lfloor\frac{n^{2}+1}{2}\right\rfloor 2^{n-2}$ which would imply the inequality above. Yuanshen Yang, Guoqing Wang, Haoli Wang and Yan Zhou [6] presented a new strategy to construct a drawing of Q_{n} with fewer crossings than the values conjecture by Eggleton and Guy [4], which implies that

$$
\begin{equation*}
\operatorname{cr}\left(Q_{n}\right) \nsupseteq \frac{5}{32} 4^{n}-\left\lfloor\frac{n^{2}+1}{2}\right\rfloor 2^{n-2} . \tag{1.2}
\end{equation*}
$$

They prove the following upper bound for the crossing number of hypercube graph,
$c r\left(Q_{n}\right) \leq\left\{\begin{array}{lr}\frac{139}{896} 4^{n}-\left\lfloor\frac{n^{2}+1}{2}\right\rfloor 2^{n-2}+\frac{4}{7} \cdot 2^{3\left\lfloor\frac{n}{2}\right\rfloor-n}, & 5 \leq n \leq 10, \\ \frac{26695}{172032} 4^{n}-\left\lfloor\frac{n^{2}+1}{2}\right\rfloor 2^{n-2}-\frac{n^{2}+2}{3} \cdot 2^{n-2}+\frac{4}{7} \cdot 2^{3\left\lfloor\frac{n}{2}\right\rfloor-n}, & n \geq 11 .\end{array}\right.$

The graph $Q_{n} \times K_{3}$ is the cartesian product of Q_{n} and K_{3}, where K_{3} is a complete graph with 3 vertices and Q_{n} is an n-dimensional hypercube graph. The order of $Q_{n} \times K_{3}$ is $\left|V\left(Q_{n} \times K_{3}\right)\right|=3 \cdot 2^{n}$ and its size is $\left|E\left(Q_{n} \times K_{3}\right)\right|=3\left[2^{n}+n 2^{n-1}\right]$.

Figure 2: $Q_{n} \times K_{3}$ graphs for $n=1,2$
As the graph $Q_{n} \times K_{3}$, it is formed by 3 copies of Q_{n} 's linked together with multiple edges. As shown in Figure 2, it can be observed that the calculation of crossing number of $Q_{n} \times K_{3}$ is quite complicated. We define the crossing number of a graph G to be the minimum number of crosses of a graph isomorphic to G. We have thusly invented another drawing of the graph $Q_{n} \times K_{3}$, also known as $3-$ axes drawing of $Q_{n} \times K_{3}$, by taking the formula shown below into account,

$$
\begin{align*}
Q_{n} \times K_{3} & =\left(Q_{n-1} \times K_{2}\right) \times K_{3} \\
& =\left(Q_{n-1} \times K_{3}\right) \times K_{2} . \tag{1.4}
\end{align*}
$$

We notice that the graph $Q_{n} \times K_{3}$ is defined recursively as $\left(Q_{n-1} \times K_{3}\right) \times K_{2}$.

2 3-Axes Drawing of $Q_{n} \times K_{3}$

A 3 - axes drawing of $Q_{n} \times K_{3}$ is a representation of $Q_{n} \times K_{3}$ on the plane such that its vertices are placed on 3 straight lines L_{i} where $i=1,2,3$ with a fixed vertex ordering.

According to the formula (1.4), the graph $Q_{n} \times K_{3}$ is generated from the two copies of $Q_{n-1} \times K_{3}$ linked together with multiple edges. The next procedure of drawing is to embed one copy of the graph $Q_{n-1} \times K_{3}$ into the other with the condition that all edges must remain at the same position. Several examples of drawings are illustrated below in Figure 3 and 4.

Figure 3: $Q_{2} \times K_{3}$ graph and $Q_{2} \times K_{3}$ which is embeded

Figure 4: $Q_{3} \times K_{3}$ and $Q_{3} \times K_{3}$ which is embeded

We can observe that this drawing consists of multiple complete graphs $\left(K_{3}\right)$. Next, we construct the straight lines L_{i} where $i=1,2,3$, also known as 3 -axes. We place L_{i} where $i=1,2,3$ on the edge which connect all
corresponding vertices of K_{3}. We see that there are some edges of $Q_{n} \times K_{3}$ overlapped on 3 - axes. As for the edges on 3 - axes, we redraw the edges need to be drawn in semicircle and never cross L_{i}. Notice that no edge crosses itself, no adjacent edges cross each other, no two edges cross more than once, and no three edges cross in a point. The 3 -axes drawing of $Q_{n} \times K_{3}$ where $n=1,2,3$ and their crossing numbers can be seen in Figure 5 and 6

Figure 5: 3-axes drawing of $Q_{n} \times K_{3}$ where $n=1,2$

Figure 6: 3-axes drawing of $Q_{3} \times K_{3}$
After the semicircles have been drawn, we can define this procedure of drawing as $3-$ axes drawing. We denote without loss of generality that Π_{n}
is a $3-$ axes drawing of $Q_{n} \times K_{3}$.

3 Construction of Π_{n}

In this section, we discusss a construction of Π_{n}. We notice that in the 3 -axes drawing of $Q_{n} \times K_{3}$, the appearance of each axis is identical. This means that we can calculate the crossing number in a more simplistic fashion. That is, by considering from only one axis. First, we define Π_{n} as follow,

$$
\begin{equation*}
\Pi_{n}=\Delta_{n} \bigcup \Omega_{n} \tag{3.1}
\end{equation*}
$$

Given Δ_{n} is a perimeter graph which consists of 2^{n} complete graphs $\left(K_{3}\right)$,

$$
\begin{equation*}
\Delta_{n}=2^{n} K_{3} \tag{3.2}
\end{equation*}
$$

The vertex set of Δ_{n} is the same as the vertex set of Π_{n} and the edge set of Δ_{n} is a subset of Π_{n}, where $\left|V\left(\Delta_{n}\right)\right|=\left|E\left(\Delta_{n}\right)\right|=3 \cdot 2^{n}$. In Π_{n} without the set of edges of Δ_{n}, we see that the graph Π_{n} remains the set of semicircle edges. Since the appearance of each axis is identical, we can only determine from one axis. We notice that it is a hypercube graph $\left(Q_{n}\right)$. Therefore we call Π_{n} without the set of edges of Δ_{n} as Ω_{n} and define as follow,

$$
\begin{equation*}
\Omega_{n}=3 Q_{n} \tag{3.3}
\end{equation*}
$$

The vertex set of Ω_{n} is the same as the vertex set of Π_{n} and the edge set of Ω_{n} is a subset of Π_{n}, where $\left|V\left(\Omega_{n}\right)\right|=3 \cdot 2^{n}$ and $\left|E\left(\Omega_{n}\right)\right|=3 \cdot n 2^{n-1}$. We notice that the set of all vertices of Δ_{n} and Ω_{n} are the same as Π_{n}.

Figure 7: Δ_{1} and Ω_{1}

Figure 8: Δ_{2} and Ω_{2}

Figure 9: Δ_{3} and Ω_{3}

4 Construction of S_{n}^{i}

In this paper, we describe a method of finding the upper bound for the crossing number of $Q_{n} \times K_{3}$ by considering from Π_{n} 's drawing. It can be calculated from a cross of Δ_{n} and Ω_{n} edges and Ω_{n} edges crossing themselves. For the cross of Δ_{n} and Ω_{n} edges, even if we move the semicircle edges of Ω_{n} to either way, the number of crossing remains the same. But it is not true for the cross from Ω_{n} edges crossing themselves. For that, to find the upper bound for crossing number in Π_{n}, we mention on Ω_{n} edges crossing themselves.

Next, we introduce a construction of S_{n}^{i} for $i=1,2,3$. Given S_{n}^{i} where $i=1,2,3$ is a subgraph of Ω_{n} which is on the $3-$ axes,

$$
\begin{equation*}
\Omega_{n}=S_{n}^{1} \bigcup S_{n}^{2} \bigcup S_{n}^{3} \tag{4.1}
\end{equation*}
$$

Figure 10: Ω_{1} and Ω_{2}

Figure 11: Ω_{3}
Next, we explain a drawing on graph S_{n}^{i}. The vertices lie on $i-$ axis and the edges have to be drawn as semicircles. We begin to explain the drawing of S_{n}^{i} by using the examples of S_{3}^{i} 's drawing.
Step 1. We start drawing S_{1}^{i}. S_{1}^{i} is a graph with 2 vertices and only one edge. First, we locate the vertices on the $i-a x i s$ by fixed vertex ordering. Then the edge (semicircle) that connects between 2 vertices is drawn on the right side of $i-$ axis.
Step 2. We draw S_{2}^{i}. S_{2}^{i} is a graph that consists of 2 copies of S_{1}^{i}. We put the second copy of S_{1}^{i} above the first one. The edges connecting the copies are on the left side of i-axis.
Step 3. Finally S_{3}^{i} 's drawing is similary to Step 2 . We locate the second copy of S_{2}^{i} above the first one but the edges connecting between 2 copies are on the right.

Figure 12: The construction of S_{n}^{i} for $n=1,2,3$

Definition 4.1. A set of edges connecting of 2 copies of S_{n-1}^{i} is called graph Φ_{n} where $n=1,2,3, \ldots$. The order of Φ_{n} is $\left|V\left(\Phi_{n}\right)\right|=2^{n}$ and its size is $\left|E\left(\Phi_{n}\right)\right|=2^{n-1}$.

We define the edges connecting of 2 copies of S_{n-1}^{i} when n is odd as $\Phi_{2 j-1}$ and the edges connecting of 2 copies of S_{n-1}^{i} when n is even as $\Phi_{2 j}$ for $j=1,2, \ldots$. In Figure [12, we observe that the edges connecting of 2 copies of S_{1}^{i} are located on the right and the edges connecting of 2 copies of S_{2}^{i} are located on the left. Also the edges connecting of 2 copies of S_{3}^{i} are located on the right. We conclude that $\Phi_{2 j-1}$ edges have to be located on the opposite side of $\Phi_{2 j}$ for $j=1,2, \ldots$.

Definition 4.2. For the S_{n}^{i} 's drawing, the location of the edges of $\Phi_{2 j-1}$ which locate on the opposite side of $\Phi_{2 j}$ is called correct side, apart from that is called wrong side.

5 Good Drawing of Ω_{n}

In this section, we want to show that the construction of Ω_{n} is a drawing which the minimum number of a cross in Π_{n}. We called this drawing Good Drawing of Ω_{n}. Since $\Omega_{n}=S_{n}^{1} \cup S_{n}^{2} \bigcup S_{n}^{3}$ and S_{n}^{1}, S_{n}^{2}, and S_{n}^{3} drawings are similar, a consideration of any part is optional. From Figure 12, S_{1}^{i}, S_{2}^{i}, S_{3}^{i} where $i=1,2,3$ have no crossing number.

Since graph S_{n}^{i} is drawn from 2 copies of graph S_{n-1}^{i} linked together with graph Φ_{n}, that is

$$
\begin{equation*}
S_{n}^{i}=2 S_{n-1}^{i} \bigcup \Phi_{n} . \tag{5.1}
\end{equation*}
$$

Next, we order the vertices of S_{n}^{i} where $\left|V\left(S_{n}^{i}\right)\right|=2^{n}$ so as to prove that Ω_{n} drawing is good. We define the first copy of S_{n}^{i} as lower of S_{n}^{i}, while the other copy, so called upper of S_{n}^{i} denoted by $\mathbf{L} S_{n}^{i}$ and $\mathbf{U} S_{n}^{i}$ respectively. Then we place $\mathbf{L} S_{n}^{i}$ next to origin of i-axis and place $\mathbf{U} S_{n}^{i}$ next to $\mathbf{L} S_{n}^{i}$ copy to positive axis. For the plotting order, we start ordering from lower of S_{n}^{i} to upper of S_{n}^{i} that is

$$
\begin{align*}
V\left(\mathbf{L} S_{n}^{i}\right) & =\left\{v_{0}, v_{1}, \ldots, v_{2^{n-1}-1}\right\}, \\
V\left(\mathbf{U} S_{n}^{i}\right) & =\left\{v_{2^{n-1}}, v_{2^{n-1}+1}, \ldots, v_{2^{n}-1}\right\} . \tag{5.2}
\end{align*}
$$

For multiple edges, $e_{i j}$'s $\in \Phi_{n}$, which link between $\mathbf{L} S_{n}^{i}$ and $\mathbf{U} S_{n}^{i}$, they have to follow to the condition below,

$$
\begin{equation*}
i+j=2^{n}-1 \tag{5.3}
\end{equation*}
$$

Figure 13: Construction of S_{4}^{i}

It is noticable that in graph S_{n}^{i} is composed of graph Φ_{j} where $j=$ $1,2,3, \ldots, n$ and number of Φ_{j} in S_{n}^{i} equals 2^{n-j} copies. This fact follows the fact that $\Phi_{2 j-1}$ must be on the opposite side of $\Phi_{2 j}$.

Figure 14: S_{4}^{i} and S_{5}^{i}

Lemma 5.1. The graph S_{n-k}^{i} is a subgraph of S_{n}^{i}. In particular, there are 2^{k} copies of S_{n-k}^{i}, for $k=1,2,3, \ldots, n-1$.

Proof. From (5.1), graph S_{n}^{i} is made up of 2 copies of graph S_{n-1}^{i}, graph S_{n-1}^{i} is made up of 2 copies of graph S_{n-2}^{i},
graph S_{n-k+1}^{i} is made up of 2 copies of graph S_{n-k}^{i}.
Therefore, S_{n}^{i} graph contains S_{n-k}^{i} graph where $k=1,2,3, \ldots, n-1$, equaling number of $2 \cdot 2 \cdot 2 \cdots 2=2^{k}$ copies.

Lemma 5.2. The graph Φ_{j} is a subgraph of S_{n}^{i}. In particular, there are 2^{n-j} copies of Φ_{j} for $j=1,2,3, \ldots, n$.

Proof. From Lemma 5.1 and (5.1), graph S_{n}^{i} contains 2^{k} copies of S_{n-k}^{i} and S_{n-k}^{i} contains 1 of graph Φ_{n-k}. So S_{n}^{i} consists of Φ_{n-k} equal to number of S_{n-k}^{i} in S_{n}^{i}, that is 2^{k}. We let $j=n-k$ so $k=n-j$, therefore graph S_{n}^{i} consists of Φ_{j} where $j=1,2,3, \ldots, n$ equaling number of 2^{n-j} copies.

Definition 5.1. For graph S_{n}^{i}, we define $\underline{p c}\left(\Phi_{k}, \Phi_{l}\right)$ as the number of potential crossing which is created from crossing between graph Φ_{k} and graph Φ_{l} by considering only graph Φ_{l} which in S_{n}^{i} where $k=2,3,4, \ldots, n$ and $l<k$.

Lemma 5.3. For any integer $2 \leq k \leq n$ and $l<k$,

$$
\begin{equation*}
\underline{p c}\left(\Phi_{k}, \Phi_{l}\right)=\left(2^{l-1}-1\right)\left(2^{l-1}\right) . \tag{5.4}
\end{equation*}
$$

From (5.4), we see that $\underline{p c}\left(\Phi_{k}, \Phi_{l}\right)$ only depends on Φ_{l}, so

$$
\begin{equation*}
\underline{p c}\left(\Phi_{k_{1}}, \Phi_{l}\right)=\underline{p c}\left(\Phi_{k_{2}}, \Phi_{l}\right) \tag{5.5}
\end{equation*}
$$

where $l<\min \left\{k_{1}, k_{2}\right\}$.
Proof. We let $e_{m n}$ and $e_{o p}$ be edges of Φ_{k} and Φ_{l} respectively. By ordering vertices of graph S_{n}^{i} and $\left|V\left(\Phi_{n}\right)\right|=2^{n},\left|E\left(\Phi_{n}\right)\right|=2^{n-1}$, we have

$$
\begin{align*}
V\left(\mathbf{L} \Phi_{k}\right) & =\left\{v_{0}, v_{1}, \ldots, v_{2^{k-1}-1}\right\}, \\
V\left(\mathbf{U} \Phi_{k}\right) & =\left\{v_{2^{k-1}}, v_{2^{k-1}+1}, \ldots, v_{2^{k}-1}\right\}, \tag{5.6}\\
V\left(\mathbf{L} \Phi_{l}\right) & =\left\{v_{0}, v_{1}, \ldots, v_{2^{l-1}-1}\right\}, \\
V\left(\mathbf{U} \Phi_{l}\right) & =\left\{v_{2^{l-1}}, v_{2^{l-1}+1}, \ldots, v_{2^{l}-1}\right\} .
\end{align*}
$$

We can see that $m+n=2^{k}-1$ and $o+p=2^{l}-1$ where $m \in V\left(\mathbf{L} \Phi_{k}\right)$, $n \in V\left(\mathbf{U} \Phi_{k}\right), o \in V\left(\mathbf{L} \Phi_{l}\right)$ and $p \in V\left(\mathbf{U} \Phi_{l}\right)$. The edges $e_{m n}$ and $e_{o p}$ are potential crossing if and only if $v_{m}<v_{o}<v_{n}<v_{p}$ or $v_{o}<v_{m}<v_{p}<v_{n}$.

Next, we consider the number of potential crossing between Φ_{k} and Φ_{l} from all of edges in Φ_{l}.

The edge $e_{0,2^{l}-1}$ crosses with some edges in Φ_{k} when $0<m<2^{l}-1<n$. We find the number of m that correspond to the condition $0<m<2^{l}-1<$ n. We let $M_{0}=\left\{m \mid 0<m<2^{l}-1<n\right\}$ and we see that m can be $1,2,3, \ldots, 2^{l}-2$, that is

$$
\begin{equation*}
\left|M_{0}\right|=2^{l}-2 \tag{5.7}
\end{equation*}
$$

The edge $e_{1,2^{l}-2}$ crosses with edges in Φ_{k} when $1<m<2^{l}-2<n$. We find the number of m that correspond to $1<m<2^{l}-2<n$. We let
$M_{1}=\left\{m \mid 1<m<2^{l}-2<n\right\}$ and we see that m can be $2,3,4, \ldots, 2^{l}-3$, that is

$$
\begin{equation*}
\left|M_{1}\right|=2^{l}-4 \tag{5.8}
\end{equation*}
$$

The edge $e_{2,2^{l}-3}$ crosses with edges in Φ_{k} when $2<m<2^{l}-3<n$. We find the number of m that correspond to $2<m<2^{l}-3<n$. We let $M_{2}=\left\{m \mid 2<m<2^{l}-3<n\right\}$ and we see that m can be $3,4,5, \ldots, 2^{l}-4$, that is

$$
\begin{equation*}
\left|M_{2}\right|=2^{l}-6 . \tag{5.9}
\end{equation*}
$$

Similarly to the edge $e_{2^{l-1}-2,2^{l-1}+1}$ crosses with edges in Φ_{k} when $2^{l-1}-$ $2<m<2^{l-1}+1<n$. We let $M_{2^{l-1}-2}=\left\{m \mid 2^{l-1}-2<m<2^{l-1}+1<n\right\}$. We see that m can be $2^{l-1}-1$ and 2^{l-1}, that is

$$
\begin{equation*}
\left|M_{2^{l-1}-2}\right|=2 \tag{5.10}
\end{equation*}
$$

Finally, for the edge $e_{2^{l-1}-1,2^{l-1}}$, we can see that this edge can not cross with edges in Φ_{k}, So

$$
\begin{equation*}
\left|M_{2^{l-1}-1}\right|=0 \tag{5.11}
\end{equation*}
$$

From (5.7)-(5.11), that is all a number of potential crossing between Φ_{k} and Φ_{l}, so

$$
\begin{align*}
\underline{p c}\left(\Phi_{k}, \Phi_{l}\right) & =\left|M_{0}\right|+\left|M_{1}\right|+\left|M_{2}\right|+\ldots+\left|M_{2^{l-1}-2}\right|+\left|M_{2^{l-1}-1}\right| \\
& =\left(2^{l}-2\right)+\left(2^{l}-4\right)+\left(2^{l}-6\right)+\ldots+2+0 \\
& =\frac{\left(2^{l-1}\right)}{2}\left(0+2^{l}-2\right) \tag{5.12}\\
& =\left(2^{l-1}-1\right)\left(2^{l-1}\right) .
\end{align*}
$$

Definition 5.2. For graph S_{n}^{i}, we define $\overline{p c}\left(\Phi_{k}, \Phi_{l}\right)$ as the number of potential crossing which is created from crossing between graph Φ_{k} and graph Φ_{l} by considering from the whole of graph Φ_{k} which in S_{n}^{i} where $k=2,3,4, \ldots, n$ and $l<k$. That is a crossing of a creation of every copy of graph Φ_{l} in graph Φ_{k}.

Lemma 5.4. For any integer $2 \leq k \leq n$ and $l<k$,

$$
\begin{equation*}
\overline{p c}\left(\Phi_{k}, \Phi_{l}\right)=2^{k-1}\left(2^{l-1}-1\right) \tag{5.13}
\end{equation*}
$$

Proof. The number of potential crossing between graph Φ_{k} and graph Φ_{l} when we fix k depends on the number of all subgraph of Φ_{l} in Φ_{k}, that equal to 2^{k-l} copy. That is

$$
\begin{align*}
\overline{p c}\left(\Phi_{k}, \Phi_{l}\right) & =2^{k-l} \cdot \underline{p c}\left(\Phi_{k}, \Phi_{l}\right) \\
& =2^{k-l}\left(2^{l-l}-1\right)\left(2^{l-l}\right) \tag{5.14}\\
& =2^{k-1}\left(2^{l-l}-1\right)
\end{align*}
$$

By Lemma 5.4, it is notable that

$$
\begin{equation*}
\overline{p c}\left(\Phi_{n}, \Phi_{l}\right)>\overline{p c}\left(\Phi_{n-1}, \Phi_{l}\right)>\overline{p c}\left(\Phi_{n-2}, \Phi_{l}\right)>\ldots>\overline{p c}\left(\Phi_{3}, \Phi_{l}\right)>\overline{p c}\left(\Phi_{2}, \Phi_{l}\right) . \tag{5.15}
\end{equation*}
$$

Definition 5.3. For graph S_{n}^{i}, we define $p c^{(n)}\left(\Phi_{k}, \Phi_{l}\right)$ as the number of potential crossing which is created from crossing between graph Φ_{k} and graph Φ_{l} by considering from the whole of graph S_{n}^{i} which in S_{n}^{i} where $k=2,3,4, \ldots, n$ and $l<k$. That is a crossing of a creation of every copy of graph Φ_{l} in graph Φ_{k} and every copy of graph Φ_{k} in graph S_{n}^{i}.
Lemma 5.5. For any integer $2 \leq k \leq n$ and $l<k$,

$$
\begin{equation*}
p c^{(n)}\left(\Phi_{k}, \Phi_{l}\right)=2^{n-1}\left(2^{l-l}-1\right) . \tag{5.16}
\end{equation*}
$$

Proof. Consider,

$$
p c^{(n)}\left(\Phi_{k}, \Phi_{l}\right)=2^{n-k} \cdot \overline{p c}\left(\Phi_{k}, \Phi_{l}\right)=2^{n-k}\left(2^{k-1}\right)\left(2^{l-l}-1\right)=2^{n-1}\left(2^{l-l}-1\right)
$$

Lemma 5.6. For $n=3,4,5, \ldots$ and $j<n-1$, we have

$$
\begin{equation*}
p c^{(n)}\left(\Phi_{n}, \Phi_{j+1}\right)>p c^{(n)}\left(\Phi_{n}, \Phi_{j}\right) \tag{5.17}
\end{equation*}
$$

Proof. Consider,

$$
\begin{aligned}
p c^{(n)}\left(\Phi_{n}, \Phi_{j+1}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{j}\right)= & {\left[2^{n-(j+1)} \cdot \underline{p c}\left(\Phi_{n}, \Phi_{j+1}\right)\right]-\left[2^{n-j} \cdot \underline{p c}\left(\Phi_{n}, \Phi_{j}\right)\right] } \\
= & {\left[2^{n-(j+1)}\left(2^{(j+1)-1}-1\right)\left(2^{(j+1)-1}\right)\right] } \\
& -\left[2^{n-j}\left(2^{j-1}-1\right)\left(2^{j-1}\right)\right] \\
= & {\left[2^{n-(j+1)+(j+1)-1}\left(2^{(j+1)-1}-1\right)\right] } \\
& -\left[2^{n-j+j-1}\left(2^{j-1}-1\right)\right] \\
= & {\left[2^{n-1}\left(2^{j}-1\right)\right]-\left[2^{n-1}\left(2^{j-1}-1\right)\right] } \\
= & \left(2^{j}-1\right)-\left(2^{j-1}-1\right) \\
= & 2^{j}-2^{j-1}>0
\end{aligned}
$$

Thus, $p c^{(n)}\left(\Phi_{n}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{j+1}\right)>0$ is true for all $n=3,4,5, \ldots$.
Definition 5.4. For graph Π_{n}, we define $p c^{(n)}\left(\Delta_{n}, \Phi_{m}\right)$ as the number of potential crossing which is created from crossing between graph Δ_{n} and graph $\Phi_{m}, m=1,2, \ldots, n$, by considering from the whole of graph Π_{n}.

Lemma 5.7. For any integer $1 \leq m \leq n$,

$$
\begin{equation*}
p c^{(n)}\left(\Delta_{n}, \Phi_{m}\right)=3\left(2^{n-1}\right)\left(2^{m-1}-1\right) . \tag{5.18}
\end{equation*}
$$

Proof. We let $e_{i, j}$ and $e_{k, *}$ be edges of Φ_{m} and Δ_{n} respectively. We note that $*$ refers to the vertex on other axis. By ordering vertices of graph S_{n}^{i} in (5.6) and $\left|V\left(\Phi_{m}\right)\right|=2^{m},\left|E\left(\Phi_{m}\right)\right|=2^{m-1}$, we have the edge set of graph Φ_{m},

$$
\begin{equation*}
E\left(\Phi_{m}\right)=\left\{e_{0,2^{m}-1}, e_{1,2^{m}-2}, e_{2,2^{m}-3}, \ldots, e_{2^{m-1}-2,2^{m-1}+1}, e_{2^{m-1}-1,2^{m-1}}\right\} . \tag{5.19}
\end{equation*}
$$

The edge set of graph Δ_{n},

$$
\begin{equation*}
E\left(\Delta_{n}\right)=\left\{e_{0, *}, e_{1, *}, e_{2, *}, \ldots, e_{2^{n-1}-2, *}, e_{2^{n-1}-1, *}, \ldots, e_{2^{n}-2, *}, e_{2^{n}-1, *}\right\} . \tag{5.20}
\end{equation*}
$$

The edges $e_{i j}$ and $e_{k l}$ are potential crossing if and only if $v_{i}<v_{k}<$ $v_{j}<v_{l}$ or $v_{k}<v_{i}<v_{l}<v_{j}$. Next, we consider the number of potential crossing between Δ_{n} and Φ_{m}.

The edge $e_{0,2^{m}-1}$ in Φ_{m} crosses with some edges in Δ_{n} when $0<k<$ $2^{m}-1<*$. We find the number of k that correspond to the condition $0<k<2^{m}-1<*$. We let $K_{0}=\left\{k \mid 0<k<2^{m}-1<*\right\}$ and we see that k can be $1,2,3, \ldots, 2^{m}-2$, that is

$$
\begin{equation*}
\left|K_{0}\right|=3\left(2^{m}-2\right) . \tag{5.21}
\end{equation*}
$$

The edge $e_{1,2^{m}-2}$ in Φ_{m} crosses with some edges in Δ_{n} when $1<k<$ $2^{m}-2<*$. We find the number of k that correspond to the condition $1<k<2^{m}-2<*$. We let $K_{1}=\left\{k \mid 1<k<2^{m}-2<*\right\}$ and we see that k can be $2,3,4, \ldots, 2^{m}-3$, that is

$$
\begin{equation*}
\left|K_{1}\right|=3\left(2^{m}-4\right) . \tag{5.22}
\end{equation*}
$$

The edge $e_{2,2^{m}-3}$ in Φ_{m} crosses with some edges in Δ_{n} when $2<k<$ $2^{m}-3<*$. We find the number of k that correspond to the condition $2<k<2^{m}-3<*$. We let $K_{2}=\left\{k \mid 2<k<2^{m}-3<*\right\}$ and we see that k can be $3,4,5, \ldots, 2^{m}-4$, that is

$$
\begin{equation*}
\left|K_{2}\right|=3\left(2^{m}-6\right) . \tag{5.23}
\end{equation*}
$$

Similarly to the edge $e_{2^{m-1}-2,2^{m-1}+1}$ in Φ_{m} crosses with edges in Δ_{n} when $2^{m-1}-2<k<2^{m-1}+1<*$. We let $K_{2^{m-1}-2}=\left\{k \mid 2^{m-1}-2<\right.$ $\left.k<2^{m-1}+1<*\right\}$. We see that k can be $2^{m-1}-1$ and 2^{m-1}, that is

$$
\begin{equation*}
\left|K_{2^{m-1}-2}\right|=3(2) . \tag{5.24}
\end{equation*}
$$

Finally, for the edge $e_{2^{m-1}-1,2^{m-1}}$ in Φ_{m}, we can see that this edge can not cross with edges in Δ_{n}, So

$$
\begin{equation*}
\left|K_{2^{m-1}-1}\right|=0 . \tag{5.25}
\end{equation*}
$$

From (5.21)-(5.25) and Lemma 5.2, we see that the number of each subgraph Φ_{m} of S_{n}^{i}, that equal to 2^{n-m}. That is the number of potential crossing between Φ_{m} and Δ_{n} depends on the number of subgraph Φ_{m}, so

$$
\begin{align*}
p c^{(n)}\left(\Delta_{n}, \Phi_{m}\right) & =2^{n-m}\left(\left|K_{0}\right|+\left|K_{1}\right|+\left|K_{2}\right|+\ldots+\left|K_{2^{m-1}-2}\right|+\left|K_{2^{m-1}-1}\right|\right) \\
& =2^{n-m}\left(3\left(2^{m}-2\right)+3\left(2^{m}-4\right)+3\left(2^{m}-6\right)+\ldots+3(2)+0\right) \\
& =2^{n-m}\left(3\left[2^{m}-2+2^{m}-4+2^{m}-6+\ldots+2+0\right]\right) \\
& =2^{n-m}\left(3 \frac{\left(2^{m-1}\right)}{2}\left(0+2^{m}-2\right)\right) \tag{5.26}\\
& =2^{n-m}\left(3\left(2^{m-1}-1\right)\left(2^{m-1}\right)\right) \\
& =\left(2^{n-m+m-1}\right)\left(3\left(2^{m-1}-1\right)\right) \\
& =3\left(2^{n-1}\right)\left(2^{m-1}-1\right) .
\end{align*}
$$

Theorem 5.8. A graph Ω_{n} is called Good Drawing of Ω_{n} with the minimum number of a cross in Π_{n} under the following condition:
(A) If moving every edges in Φ_{n} to wrong side,i.e., moving Φ_{n} to Φ_{n-1} side, the number of a cross will increase.
(B) If moving every edges in Φ_{n-1} to wrong side,i.e., moving Φ_{n-1} to Φ_{n} side, the number of a cross will increase.
(C) If moving every edges in Φ_{j} where $2 \leq j \leq n-2$ to wrong side, the number of a cross will increase.

Proof. In order to prove, the approch that we use is we move all edges in Φ_{j} where $j=2,3, \ldots, n$ to the wrong side. Then the number of a cross between Φ_{j} and other Φ 's in the correct side will disappear. However, the number of a cross between Φ_{j} and other Φ 's in the wrong side will appear, that is the number of a cross of graph S_{n}^{i} will decrease and increase. That
is, we are proving that the decreased number of a cross of graph S_{n}^{i} is less than the increased number of a cross of graph S_{n}^{i}.

According to (A), we can prove in 2 cases; n is even and n is odd. We prove when n is even. After all edges in Φ_{n} have been moved to the wrong side, we can observe that the number of a cross between Φ_{n} and $\Phi_{2 j}$ has disappeared. Nevertheless, the number of a cross between Φ_{n} and $\Phi_{2 j-1}$ will appear. Next we define $\Phi_{2 j}$ as $\Phi_{n-2 k}$ and $\Phi_{2 j-1}$ as $\Phi_{n-(2 k-1)}$ where n is even and $k=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor$. That is, it is sufficient to show that,

$$
\sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n}, \Phi_{n-(2 k-1)}\right)>\sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n}, \Phi_{n-2 k}\right) .
$$

We consider,

$$
\begin{aligned}
& \sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n}, \Phi_{n-(2 k-1)}\right)-\sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n}, \Phi_{n-2 k}\right) \\
& =p c^{(n)}\left(\Phi_{n}, \Phi_{n-1}\right)+p c^{(n)}\left(\Phi_{n}, \Phi_{n-3}\right)+\ldots+p c^{(n)}\left(\Phi_{n}, \Phi_{n-(2 k-1)}\right)+\ldots \\
& \quad+p c^{(n)}\left(\Phi_{n}, \Phi_{6}\right)+p c^{(n)}\left(\Phi_{n}, \Phi_{4}\right)+p c^{(n)}\left(\Phi_{n}, \Phi_{2}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{n-2}\right) \\
& \quad-p c^{(n)}\left(\Phi_{n}, \Phi_{n-4}\right)-\ldots-p c^{(n)}\left(\Phi_{n}, \Phi_{n-2 k}\right)-\ldots-p c^{(n)}\left(\Phi_{n}, \Phi_{5}\right) \\
& \quad-p c^{(n)}\left(\Phi_{n}, \Phi_{3}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{1}\right) \\
& =\left[p c^{(n)}\left(\Phi_{n}, \Phi_{n-1}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{n-2}\right)\right]+\left[p c^{(n)}\left(\Phi_{n}, \Phi_{n-3}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{n-4}\right)\right] \\
& \quad+\ldots+\left[p c^{(n)}\left(\Phi_{n}, \Phi_{n-(2 k-1)}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{n-2 k}\right)\right]+\ldots \\
& \quad+\left[p c^{(n)}\left(\Phi_{n}, \Phi_{6}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{5}\right)\right]+\left[p c^{(n)}\left(\Phi_{n}, \Phi_{4}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{3}\right)\right] \\
& +\left[p c^{(n)}\left(\Phi_{n}, \Phi_{2}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{1}\right)\right] \\
& >0
\end{aligned}
$$

by grouping and from Lemma 5.6.
Therefore, if we move Φ_{n} where n is even to the wrong side, the number of a cross which is in S_{n}^{i} will increase. In the case of proving n is odd, the method is similar.

According to (B), the approch is similar to (A). We only prove in case n is even. After all edges in Φ_{n-1} have been moved to the wrong side, we can observe that the number of a cross between Φ_{n} and $\Phi_{2 j-1}$ has disappeared. Nevertheless, the number of a cross between Φ_{n-1} and $\Phi_{2 j}$ will appear. Next we define $\Phi_{2 j-1}$ as $\Phi_{n-(2 k+1)}$ and $\Phi_{2 j}$ as $\Phi_{n-2 k}$ where n is even and
$k=1,2, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor$. That is, it is sufficient to show that,

$$
\sum_{k=1}^{\left\lfloor\frac{n-2}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-2 k}\right)>\sum_{k=1}^{\left\lfloor\frac{n-2}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-(2 k+1)}\right)
$$

We consider,

$$
\begin{aligned}
& \sum_{k=1}^{\left\lfloor\frac{n-2}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-2 k}\right)-\sum_{k=1}^{\left\lfloor\frac{n-2}{2}\right\rfloor} p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-(2 k+1)}\right) \\
& =p c^{(n)}\left(\Phi_{n}, \Phi_{n-1}\right)+p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-2}\right)+p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-4}\right)+\ldots \\
& \quad+p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-2 k}\right)+\ldots+p c^{(n)}\left(\Phi_{n-1}, \Phi_{6}\right)+p c^{(n)}\left(\Phi_{n-1}, \Phi_{4}\right) \\
& \quad+p c^{(n)}\left(\Phi_{n-1}, \Phi_{2}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-3}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-5}\right)-\ldots \\
& \quad-p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-(2 k+1)}\right)-\ldots-p c^{(n)}\left(\Phi_{n-1}, \Phi_{5}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{3}\right) \\
& \quad-p c^{(n)}\left(\Phi_{n-1}, \Phi_{1}\right) \\
& =p c^{(n)}\left(\Phi_{n}, \Phi_{n-1}\right)+\left[p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-2}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-3}\right)\right] \\
& \quad+\left[p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-4}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-5}\right)\right]+\ldots+\left[p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-2 k}\right)\right. \\
& \left.\quad-p c^{(n)}\left(\Phi_{n-1}, \Phi_{n-(2 k+1)}\right)\right]+\ldots+\left[p c^{(n)}\left(\Phi_{n-1}, \Phi_{6}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{5}\right)\right] \\
& \quad+\left[p c^{(n)}\left(\Phi_{n-1}, \Phi_{4}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{3}\right)\right]+\left[p c^{(n)}\left(\Phi_{n-1}, \Phi_{2}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{1}\right)\right]
\end{aligned}
$$

>0
by grouping and from Lemma 5.6.
Therefore, if we move Φ_{n-1} where n is even to the wrong side, the number of a cross which is in S_{n}^{i} will increase. In the case of proving n is odd, the method is similar.

Finally, for (C), 4 cases can be proved as follows;
(i) n is odd and j is odd,
(ii) n is odd and j is even,
(iii) n is even and j is odd,
(iv) n is even and j is even.

First, we prove when n and j are odd. After all edges in Φ_{j} where j is odd and $1<j<n$ have been moved to the wrong side, we can observe that the number of a cross between Φ_{j} and $\Phi_{2 j-1}$ has disappeared. Nevertheless, the number of a cross between Φ_{j} and $\Phi_{2 j}$ will appear.

That is, we are going to show that the inequality below is true.

$$
\begin{aligned}
& \sum_{i=1, i-\text { odd }}^{n-j-1} p c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)+\sum_{i=1, i-\text { odd }}^{j-2} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right) \\
> & \sum_{i=2, i-\text { even }}^{n-j} p c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)+\sum_{i=2, i-\text { even }}^{j-1} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right) .
\end{aligned}
$$

We will consider,

$$
\begin{aligned}
& \sum_{i=1, i-o d d}^{n-j-1} p c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)+\sum_{i=1, i-o d d}^{j-2} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right) \\
& -\sum_{i=2, i-e v e n}^{n-j} p c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)-\sum_{i=2, i-e v e n}^{j-1} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right) \\
& =p c^{(n)}\left(\Phi_{j+1}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+3}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+5}, \Phi_{j}\right)+\ldots+p c^{(n)}\left(\Phi_{n-3}, \Phi_{j}\right) \\
& \quad+p c^{(n)}\left(\Phi_{n-1}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{j-1}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{j-3}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{j-5}\right) \\
& \quad+\ldots+p c^{(n)}\left(\Phi_{j}, \Phi_{4}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{2}\right)-p c^{(n)}\left(\Phi_{j+2}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+4}, \Phi_{j}\right) \\
& \quad-p c^{(n)}\left(\Phi_{j+6}, \Phi_{j}\right)-\ldots-p c^{(n)}\left(\Phi_{n-2}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-2}\right) \\
& \quad-p c^{(n)}\left(\Phi_{j}, \Phi_{j-4}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-6}\right)-\ldots-p c^{(n)}\left(\Phi_{j}, \Phi_{3}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{1}\right) \\
& =p c^{(n)}\left(\Phi_{j+1}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+3}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+5}, \Phi_{j}\right)+\ldots+p c^{(n)}\left(\Phi_{n-3}, \Phi_{j}\right) \\
& \quad+p c^{(n)}\left(\Phi_{n-1}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+2}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+4}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+6}, \Phi_{j}\right) \\
& \quad-\ldots-p c^{(n)}\left(\Phi_{n-2}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{n}, \Phi_{j}\right)+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{j-1}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-2}\right)\right] \\
& \quad+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{j-3}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-4}\right)\right]+\left[p c^{n)}\left(\Phi_{j}, \Phi_{j-5}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-6}\right)\right] \\
& \quad+\ldots+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{4}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{3}\right)\right]+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{2}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{1}\right)\right]
\end{aligned}
$$

Next, we are going to case $(i i), n$ is odd and j is even. After all edges in Φ_{j} where j is even and $1<j<n-1$ have been moved to the wrong side, we can observe that the number of a cross between Φ_{j} and $\Phi_{2 j}$ has disappeared. Nevertheless, the number of a cross between Φ_{j} and $\Phi_{2 j-1}$ will appear.

That is, we are going to show that the inequality below is true.

$$
\begin{aligned}
& \sum_{\substack{i=1, i-\text { odd } \\
n-j} c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)+\sum_{i=1, i-\text { odd }}^{j-j-1} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right)}^{j-j-1} p c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)+\sum_{i=2, i-\text { even }}^{j-2} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right) .
\end{aligned}
$$

We will consider,

$$
\begin{aligned}
& \sum_{i=1, i-o d d}^{n-j} p c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)+\sum_{i=1, i-o d d}^{j-1} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right) \\
- & \sum_{i=2, i-e v e n}^{n-j-1} p c^{(n)}\left(\Phi_{j+i}, \Phi_{j}\right)-\sum_{i=2, i-e v e n}^{j-2} p c^{(n)}\left(\Phi_{j}, \Phi_{j-i}\right) \\
= & p c^{(n)}\left(\Phi_{j+1}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+3}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+5}, \Phi_{j}\right)+\ldots+p c^{(n)}\left(\Phi_{n-2}, \Phi_{j}\right) \\
& +p c^{(n)}\left(\Phi_{n}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{j-1}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{j-3}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{j-5}\right) \\
& +\ldots+p c^{(n)}\left(\Phi_{j}, \Phi_{5}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{3}\right)+p c^{(n)}\left(\Phi_{j}, \Phi_{1}\right)-p c^{(n)}\left(\Phi_{j+2}, \Phi_{j}\right) \\
& -p c^{(n)}\left(\Phi_{j+4}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+6}, \Phi_{j}\right)-\ldots-p c^{(n)}\left(\Phi_{n-3}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{j}\right) \\
& -p c^{(n)}\left(\Phi_{j}, \Phi_{j-2}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-4}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-6}\right)-\ldots-p c^{(n)}\left(\Phi_{j}, \Phi_{4}\right) \\
& -p c^{(n)}\left(\Phi_{j}, \Phi_{2}\right) \\
= & p c^{(n)}\left(\Phi_{j+1}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+3}, \Phi_{j}\right)+p c^{(n)}\left(\Phi_{j+5}, \Phi_{j}\right)+\ldots+p c^{(n)}\left(\Phi_{n-2}, \Phi_{j}\right) \\
& +p c^{(n)}\left(\Phi_{n}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+2}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+4}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{j+6}, \Phi_{j}\right) \\
& -\ldots-p c^{(n)}\left(\Phi_{n-3}, \Phi_{j}\right)-p c^{(n)}\left(\Phi_{n-1}, \Phi_{j}\right)+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{j-1}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-2}\right)\right] \\
& +\left[p c^{(n)}\left(\Phi_{j}, \Phi_{j-3}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-4}\right)\right]+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{j-5}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{j-6}\right)\right] \\
& +\ldots+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{5}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{4}\right)\right]+\left[p c^{(n)}\left(\Phi_{j}, \Phi_{3}\right)-p c^{(n)}\left(\Phi_{j}, \Phi_{2}\right)\right] \\
& +p c^{(n)}\left(\Phi_{j}, \Phi_{1}\right)
\end{aligned}
$$

>0.

6 Calculation of the Upper Bound for Crossing Number in Π_{n}

The reason why we mention to draw in 3 -axes form is that we are able to notice that we have the same drawing from each axis. Therefore, the calculation of the upper bound for crossing number in Π_{n} is easier. That is, the result can be calculated from just one axis.

The upper bound for crossing number in Π_{n} can be calculated from a cross of graph Δ_{n} and graph Ω_{n} edges and graph Ω_{n} edges crossing themselves. We define $\left|\Delta_{n} c r \Omega_{n}\right|$ is the number of crosses for graph Δ_{n} cross graph Ω_{n} and $\left|\operatorname{cr} \Omega_{n}\right|$ is the number of a cross in graph Ω_{n}.

Theorem 6.1. For any integer $n \geq 1$,

$$
\begin{equation*}
\left|\Delta_{n} c r \Omega_{n}\right|=3\left(2^{n-1}\right)\left(2^{n}-n-1\right) \tag{6.1}
\end{equation*}
$$

where $\left|\Delta_{n} c r \Omega_{n}\right|$ is the number of crosses for graph Δ_{n} cross graph Ω_{n}.

Proof. We prove by mathematical induction that, for all $n \in \mathbb{I}^{+}$. We precise by induction on n. For $n=1,2$, it can be easily seen $\left|\Delta_{1} c r \Omega_{1}\right|=0$ and $\left|\Delta_{2} c r \Omega_{2}\right|=6$ by directly counting. Assume $\left|\Delta_{n} c r \Omega_{n}\right|$ holds true. Now we consider $\left|\Delta_{n+1} c r \Omega_{n+1}\right|$ which is the number of crosses for graph Δ_{n+1} cross graph Ω_{n+1}.

The number of crosses for graph Δ_{n+1} cross graph Ω_{n+1} is calculated from the number of potential crossing between graph Δ_{n+1} and all subgraphs Φ_{m} in Ω_{n+1}, where $m=1,2, \ldots, n+1$. By Lemma 5.7,

$$
\begin{aligned}
\left|\Delta_{n+1} c r \Omega_{n+1}\right|= & \sum_{m=1}^{n+1} p c^{(n+1)}\left(\Delta_{n+1}, \Phi_{m}\right) \\
= & p c^{(n+1)}\left(\Delta_{n+1}, \Phi_{1}\right)+p c^{(n+1)}\left(\Delta_{n+1}, \Phi_{2}\right)+\ldots \\
& +p c^{(n+1)}\left(\Delta_{n+1}, \Phi_{n+1}\right) \\
= & 3\left(2^{(n+1)-1}\right)\left(2^{1-1}-1\right)+3\left(2^{(n+1)-1}\right)\left(2^{2-1}-1\right)+\ldots \\
& +3\left(2^{(n+1)-1}\right)\left(2^{n-1}-1\right)+3\left(2^{(n+1)-1}\right)\left(2^{(n+1)-1}-1\right) \\
= & 3\left(2^{n}\right)\left(2^{0}-1\right)+3\left(2^{n}\right)\left(2^{1}-1\right)+\ldots+3\left(2^{n}\right)\left(2^{n}-1\right) \\
= & 3\left(2^{n}\right)\left[2^{0}+2^{1}+2^{2}+\ldots+2^{n-1}+2^{n}-1-1-\ldots-1\right] \\
= & 3\left(2^{n}\right)\left[\frac{2^{0}\left(2^{n+1}-1\right)}{2-1}-(n+1)\right] \\
= & 3\left(2^{(n+1)-1}\right)\left[2^{n+1}-(n+1)-1\right]
\end{aligned}
$$

Theorem 6.2. For any integer $n \geq 4$,
$\left|c r \Omega_{n}\right|= \begin{cases}3\left(2^{n-1}\right)\left[\frac{16}{9}\left(2^{n-4}-1\right)+\frac{8}{9}\left(2^{n-2}-1\right)-\frac{3 n-10}{3}-\frac{(n-2)^{2}}{4}\right], & n \text {-even, } \\ 3\left(2^{n-1}\right)\left[\frac{24}{9}\left(2^{n-3}-1\right)-n+3-\frac{(n-3)(n-1)}{4}\right], & n \text {-odd, }\end{cases}$
where $\left|c r \Omega_{n}\right|$ is the number of crosses in graph Ω_{n}.
Proof. We start proving for case n is even, we let $n=2 k$ where $k \in \mathbb{I}^{+}$. We prove by mathematical induction on k, for all $k \in \mathbb{I}^{+}$. If $k=1$, it can
be easily seen $\left|c r \Omega_{2}\right|=0$. For $k=2,\left|c r \Omega_{4}\right|=24$ by directly counting. Assume $\left|c r \Omega_{2 k}\right|$ holds true, that is

$$
\left|\operatorname{cr} \Omega_{2 k}\right|=3\left(2^{2 k-1}\right)\left[\frac{16}{9}\left(2^{2 k-4}-1\right)+\frac{8}{9}\left(2^{2 k-2}-1\right)-\frac{3(2 k)-10}{3}-\frac{(2 k-2)^{2}}{4}\right]
$$

We must show that $\left|\operatorname{cr} \Omega_{2 k}\right|$ implies $\left|\operatorname{cr} \Omega_{2(k+1)}\right|$. Now we consider $\left|\operatorname{cr} \Omega_{2(k+1)}\right|$ which is the number of crosses in graph $\Omega_{2(k+1)} \cdot\left|\operatorname{cr} \Omega_{2(k+1)}\right|$ is a result from the number of potential crossing which is created from crossing between all subgraphs Φ_{i} and Φ_{j} in $\Omega_{2(k+1)}$, where both of i and j are odd, including in case both of i and j are even. That is

$$
\begin{aligned}
& \left|c r \Omega_{2(k+1)}\right| \\
& \quad=3\left[p c^{(2 k+2)}\left(\Phi_{3}, \Phi_{1}\right)+p c^{(2 k+2)}\left(\Phi_{5}, \Phi_{1}\right)+\ldots+p c^{(2 k+2)}\left(\Phi_{2 k+1}, \Phi_{1}\right)\right] \\
& +3\left[p c^{(2 k+2)}\left(\Phi_{5}, \Phi_{3}\right)+p c^{(2 k+2)}\left(\Phi_{7}, \Phi_{3}\right)+\ldots+p c^{(2 k+2)}\left(\Phi_{2 k+1}, \Phi_{3}\right)\right] \\
& +3\left[p c^{(2 k+2)}\left(\Phi_{7}, \Phi_{5}\right)+p c^{(2 k+2)}\left(\Phi_{9}, \Phi_{5}\right)+\ldots+p c^{(2 k+2)}\left(\Phi_{2 k+1}, \Phi_{5}\right)\right]+\ldots \\
& +3\left[p c^{(2 k+2)}\left(\Phi_{2 k-1}, \Phi_{2 k-3}\right)+p c^{(2 k+2)}\left(\Phi_{2 k+1}, \Phi_{2 k-3}\right)+p c^{(2 k+2)}\left(\Phi_{2 k+1}, \Phi_{2 k-1}\right)\right] \\
& +3\left[p c^{(2 k+2)}\left(\Phi_{4}, \Phi_{2}\right)+p c^{(2 k+2)}\left(\Phi_{6}, \Phi_{2}\right)+\ldots+p c^{(2 k+2)}\left(\Phi_{2 k+2}, \Phi_{2}\right)\right] \\
& +3\left[p c^{(2 k+2)}\left(\Phi_{6}, \Phi_{4}\right)+p c^{(2 k+2)}\left(\Phi_{8}, \Phi_{4}\right)+\ldots+p c^{(2 k+2)}\left(\Phi_{2 k+2}, \Phi_{4}\right)\right] \\
& +3\left[p c^{(2 k+2)}\left(\Phi_{8}, \Phi_{6}\right)+p c^{(2 k+2)}\left(\Phi_{10}, \Phi_{6}\right)+\ldots+p c^{(2 k+2)}\left(\Phi_{2 k+2}, \Phi_{6}\right)\right]+\ldots \\
& +3\left[p c^{(2 k+2)}\left(\Phi_{2 k}, \Phi_{2 k-2}\right)+p c^{(2 k+2)}\left(\Phi_{2 k+2}, \Phi_{2 k-2}\right)+p c^{(2 k+2)}\left(\Phi_{2 k+2}, \Phi_{2 k}\right)\right] \\
& \quad=3\left(2^{2 k+1}\right)\left[\left(2^{1-1}-1\right)+\left(2^{1-1}-1\right)+\left(2^{1-1}-1\right)+\ldots+\left(2^{1-1}-1\right)+\left(2^{1-1}-1\right)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{3-1}-1\right)+\left(2^{3-1}-1\right)+\left(2^{3-1}-1\right)+\ldots+\left(2^{3-1}-1\right)+\left(2^{3-1}-1\right)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{5-1}-1\right)+\left(2^{5-1}-1\right)+\left(2^{5-1}-1\right)+\ldots+\left(2^{5-1}-1\right)+\left(2^{5-1}-1\right)\right] \\
& +\ldots+3\left(2^{2 k+1}\right)\left[\left(2^{(2 k-3)-1}-1\right)+\left(2^{(2 k-3)-1}-1\right)+\left(2^{(2 k-1)-1}-1\right)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{2-1}-1\right)+\left(2^{2-1}-1\right)+\left(2^{2-1}-1\right)+\ldots+\left(2^{2-1}-1\right)+\left(2^{2-1}-1\right)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{4-1}-1\right)+\left(2^{4-1}-1\right)+\left(2^{4-1}-1\right)+\ldots+\left(2^{4-1}-1\right)+\left(2^{4-1}-1\right)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{6-1}-1\right)+\left(2^{6-1}-1\right)+\left(2^{6-1}-1\right)+\ldots+\left(2^{6-1}-1\right)+\left(2^{6-1}-1\right)\right] \\
& +\ldots+3\left(2^{2 k+1}\right)\left[\left(2^{(2 k-2)-1}-1\right)+\left(2^{(2 k-2)-1}-1\right)\right]+3\left(2^{2 k+1}\right)\left[\left(2^{(2 k)-1}-1\right)\right] \\
& \quad=3\left(2^{2 k+1}\right)[0+0+\ldots+0] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{2}+2^{2}+\ldots+2^{2}\right)-(1+1+\ldots+1)\right]
\end{aligned}
$$

$$
\begin{aligned}
& +3\left(2^{2 k+1}\right)\left[\left(2^{4}+2^{4}+\ldots+2^{4}\right)-(1+1+\ldots+1)\right] \\
& +\ldots+3\left(2^{2 k+1}\right)\left[\left(2^{2 k-4}+2^{2 k-4}\right)-(1+1)\right]+3\left(2^{2 k+1}\right)\left[\left(2^{2 k-2}-1\right)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{1}+2^{1}+\ldots+2^{1}\right)-(1+1+\ldots+1)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{3}+2^{3}+\ldots+2^{3}\right)-(1+1+\ldots+1)\right] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{5}+2^{5}+\ldots+2^{5}\right)-(1+1+\ldots+1)\right] \\
& +\ldots+3\left(2^{2 k+1}\right)\left[\left(2^{2 k-3}+2^{2 k-3}\right)-(1+1)\right]+3\left(2^{2 k+1}\right)\left[\left(2^{2 k-1}-1\right)\right] \\
& =3\left(2^{2 k+1}\right)\left[2^{2}(k-1)-(k-1)\right]+3\left(2^{2 k+1}\right)\left[2^{4}(k-2)-(k-2)\right] \\
& +\ldots+3\left(2^{2 k+1}\right)\left[2^{2 k-4}(2)-2\right]+3\left(2^{2 k+1}\right)\left[\left(2^{2 k-2}(1)-1\right)\right] \\
& +3\left(2^{2 k+1}\right)\left[2^{1}(k)-(k)\right]+3\left(2^{2 k+1}\right)\left[2^{3}(k-1)-(k-1)\right] \\
& +\ldots+3\left(2^{2 k+1}\right)\left[2^{2 k-3}(2)-2\right]+3\left(2^{2 k+1}\right)\left[\left(2^{2 k-1}(1)-1\right)\right] \\
& =3\left(2^{2 k+1}\right)\left[\left(2^{2}(k-1)+2^{4}(k-2)+\ldots+2^{2 k-4}(2)+2^{2 k-2}(1)\right)\right. \\
& -((k-1)+(k-2)+\ldots+2+1)] \\
& +3\left(2^{2 k+1}\right)\left[\left(2^{1}(k)+2^{3}(k-1)+\ldots+2^{2 k-3}(2)+2^{2 k-1}(1)\right)\right. \\
& -((k)+(k-1)+\ldots+2+1)] \\
& =3\left(2^{2 k+1}\right)\left[\frac{16}{9}\left(2^{2 k-2}-1\right)-\frac{4}{3}(k-1)-\frac{(k-1)(k)}{2}\right] \\
& +3\left(2^{2 k+1}\right)\left[\frac{8}{9}\left(2^{2 k}-1\right)-\frac{2}{3}(k)-\frac{(k)(k+1)}{2}\right] \\
& =3\left(2^{2 k+1}\right)\left[\frac{16}{9}\left(2^{2 k-2}-1\right)+\frac{8}{9}\left(2^{2 k}-1\right)-\left(\frac{4}{3}(k-1)+\frac{2}{3} k\right)-\left(\frac{(k-1) k}{2}+\frac{k(k+1)}{2}\right)\right] \\
& =3\left(2^{2 k+1}\right)\left[\frac{16}{9}\left(2^{2 k-2}-1\right)+\frac{8}{9}\left(2^{2 k}-1\right)-\frac{4 k-4+2 k}{3}-\frac{k^{2}-k+k^{2}+k}{2}\right] \\
& =3\left(2^{2 k+1}\right)\left[\frac{16}{9}\left(2^{2 k-2}-1\right)+\frac{8}{9}\left(2^{2 k}-1\right)-\frac{6 k-4}{3}-k^{2}\right] \\
& =3\left(2^{2 k+1+1-1}\right)\left[\frac{16}{9}\left(2^{2 k-2+4-4}-1\right)+\frac{8}{9}\left(2^{2 k+2-2}-1\right)-\frac{6 k-4+10-10}{3}-\left(\frac{2 k+2-2}{2}\right)^{2}\right] \\
& =3\left(2^{(2 k+2)-1}\right)\left[\frac{16}{9}\left(2^{(2 k+2)-4}-1\right)+\frac{8}{9}\left(2^{(2 k+2)-2}-1\right)-\frac{(6 k+6)-10}{3}-\left(\frac{(2 k+2)-2}{2}\right)^{2}\right] \\
& =3\left(2^{2(k+1)-1}\right)\left[\frac{16}{9}\left(2^{2(k+1)-4}-1\right)+\frac{8}{9}\left(2^{2(k+1)-2}-1\right)-\frac{3(2(k+1))-10}{3}-\frac{(2(k+1)-2)^{2}}{4}\right] .
\end{aligned}
$$

Hence the prove is complete.

The result of the upper bound for crossing number in Π_{n} can be calcu-
lated from the Theorem 6.1 and 6.2, We present in the next theorem.
Theorem 6.3. For any integer $n \geq 4$, the upper bound of crossing number of $Q_{n} \times K_{3}$ satisfies the inequality
$\operatorname{cr}\left(Q_{n} \times K_{3}\right) \leq \begin{cases}3\left(2^{n-1}\right)\left[2^{n}+\frac{16}{9}\left(2^{n-4}-1\right)+\frac{8}{9}\left(2^{n-2}-1\right)-\frac{6 n-7}{3}-\frac{(n-2)^{2}}{4}\right], & n \text {-even }, \\ 3\left(2^{n-1}\right)\left[2^{n}+\frac{24}{9}\left(2^{n-3}-1\right)-2 n+2-\frac{(n-3)(n-1)}{4}\right], & n \text {-odd. }\end{cases}$

7 Numerical Result

In this section, we consider the cartesian product of Q_{n} and K_{3} for $n=3,4, \ldots, 12$. Then we give some results for the upper bound of crossing number of $Q_{n} \times K_{3}$ in the form (6.3) in the Table below.

n	$\left\|\Delta_{n} c r \Omega_{n}\right\|$	$\left\|c r \Omega_{n}\right\|$	Upper bound of $\operatorname{cr}\left(Q_{n} \times K_{3}\right)$
3	48	0	48
4	264	24	288
5	1,248	192	1,440
6	5,472	1,152	6,624
7	23,040	5,760	28,800
8	94,848	26,496	121,344
9	385,536	115,200	500,736
10	$1,555,968$	485,376	$2,041,344$
11	$6,254,592$	$2,003,200$	$8,257,792$
12	$25,085,952$	$8,165,376$	$33,251,328$

Table 1: The upper bound for crossing number of $Q_{n} \times K_{3}$ for $n=3, \ldots, 12$

8 Concluding Remarks

In this paper, we consider the cartesian product of Q_{n} and K_{3}. We present a drawing of $Q_{n} \times K_{3}$ called, a 3 - axes drawing of $Q_{n} \times K_{3}$ for finding the upper bound for the crossing number of $Q_{n} \times K_{3}$. Then we construct a graph Π_{n} and prove that Π_{n} is a good drawing which the minimum number of a cross in Π_{n}.

Acknowledgement : The authors would like to thank Chiang Mai University, Chiang Mai, Thailand, for the financial support.

References

[1] P. Erodös, R.K. Guy, Crossing number problem, Amer. Math. Monthly 80 (1973) 52-58.
[2] M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Alg. Disc. Meth. 4 (1983) 312-316.
[3] F. Harary, J.P. Hayes, H.J. Wu, A survey of the theory of hypercube graphs, Computers and Mathematics with Applications 15 (4) (1988) 277-289.
[4] R.B. Eggleton, R.P. Guy, The crossing number of the n-cube, Amer Math Soc Notices 17 (1970) 757.
[5] L. Faria, C.M.H. de Figueiredo, O. Sykora, I. Vrto, An improved upper bound on the crossing number of the hypercube, J. Graph Theory 59 (2008) 145-159.
[6] Y. Yang, G. Wang, H. Wang, Y. Zhou, The Erdös and Guy's conjectured equality on the crossing number of hypercubes, preprint arXiv:1201.4700 (2012).
(Received 21 February 2017)
(Accepted 22 April 2017)
Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

