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Abstract : One of the problems of stock trading is that the stock prices are not
consistent, depending on market condition. The Mean Reversion process of Pairs
Trading is a market neutral strategy, which is independent of market movements
and carried an assumption that any trading index will reverse to its mean value.
This paper proposes a novel algorithm, called multiclass Pairs Trading, which is
an advance of co-integration method in Pairs Trading technique. The proposed
model uses Mean Reversion and coefficient of variance (CV) to analyze and classify
a series of stocks to have different distribution. It provides a buffer-trading zone
when the paired stocks are about to change their directions from high to low and
vice versa. Moreover, this model extends an opportunity for any highly correlated
and paired stocks to cross-trade with any lowly correlated and paired stocks. It
serves to improve performance in portfolio trading. The 10-year data were collected
from 127 stocks listed in the Global Dow. The results show that using the proposed
model for the co-integrated Pairs Trading outperforms those of the conventional
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co-integrated Pairs Trading outstandingly. Thus, benefits of this model are not
only mitigating stock trading risk but also maximise returns of them.

Keywords : Pairs Trading; Mean Reversion; coefficient of variance; risk mitiga-
tion.
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1 Introduction

An early attempt at Pairs Trading is credited to Nunzio Tartaglia, a quantita-
tive analyst at Morgan Stanley in the 1980s. Tartaglia gathered a group of profes-
sionals with the aim of forming a quantitative arbitrage strategy using statistical
techniques. One technique that they implemented was trading pairs of securities.
The procedure distinguishes between pairs of security prices that move together.
The abnormality in the relationship indicates that the pair will be traded with an-
ticipation that the abnormality will be neutralised in the future. Different schools
of thought offer an alternative that is Mean Reversion. In normal circumstance,
positive and negative returns on financial assets is temporary. It is because return
reverses to the mean from time to time and the speed of the reversing process can
vary from one day to one year (Hillebrand, 2004[1]). Lo and Mackinlay (1998)[2],
Fama and French (1988)[3], and Poterba and Summers (1988) demonstrated us-
ing empirical evidence that positive market return persists over the short term.
However, in the long term, profit opportunity is reverted. Wachter (2002)[4]; and
Campbell Chan and Viceira (2003)[5] confirmed that Mean Reversion possesses
the characteristics of equity index return over the long term.

Additionally, Bessembinder, Coughenour, Seguin, and Smoller (1995)[6] de-
termined that Mean Reversion that exists in the financial markets uses empirical
evidence from the term structure of future prices. The data sample of the authors
study was based on 11 different future markets including financial, metals, and
agriculture markets. The daily settlement price from January 1982 to December
1991 was used. The disadvantage of the study methodology is that it can only
spot Mean Reversion in the equilibrium condition of the market, and it cannot be
applied when the market is in disequilibrium. Gatev, Goetzmann, and Rouwen-
horst (2006)[7] conducted an investigation into the risk and return characteristics
of Pairs Trading using data from 1962 to 2002. The authors showed that simple
Mean Reversion for a single stock index could not produce clear values. However,
the values can be generated when trading suitably formulate pairs of stocks. Per-
lin (2007)[8] proposed a multivariate version of Pairs Trading, which developed an
artificial pair for a stock based on the information of assets. This method assessed
the performance of three versions of the multivariate approach for the Brazilian
stock market using data for 57 assets from 2000 to 2006. The examination of per-
formance was conducted using the calculation of raw returns, excessive returns,
beta, and alpha. Mudchanatongsuk, Primbs and Wong (2008)[9] investigated a
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uniform and analytical framework to implement Pairs Trading on arbitrary pairs
and suggested an asset pricing-based model to parameterise Pairs Trading that
included theoretical considerations rather than statistical history. Huck (2010)[10]
proposed a general and flexible framework for the selection of random pairs. Multi-
ple return forecasts based on bivariate information sets and multi-criteria decision
techniques were implemented. Currently, there are four main approaches to Pairs
Trading: i) the co-integration method (Vidyamurthy, 2004[11]), ii) the distance
method (Gatev et al, 2006[7]), iii) the stochastic spread method (Elliott, Van Der
Hoek, and Malcolm, 2004[12]), and iv) Combined Forecasts and Multi-Criteria
Decision Methods (MCDM) (Huck, 2010[10]).

The objective of this study is to introduce an advanced model of the current co-
integration using in the Pairs Trading technique, called, multiclass Pairs Trading.
It analyses and classifies a series of stocks to have different distribution. This
newly invented technique improves risk mitigation by providing a buffer-trading
zone when the paired stocks are about to change their directions from high to low
and vice versa. Moreover, the proposed model extends an opportunity for a highly
correlated and paired stock to cross-trade with any lowly correlated and paired
stock. It serves to improve performance in portfolio trading.

2 Theoretical Considerations

2.1 The Proposed Multiclass Pairs Trading

The methodology of this research based on Pairs Trading using Mean Rever-
sion and CV. The Mean Reversion technique analyses any dataset whose distri-
butions move from upward to downward directions and vice versa. Following, we
introduce classification technique using coefficient of variance to group the stock
indexes (variable datasets, and now called datasets), followed by the Mean Rever-
sion technique.

In theory, the conventional co-integrated Pairs Trading method identifies two
stocks that move in time series together and calculate a correlation between them.
The model begins by normalising the datasets using the mean and standard devi-
ation followed to co-integration them with Pearsons correlation coefficient(ρ), and
it represents by

cov(xi, yi)

ρxi
, ρyi

=
E[(xi − µxi)(yi − µyi)]

ρxi
ρyi

(2.1)

where cov(xi, yi) represents the covariance of xi, and yi, when i = 1, 2, ..., n. Fol-
lowing, we select the paired stocks in order from high to low.

Next, we introduce the Mean Reversion and CV to analyse and group the
datasets. The Mean Reversion algorithm is expressed(Premanode et al., 2013[13])
as follows:

i) Compute the mean µi(t) of xi(t), where i = 1, 2, ..., n.

ii) Compute the variance Vi(t) of xi(t).
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iii) By normalising each Vi(t) using µi(t), we obtain Vi(t)
µi(t)

.

iv) Using the datasets xi(t) from the upward scenario,we calculate and plot
V1(t) > V2(t) > . . . > Vi−1(t) > Vi(t).

v) The same process is applied to the downward scenario where V1(t) < V2(t) <
. . . < Vi−1(t) < Vi(t).

vi) If Vi(t)
µi(t)

= Vi−1(t)
µi−1(t)

, ignore the calculation, but move the plot one step forward.

vii) Repeat the steps in items iv) to vi) and stop when i = n.

viii) We obtain a curve of xi(t) that marks points of local maxima and minima.

In the next process, we introduce the coefficient of variance (CV) to compute
the datasets, at which is represented by

CVi =
ρi
µi

(2.2)

where ρi represents standard deviation and µi represents mean. Consequent to
applying the Mean Reversion and CV, we derived a number of groups of datasets
and termed them to CV. Each CV may then have different normal distribution,
reflecting different values for the paired stock indices. Following to plotting stan-
dard deviation, we divide the datasets into six classes in time series; namely,
CV1, CV2, CV3, CV4, CV5 and CV6. we then plot the mean of CV1 to CV6 between
the mean of CV3 and CV4. Hence, in the normal distribution, standard deviation
of the CV1 should be significantly deviated greater than the CV2. Applying the
same rationale, standard deviation of the CV6 is significantly deviated greater than
CV5. In each CV, we calculate the return Pairs Trading (Perlin, 2007[8]) using
Eq.(2.3). The co-integrated Pairs Trading formula is expresses as follows:

RCO =

T∑
t=1

n∑
i=1

Ri(t) · IL&Si (t) ·Wi +

(
T∑
t=1

n∑
i=1

Tci(t) ·
[
ln

(
1− C
1 + C

)])
(2.3)

whereRi(t) represents the real return of asset i at time t, calculated by ln
(

Pi(t)
Pi(t−1)

)
;

IL&Si (t) represents the dummy variable with a value of 1 if a Long position is cre-
ated for the asset i, a value of -1 if a short position is created, and 0 otherwise;
Tci(t) represents the dummy variable that takes a value of 1 if a transaction is
made for the asset i at time t and 0 otherwise; C represents the transaction cost
per operation (by percentage); T represents the number of observations on the
whole trading period, and

Wi(t) =
1∑n

i=1|IL&Si (t)|
for |IL&Si (t)| =

{
1 if trade exist;
0 if no trade.

(2.4)

where Wi(t) is the weighting variable that controls for portfolio construction at
time t, assuming that the same weight is applied to each transaction.
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2.2 Benefits of the Multiclass Pairs Trading

Since the co-integrated Pairs Trading is used to buying a stock, commodity or
currency under the expectation that the asset will rise or fall in value from time to
time. As a result, the long position is exercised when the curve of a paired stock is
at high peak (maxima). Whereas, the short position is exercised when the paired
stock is moving at the low peak (minima). With the proposed multiclass Pairs
Trading, there are two extra benefits, which are follows:

i) By applying the proposed model to the historical trading datasets, we then
found that a number of paired stocks could distribute to any CV, depending
on there values of Mean Reversion and CV. An example is given that the
highest correlated paired stock may locate in CV1. Once the trade begins
within any CV, we can exercise either long or short positions in time series
until the existing CV starts to change the new CV. In the situation where
the stock starts to diverge, we then analyse the new CV and compile it
with the historical CV datasets. Hence, the trading can resume. Since the
stocks are traded within the same CV from time to time, the returns are
maximised. Without using the proposed model, we will never know when
the correlation of any paired indices is about to diverge.

ii) With respect to portfolio trading, there is a possibility that any stock indices
in the different correlation can be cross-paired and cross-traded among them,
provide that they have shared the same CV. Thus, it creates additional
trading opportunities inasmuch as risk is minimised.

3 Data

The datasets were composed of 127 daily stocks recorded in the Global Dow.
Table 1 presents the blue chip stocks of companies with a national reputation for
reliability, quality, and the capability to operate profitably under extreme market
conditions. The stocks are among the most widely and actively traded ones. The
datasets contain daily stock prices over a 10-year period from 1 August 2002 as
shown in Table 1. Saturday and Sunday price observations were removed prior to
the analysis to avoid any bias in the results from weekend market closures.

4 Simulation and Results

4.1 Generating the Mean Regression and CV

Referring to Bloomberg terminal, Table 1 summarises the 127 datasets of
Global Dow indices in the year 2013. Following, Fig. 1 presents simulation proce-
dure of the proposed multi-class Pairs Trading model using Mean Reversion and
CV, and it is expressed in order as follows:
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Table 1: The 127 listed companies in Global Dow indices in the year 2013

3M Co. China Mobile Ltd. Infosys Technologies Royal Bank of Canada
ABB Ltd. China Unicom Ltd. Intel Corp. Samsung Electronics
Abbott Laboratories Cisco Systems Inc. IBM Corp. SAP AG
Alcoa Inc. CLP Holdings Ltd. Johnson & Johnson Schlumberger Ltd.
Allianz SE Coca-Cola Co. JPMorgan Chase & Co. Siemens AG
Amazon.com Inc. Colgate-Palmolive Co. Komatsu Ltd. Societe Generale S.A.
America Movil S.A.B. Compagnie de Saint-Gobain L.M. Ericsson Telephone Sony Corp.
de C.V. Series L S.A. Co. Series B Sony Corp.
American Express Companhia Energetica de LVMH Moet Hennessy Southwest Airlines
Co. Minas Gerais-CEMIG Pr Louis Vuitton Co.
Amgen Inc. ConocoPhillips McDonald’s Corp. Taiwan Semiconductor

Manufacturing Co. Ltd.
Anglo American Credit Suisse Group Medtronic Inc. Takeda Pharmaceutical
PLC Co. Ltd.
Anheuser-Busch InBev Daimler AG Merck & Co. Inc. Tata Steel Ltd.
N.V.
Apple Inc. Deere & Co. Microsoft Corp. Telefonica S.A.
Assicurazioni Generali Deutsche Bank AG Mitsubishi Corp. Tesco PLC
S.p.A.
AstraZeneca PLC E.I. DuPont Mitsui & Co. Ltd. Time Warner Inc.

de Nemours & Co.
AT&T Inc. E.ON AG Monsanto Co. Toshiba Corp.
BAE Systems PLC eBay Inc. National Australia Total S.A.

Bank Ltd.
Banco Bilbao Vizcaya EDP-Energias de National Grid PLC Toyota Motor Corp.
Argentaria S.A. Portugal S.A.
Banco Santander S.A. Esprit Holdings Ltd. Nestle S.A. Travellers Cos. Inc.
Bank of America Corp. Express Scripts. Inc. News Corp. ClA UBS AG
Bank of New York Exxon Mobil Corp. Nike Inc. ClB UniCredit S.p.A.
Mellon Corp.
BASF S.E. FedEx Corp. Nintendo Co. Ltd. United Parcel

Service Inc.
Baxter International Freeport-McMoRan Nippon Steel Corp. United Tech. Corp.
Inc. Copper & Gold Inc.
BHP Billiton Ltd. General Electric Co. Nokia Corp. Vale S.A. Pref A
BNP Paribas S.A. Gilead Sciences Inc. Panasonic Corporation Veolia Environment

S.A.
Boeing GlaxoSmithKline PLC Petroleo Brasileiro Verizon Com.

S/A Pref Inc.
BP PLC Goldman Sachs Group Pfizer Inc. Vestas Wind Systems

Inc. A/S
Bridgestone Corp. Hewlett-Packard Co. Potash Corp. of Vinci S.A.

Saskatchewan Inc.
Canon Inc. Home Depot Inc. Procter & Gamble Co. Vodafone Group PLC
Carnival Corp. Honda Motor Co. Ltd. Reliance Industries Ltd. Wall-Mart Stores Inc.
Carrefour S.A. Honeywell International Inc. Research in Motion Ltd. Walt Disney Co.
Caterpillar Inc. HSBC Holdings PLC UK Re Rio Tinto PLC Wells Fargo
Chevron Corp. Hutchison Whampoa Ltd. Roche Holding AG Part. N.A.

i) Assign a matrix xki(t) where k represents the number of columns, k = 127
and i represents the number of rows, i = 3961

ii) By normalising the matrix of xki(t), we obtain Aki(t)

iii) Calculate Aki(t) for k = 127 and i = 3961

iv) By selecting the highest return of Aki(t) using the Person’s correlation co-
efficient, we obtain xp1(t) and xp2(t) in time series, see results in Table 3
and 4

v) Use the Mean Reversion algorithm in section 2.1 to compute each point of
reverse of xp1(t) and xp2(t) in time series. Then mark the reversed local
maxima and minima of xp1(t) and xp2(t) in time series
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vi) Compute each local xp1(t) and xp2(t) in time series with the coefficient of
variance (CV)

vii) Thus, the local xp1(t) and xp2(t) in time series are grouped into different
CV1, CV2, . . . , CVn, and termed to xp1(tCV ) and xp2(tCV )

viii) Calculate expected returns of the local xp1(t), xp2(t), xp1(tCV ), and xp2(tCV )

ix Next, we compare the expected returns of xp1(t) and xp2(t) (the original
datasets) with the returns of xp1(tCV ) and xp2(tCV ) (the datasets, which
are applied the Mean Reversion and CV). The probabilities for calculating
the expected returns of xp1(t), xp2(t), xp1(tCV ) and xp2(tCV ) using Markov
chain are listed in Table 5 and 6. Moreover, the expected returns of xp1(t),
xp2(t), xp1(tCV ) and xp2(tCV ) are shown in Table 7 and 8

x) For robustness test, use the same procedures listed in item v) and item vi)
calculating the expected returns of another ten cross-pairing that listed in
table 2. Then compare the expected returns of ten cross-pairing stocks of
xp1(t) and xp2(t) (the original datasets) with the xp1(tCV ) and xp2(tCV ),
the datasets which have applied the Mean Reversion and CV, are also shown
in Table 9 and 10.

Figure 1: Procedure of the multiclass Pairs Trading model
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The workflow of the multi-class Pairs Trading demonstrated in Figure 1 is
started by normalising all the datasets xki(t), pairing xki(t) with Pearson’s coef-
ficient. Then, we select the pair that has the highest value of CV and term to
Aki(t), and de-normalising the paired of Aki(t). Finally, we obtain xp1(t) and
xp2(t). The next step is to calculate the multi-class Pairs Trading using Scenario
II. The results of Scenario II are then subject to compare with Scenario I which is
the conventional co-integration of the paired trading.

In Scenario I, we calculate the expected returns of co-integrated xp1(t) and
xp2(t), see Table 7 and 8, using probability in Table 5 and 6 whereas we process
Scenario II with the following:

• compute mean and variance of xp1(t) and xp2(t)

• construct point of reversal using items i) to viii) under Section 2.1

• group xp1(t) and xp2(t) and use Equation 2.2 to compute Mean Reversion
and CV, then termed to xp1(tCV ) and xp2(tCV ). Next, we calculate proba-
bilities and the expected returns of xp1(tCV ) and xp2(tCV ), resulted in Table
5, 6, 7 and 8, respectively.

4.2 Results in Pairing the Normalised Datasets

Consequent to the procedural workflow presented in Figure 1, all of the datasets
are normalised. We introduce the Pearson’s correlation coefficient to measure
the degree of correlation among the paired stock indices. Because there are 127
datasets, we cross-map each stock price and neglect redundant pairings.

Figure 2: Performance of the highest correlation coefficient, DBKGR and GLEFP

Because of pairing, there are 8001 pairs. We have found that Deutsche Bank
AG (DBKGR) and Societe Generale S.A. (GLEFP) stock share the highest corre-
lation coefficient of 0.973049. Figure 2 presents two graphs, DBKGR and GLEFP.
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To ease a presentation, the x-axis represents a sample of 300 datasets, whereas the
y-axis represents the normalised values ranging from 0.04 to −1.00. This implies
that the pairs of DBKGR and GLEFP performed close to the mean comparing to
the standard deviation at the scale of ±3. We present the ranking of top ten pairs
out of 8001 pairs and their correlation coefficients in Table 2.

Table 2: Top ten pairs from the Global Dow Index that share a high correlation
coefficient value

Rank Stock #1 Stock #2 Correlation
Coefficient

1 DBKGR GLEFP 0.9730
2 AMZNUS IBMUS 0.9718
3 NKEUS MCDUS 0.9717
4 VALE5BZ BHPAU 0.9683
5 ABBSS BHPAU 0.9654
6 BBVASM GLEFP 0.9650
7 X8058JP X8031JP 0.9629
8 AAPLUS IBMUS 0.9627
9 UBSNVX GLEFP 0.9609
10 FCXUS RIOLN 0.9596

4.3 Results in Using Mean Reversion and CV

Referring to Table 2, we select the highest correlation coefficient pair, the
DBKGR and GLEFP and simulate those datasets separately with Mean Reversion
and CV. They are outlined in the items i) to viii) in section 2.1. At this stage, the
datasets have been partitioned into different CV values in time series.

Figure 3: DBKGR showing the different CVs comparing the original datasets
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Figure 4: GLEFP showing the different CVs comparing the original datasets

Figure 3 and 4 show the performance of Mean Reversion and CV by plotting
six different CV classes, and two original datasets, DBKGR and GLEFP. Of those
six CV classes, the x-axis represents the entire datasets in time series; whereas,
the y1-axis represents the stock values of DBKGR and GLEFP, and the CV values
use the scale of the y2-axis.

4.4 Risk Mitigation Using Mean Reversion and CV

There are six CV classes showing the minimum to maximum values of datasets
in each class. Apparently, it is illustrated in Table 3 and 4. With the remark, the
current DBKGR and GLEFP datasets have no longer formatted in time series.

For risk mitigation of any stock trading, we utilise contents in Table 1 starting
from the following:

i) Collect historical minimum and maximum records/units of Pairs Trading for
a particular period, e.g., 500 daily records/units of DBKGR and GLEFP.

ii) Match the present observed prices of DBKGR and GLEFP with one of the
CV classes.

a) In case of non-volatility, the future price will behave and situate in the
same CV class, use Long and Short positions for trading. It is because
we assume that the future stock prices of DBKGR and GLEFP will
probability fit into the existing CV class.

b) If the new observed prices are highly volatile and run out of the situated
CV class, stop trading.

c) If the new observed prices are equal to the previous prices, continue
to trade by using the last position.
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iii) Update Table 3 and 4 and going step i).

iv) Check the new volatility with variance changes.

v) To continue trading, loop the procedures in step ii) to step iv).

Table 3: Detailed classification of DBKGR, prices in US dollars

DBKGR

Class CV Range Units Mean Variance

1 0.14 15-30 435 25.50 13.22
2 0.12 31-48 1436 39.65 21.87
3 0.03 49-53 418 50.98 2.97
4 0.03 54-59 357 57.04 3.12
5 0.12 60-87 986 72.41 78.75
6 0.05 88-107 329 94.75 28.94

Table 4: Detailed classification of GLEFP, prices in US dollars

GLEFP

Class CV Range Units Mean Variance

1 0.16 15-26 522 20.52 10.18
2 0.17 27-50 1395 40.38 45.14
3 0.05 51-57 351 53.61 6.54
4 0.02 58-64 341 61.62 2.23
5 0.19 65-109 963 82.54 227.19
6 0.07 110-141 389 117.8 59.62

4.5 Proof Concept of the Mean Reversion and CV

This section is to proof that in the co-integrated Pairs Trading using the
proposed Mean Reversion and CV model can outperform the conventional co-
integrated Pairs Trading (without using the Mean Reversion and CV).

Initially, we calculate probabilities of the DBKGR and GLEFP assuming that
the chance of the future stock prices moving either upward or downward is equal,
at which both probabilities are 0.5. On contrary, the probabilities of the DBKGR
and GLEFP using the Mean Reversion and CV are better than those of the con-
ventional co-integrated Pairs Trading as displayed in Table 5 and 6.

In terms of comparison, the expected returns of the model using Mean Rever-
sion and CV shown in Table 8 are better than the conventional Pairs Trading, at
which listed in Table 7.
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Additionally, we conduct robustness test by using other pairs of prices from
the Global Dow indices which have shared a high correlation coefficient values
listed in Table 1. We found that the expected returns using the conventional Pairs
Trading, shown in Table 9 are less than those of Mean Reversion and CV. Thus,
we conclude that the proposed model is robust.

4.5.1 Calculation of Probabilities of DBKGR and GLEFP

Using Equation 2.2 and Equation 2.4 to calculate of the expected returns of
the co-integrated conventional Pairs Trading, and the co-integrated Pairs Trading
using Mean Reversion and CV, we subtitute the value of some elements as follows

• IL&Si (t) is 1 if a long position is created for individual return, a value of -1
if a short position is created, and 0 otherwise;

• t represents the dummy variable that takes the value of 1 if a transaction is
made for individuals at time t and 0 otherwise;

• C represents the transaction cost per operation and set to 0.25%;

• T represents the number of observations with 3961 data points;

• Wi(t) is weight at position 1.

Each expected returns of the co-integrated xp1(t) and xp2(t) are calculated by
using the value of the present observed variables multiplies with the probability
of the lag and repeats infinitely in time series. The expected returns of any co-
integrated Pairs Trading can be expressed by

ERCO =

n∑
i=1

RiCO(t)piCO(t) (4.1)

where RiCO(t) is the return of co-integrated xp1(t) and xp2(t) in scenario i, piCO(t)
is the probability for the return RiCO(t) in scenario i, and i counts the number
of scenarios. However, we omit to calculate the first two observations after the
stocks reverted. It is because we have taken into consideration that some stock
can be highly volatile and immediately reverted. Additionally, the returns of co-
integrated xp1(tCV ) and xp2(tCV ) can be termed to RiCO(tCV ); and the results are
listed in Table 7. The expected returns of RiCO(tCV ) are inevitably similar to those
of the expected returns of RiCO(t). We calculate probability for expected returns
of the conventional co-integrated by assuming that each stock in the same pair can
revert to the co-integrated line and vice versa with a probability of 0.5. The total
probability reversion of co-integrated pair is calculated to 0.5 multiplies with 0.5,
equalling to 0.25. Hence, the total probability of non-reverted pairs moving along
time series is 1.00 minus 0.25, equalling 0.75 as illustrated in Table 5.

The difference is that the calculation of the expected returns of RiCO(t) used
the probability listed in Table 6 rather than the fixed of probability employed in
the calculation of RiCO(t), in which is given to 0.75. It is because we assume that



A Novel Pairs Trading Model with Mean Reversion ... 289

any stock prices during the trade can equally move up and down. We introduce
Markov chain to calculate probabilities of the conventional co-integrated Pairs
Trading the used Mean Reversion and CV. In the Markov chain’s process, the
value of the present observation is multiplied with the probability of the lag, and
it repeats an infinite number of times. Table 6 indicates, DBKGR and GLEFP are
ranging from 0.887955 to 0.982759. Whereas the probability of the conventional
co-integrated Pairs Trading (without Mean Reversion and CV) remains to 0.75 as
illustrated in Table 5.

Table 5: Calculations of the probabilities of conventional co-integrated Pairs Trad-
ing (without Mean Reversion and CV)

Index Probabilities of conventional co-integrated
Pairs Trading (without Mean Reversion and CV)

DBKGR 0.75
GLEFP 0.75

Table 6: Calculations of the probabilities of co-integrated Pairs Trading using
Mean Reversion and CV

Index Probabilities of co-integrated Pairs Trading Mean Reversion and CV

Class CV1 CV2 CV3 CV4 CV5 CV6

DBKGR 0.9770 0.9805 0.8995 0.8880 0.9757 0.9787
GLEFP 0.9828 0.9770 0.9003 0.8915 0.9626 0.9743

4.5.2 Calculation of Expected Returns

This section consists of two parts, at which the first part represents a calcu-
lation for expected returns of co-integrated xp1(t) and xp2(t), RiCO(t), and the
second part represents calculation of expected returns of co-integrated xp1(tCV )
and xp2(tCV ), RiCO(tCV ).

In Table 7 there are 41 blocks whereas the DBKGR and GLEFP stocks are
co-integrated. Each block has different numbers of data ranging from the smallest
to the highest values, which are 6 to 1040, respectively. We calculate the different
expected returns in each block of DBKGR and GLEFP by using the returns of
DBKGR and GLEFP multiply by the same probability value of 0.75. As a re-
sult, the total expected return of both co-integrated DBKGR and GLEFP to US$
2003.77.

As regard to the calculation shown in Table 8, the expected returns of co-
integrated xp1(tCV ) and xp2(tCV ), RiCO(tCV ) using Mean Reversion and CV con-
sist of 94 blocks. In each block the number of data points is ranging from 3 to 245,
depending on the distribution of CV classes, e.g., in block 1 there are 4 data points
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at the ranking of 44th to 47th. We omit to calculate the blocks that have the num-
ber of data less than 3. It is because the stocks may be highly volatile from the first
two observations when the stocks have been reverted. The probabilities of both
DBKGR and GLEFP are based on Markov chain, in which represent the small-
est value of 0.887955 and the highest value of 0.982759. Apparently, the returns
of co-integrated DBKGR and GLEFP, and the expected returns of co-integrated
DBKGR and GLEFP using Mean Reversion and CV are demonstrated, given the
total expected returns of both equals US$ 2351.84. However, the allocation of
each CV class undertakes values of observations. Thus, during the calculation
process; each RiCO(tCV ) has never been mixed up. For example, calculation of
any RiCO(tCV ) in CV1 will use the observation and probability belonging to its
class as shown in Table 8.

Table 8: represents the expected returns in US dollars of the co-
integrated Pairs Trading using Mean Reversion and CV

Block Ranking Data CV Probability Returns of DBKGR and GLEFP

no. points DBKGR GLEFP DBKGR GLEFP returns expected returns

1 44th–47th 4 4 4 0.887955 0.977044 4.087128 4.087162

2 79th–81st 3 2 2 0.980488 0.977044 3.065304 3.065297

3 83rd–92nd 10 2 2 0.980488 0.977044 10.217159 10.217149

4 141st–153rd 13 2 2 0.980488 0.977044 13.282038 13.282027

5 156th–159th 4 2 2 0.980488 0.900285 4.086895 4.086883

6 162nd–164th 3 2 2 0.980488 0.977044 3.064994 3.064993

7 171st–277th 107 2 2 0.980488 0.977044 109.316171 109.316182

8 282nd–287th 6 2 2 0.980488 0.977044 6.129851 6.129852

9 372nd–385th 14 3 3 0.899522 0.900285 14.303173 14.303167

10 393rd–397th 5 3 3 0.899522 0.900285 5.108259 5.108259

11 468th–480th 13 3 3 0.899522 0.900285 13.281527 13.281521

12 483rd–486th 4 3 3 0.899522 0.891496 4.086565 4.086569

13 534th–545th 12 4 4 0.887955 0.962617 12.259873 12.259869

14 716th–719th 4 3 3 0.899522 0.900285 4.086628 4.086626

15 731st–735th 5 3 3 0.899522 0.891496 5.108277 5.108275

16 742nd–774th 33 3 3 0.899522 0.891496 33.714525 33.714521

17 780th–783rd 4 4 4 0.887955 0.962617 4.086590 4.086593

18 794th–803rd 10 4 4 0.887955 0.962617 10.216485 10.216488

19 806th–810th 5 4 4 0.887955 0.891496 5.108249 5.108249

20 821st–846th 26 4 4 0.887955 0.962617 26.562848 26.562858

21 848th–851st 4 4 4 0.887955 0.962617 4.086619 4.086618

22 873rd–879th 7 4 4 0.887955 0.962617 7.151586 7.151585

23 882nd–886th 5 5 5 0.975659 0.962617 5.108251 5.108251

24 891st–903rd 13 5 5 0.975659 0.962617 13.281491 13.281490

25 906th–913th 8 4 4 0.887955 0.962617 8.173207 8.173206

26 916th–918th 3 5 5 0.975659 0.962617 3.064923 3.064924

27 925th–990th 66 5 5 0.975659 0.962617 67.429052 67.429050

28 993rd–1050th 58 4 4 0.887955 0.962617 59.255850 59.255847

29 1056th–1064th 9 4 4 0.887955 0.962617 9.194876 9.194875

30 1067th–1070th 4 5 5 0.975659 0.962617 4.086599 4.086599

31 1077th–1321st 245 5 5 0.975659 0.962617 250.304549 250.304545

32 1324th–334th 11 5 5 0.975659 0.974293 11.238162 11.238162
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33 1339th–1341st 3 5 5 0.975659 0.974293 3.064954 3.064954

34 1344th–1348th 5 6 6 0.978723 0.962617 5.108240 5.108241

35 1351st–1358th 8 5 5 0.975659 0.962617 8.173221 8.173221

36 1366th−1370th 5 6 6 0.978723 0.962617 5.108239 5.108240

37 1374th–1378th 5 6 6 0.978723 0.962617 5.108252 5.108252

38 1382nd–1392rd 12 5 5 0.975659 0.962617 12.259858 12.259857

39 1399th–1473rd 75 5 5 0.975659 0.962617 76.623892 76.623891

40 1476th–1497th 22 5 5 0.975659 0.974293 22.476308 22.476308

41 1500th–1503rd 4 5 5 0.975659 0.962617 4.086596 4.086597

42 1506th–1524th 19 5 5 0.975659 0.974293 19.411347 19.411347

43 1527th–1684th 158 6 6 0.978723 0.974293 161.420899 161.420899

44 1688th–1690th 3 5 5 0.975659 0.962617 3.064954 3.064954

45 1694th–1834th 141 6 6 0.978723 0.974293 144.052824 144.052824

46 1841st–1887th 47 5 5 0.975659 0.962617 48.017627 48.017627

47 1890th–1900th 11 5 5 0.975659 0.974293 11.238163 11.238163

48 1903rd–1964th 62 5 5 0.975659 0.962617 63.342294 63.342297

49 1990th–1996th 7 5 5 0.975659 0.962617 7.151573 7.151573

50 2031st–2034th 4 5 5 0.975659 0.891496 4.086613 4.086611

51 2060th–2062nd 3 5 5 0.975659 0.900285 3.064954 3.064954

52 2200th–2203rd 4 4 4 0.887955 0.962617 4.086589 4.086591

53 2207th–2209th 3 4 4 0.887955 0.891496 3.064963 3.064962

54 2215th–2223rd 9 3 3 0.899522 0.891496 9.194882 9.194880

55 2243rd–2250th 8 3 3 0.899522 0.891496 8.173219 8.173218

56 2271st–2274th 4 2 2 0.980488 0.977044 4.086627 4.086627

57 2277th–2286th 10 1 1 0.977011 0.977044 10.216470 10.216471

58 2291st–s363rd 73 1 1 0.977011 0.977044 74.580551 74.580551

59 2372nd–2387th 16 1 1 0.977011 0.977044 16.346288 16.346291

60 2390th–2412th 23 1 1 0.977011 0.982759 23.497945 23.497945

61 2483rd–2496th 14 2 2 0.980488 0.977044 14.303130 14.303130

62 2535th–2542nd 8 2 2 0.980488 0.977044 8.173227 8.173227

63 2548th–2553rd 6 2 2 0.980488 0.977044 6.129920 6.129920

64 2579th–2589th 11 2 2 0.980488 0.900285 11.238189 11.238188

65 2592nd–2595th 4 2 2 0.980488 0.977044 4.086590 4.086591

66 2688th–2692nd 5 2 2 0.980488 0.977044 5.108259 5.108259

67 2784th–2787th 4 3 3 0.899522 0.977044 4.086612 4.086611

68 2794th–2812th 19 3 3 0.899522 0.977044 19.411395 19.411393

69 2820th–2829th 7 3 3 0.899522 0.977044 7.151581 7.151579

70 2835th–2917th 83 2 2 0.980488 0.977044 84.797036 84.797036

71 2921st–2923rd 3 3 3 0.899522 0.977044 3.064959 3.064959

72 2925th–2936th 12 3 3 0.899522 0.977044 12.259825 12.259825

73 2942nd–2953rd 12 2 2 0.980488 0.977044 12.259819 12.259819

74 2977th–2979th 3 2 2 0.980488 0.977044 3.064966 3.064966

75 3103rd–3105th 3 2 2 0.980488 0.977044 3.064964 3.064964

76 3148th–3168th 21 2 2 0.980488 0.977044 21.454681 21.454680

77 3171st–3177th 7 2 2 0.980488 0.977044 7.151567 7.151567

78 3288th–3293rd 6 2 2 0.980488 0.977044 6.129953 6.129952

79 3304th–3373rd 70 1 1 0.977011 0.982759 71.515665 71.515664

80 3376th–3378th 3 2 2 0.980488 0.982759 3.064974 3.064974
81 3381st–3441st 61 1 1 0.977011 0.982759 62.320742 62.320742

82 3445th–3457th 13 1 1 0.977011 0.982759 13.281467 13.281467

83 3460th–3573rd 114 2 2 0.980488 0.982759 116.468276 116.468275
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84 3576th–3689th 114 1 1 0.977011 0.982759 116.468143 116.468145

85 3692nd–3729th 38 2 2 0.980488 0.982759 38.822765 38.822764

86 3732nd–3735th 4 2 2 0.980488 0.977044 4.086599 4.086600

87 3738th–3763rd 26 2 2 0.980488 0.982759 26.562934 26.562934

88 3766th–3819th 54 2 2 0.980488 0.977044 55.169136 55.169137

89 3822nd–3826th 5 2 2 0.980488 0.977044 5.108259 5.108259

90 3836th–3888th 53 2 2 0.980488 0.977044 54.147539 54.147538

91 3891st–3896th 6 2 2 0.980488 0.982759 6.129900 6.129901

92 3900th–3904th 5 2 2 0.980488 0.982759 5.108263 5.108263

93 3907th–3911th 5 2 2 0.980488 0.977044 5.108251 5.108252

94 3920th–3960th 41 2 2 0.980488 0.977044 41.887700 41.887700

Comparison of the performance of the conventional co-integration (without
Mean Reversion and CV) with the co-integration using Mean Reversion and CV
can be demonstrated by looking at values of the expected returns of both cases.
The expected returns of the conventional co-integration and the proposed model
using Mean Reversion and CV are US$ 2351.84 and US$ 2003.77, respectively. AS
a result, the returns of co-integration using Mean Reversion and CV are higher
than the conventional co-integration (without Mean Reversion and CV). Therefore,
we conclude that the proposed co-integrated pairs trading using Mean Reversion
and CV outperforms the conventional co-integrated pairs trading model. There-
fore, the net premium in 10-year trading with the co-integrated pairs trading using
Mean Reversion and CV, which calculated the difference of both cases, yields to
US$ 348.07, equalling to 17.37%.

4.5.3 Robustness Test

To compute the expected returns of the cross-paired trading, we assign the
contents in Table 2, which are the top ten pairs that have been characterised for
the highest correlation as input. Then, we use the same techniques that have
been used to calculate the expected returns in Table 7 and 8 for computing the
expected returns of the top ten pairs. The results are listed in Table 9 and Table 6b.
Whereas, Table 9 represents the expected returns of the conventional co-integrated
pairs trading (without Mean Reversion and CV), and Table 10 represents the
expected returns of the co-integrated pairs trading using Mean Reversion and CV.

The results of computing the expected returns of the co-integrated Pairs Trad-
ing using Mean Reversion and CV are shown in Table 10. Apparently, the average
expected returns of the co-integrated Pairs Trading using Mean Reversion and
CV are US$ 327051 and US$ 3270.51, respectively. The expected returns of the
co-integrated Pairs Trading using Mean Reversion and CV outperforms those of
the conventional co-integrated Pairs Trading (without Mean Reversion and CV),
see Table 9. It is proven that the benefit of co-integrated Pairs Trading using
Mean Reversion and CV, for those top ten cross-paired stocks with the 10-year
investment, is US$ 43825, equalling to 15.48%.
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Table 7: represents the expected returns of the conventional co-integrated Pairs
Trading, in US dollars

Block no. Ranking Data points Probability Returns of Expected returns of

DBKGR and GLEFP DBKGR and GLEFP

1 35th − 40th 6 0.75 6.187233 4.640425

2 43rd − 49th 7 0.75 7.158220 5.368665

3 51st − 56th 6 0.75 6.136712 4.602534

4 79th − 81st 3 0.75 3.066100 2.299575

5 83rd − 92nd 10 0.75 10.217934 7.663451

6 138th− 287th 150 0.75 153.250577 114.937933

7 372nd − 385th 14 0.75 14.303218 10.727413

8 392nd − 397th 6 0.75 6.129928 4.597446

9 463rd − 488th 26 0.75 26.563032 19.922274

10 534th − 547th 14 0.75 14.303178 10.727383

11 551st − 553rd 3 0.75 3.065026 2.298769

12 716th − 719th 4 0.75 4.086666 3.065000

13 728th − 846th 119 0.75 121.576648 91.182486

14 848th − 851st 4 0.75 4.086633 3.064975

15 873th − 886th 14 0.75 14.303130 10.727347

16 888th − 918th 31 0.75 31.671212 23.753409

17 925th − 1964th 1040 0.75 1062.517470 796.888103

18 1990th − 1996th 7 0.75 7.151577 5.363683

19 2031st − 2036th 6 0.75 6.129917 4.597438

20 2059th − 2064th 6 0.75 6.129925 4.597444

21 2197th − 2204th 8 0.75 8.173250 6.129938

22 2207th − 2240th 34 0.75 34.736173 26.052130

23 2242nd − 2412nd 171 0.75 174.702397 131.026798

24 2483rd − 2496th 14 0.75 14.303136 10.727352

25 2535th − 2542nd 8 0.75 8.173234 6.129926

26 2548th − 2553rd 6 0.75 6.129925 4.597443

27 2563rd − 2595th 34 0.75 34.736189 26.052141

28 2688th − 2692nd 5 0.75 5.108261 3.831196

29 2725th − 2727th 3 0.75 3.064959 2.298719

30 2784th − 2787th 4 0.75 4.086615 3.064961

31 2794th − 2818th 25 0.75 25.541302 19.155976

32 2820th − 2917th 98 0.75 100.121849 75.091387

33 2921st − 2923rd 3 0.75 3.064961 2.298721

34 2925th − 2953rd 29 0.75 29.627909 22.220932

35 2977th − 2979th 3 0.75 3.064971 2.298728

36 3103rd − 3105th 3 0.75 3.064969 2.298726

37 3148th − 3186th 21 0.75 21.454683 16.091012

38 3171st − 3177th 7 0.75 7.151571 5.363678

39 3288th − 3819th 532 0.75 543.518510 407.638882

40 3822nd − 3826th 5 0.75 5.108260 3.831195

41 3836th − 3961st 126 0.75 128.728079 96.546059
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5 Conclusion and Discussion

The concept of Pairs Trading is a market neutral strategy that uses a portfolio
of only two securities. A long position is adopted with respect to one safety and
a short position with respect to the other. The strategy of pairs trading requires
adopting a position when the spread is distant from the mean in anticipation of
spread reversion. This thesis introduces a multiclass Pairs Trading model using
Mean Reversion and CV that enhances the original approach of Mean Reversion
Pairs Trading. The simulation results show that the co-integrated Pairs Trading
using the proposed method outperforms those of the conventional co-integrated
Pairs Trading. Thus, benefits of the proposed model are to build a new set of risk
mitigation and maximise returns of co-integrated stocks. Future research could
examine the formation of frequency domain datasets rather than times series as
an alternative to correlation coefficient pairing.
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