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Abstract : In this work, we present the notion of a G-proximal generalized con-
traction which is a development of well known mappings by Banach, Kannan,
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coupled best proximity points in a complete metric space endowed with a directed
graph.
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1 Introduction and Preliminaries

In 1922, Stefan Banach [I] presented the notion of contractions and established
the famous theorem which is called a Banach contraction principle or a Banach
fixed point theorem.

Theorem 1.1. [I] Let (X,d) be a complete metric space and a self mapping
S : X — X be a contraction, that is, there exists a nonnegative real number k < 1
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such that
d(Sz, Sy) < kd(z,y), for all z,y € X. (1.1)

Then S has a unique fized point in X, i.e., there exists x € X such that Sx = x.

The Banach contraction principle has been applied for solving the existence of
solutions of various equations in many fields of analysis such as Applied Mathe-
matics, Applied Sciences, Physics, Economics, ete. In fact, if S satisfies (I]), then
it is always forced continuity.

In 1968, Kannan [2] introduced the concept of a Kannan mapping which is
another notion of contraction that need not be continuous as follows:

A mapping S : X — X is called a Kannan mapping if there exists a nonnega-
tive real number a < % such that

d(Sz,Sy) < ald(x,Sz) + d(y, Sy)], for all z,y € X. (1.2)

He proved the existence of a fixed point of the Kannan mapping in a complete
metric space. Based on the condition (I.2]), Chatterjea [3] introduced the concept
of a C-contraction mapping as follows:

d(Sz,Sy) < ald(xz, Sy) + d(y, Sz)], for all z,y € X. (1.3)

He proved that every mappings satisfy the condition (I3]) in a complete metric
space have a unique fixed point. It can be seen in [4] that the conditions (1)
and (L2) are independent. Similarly, (II) and (I3)) are also independent. Some
generalizations of Banach, Kannan, C-contractions were studied in [4H7].

The study and inspiration of literatures mentioned above, the purpose of this
article is to study the best proximity point theorems of non-self mappings which
is general than the mappings above. Let W and V be two nonempty subsets
of a metric space (X,d) and let S : W — V a non-self mapping. Observe that
the equation Sx = z may not have a solution, if W NV is nonempty. So, it
is natural to ask that how far is the distance between x and Sz 7 Therefore,
the study of a best proximity point has played an important role and it is a
problem of global optimization for determining the minimum valued of the distance
d(z,Sz) = min{d(z,y) : x € W and y € V'}.

In 1969, Fan [§] presented the first result concerning best proximity point
theorems. He proved that if S : W — X is a continuous non-self mapping,
where W is a nonempty compact convex subset in a normed vector space X,
then there exists w € W such that ||lw — Sw| = d(Sw, W) where d(Sw, W) =
min{||Sw — a|| : a € W}. Following the Fan’s Theorem, best proximity point
theorems of non-self mappings get a lot of attention and have been studied by
many researchers. For more details about best proximity point theorems, see Kirk
et al. [9], Reich [I0], Polla [I1], Sehgal and Singh [I2/[13], Vetrivel et al. [14],
Anuradha and Veeramani [15], Basha [16,[17], Basha and Veeramani [I§], Eldred
et al. [19], Eldred and Veeramani [20], Raj [21], Abkar and Gabeleh [22], and
Gabeleh [23].
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Throughout this article, we denote W and V' are nonempty subsets of a metric
space (X, d) and we also need the following notions:

dW,V) :=inf{d(xz,y) : € W and y € V},

Wo:={zeW : d(z,y) =dW,V) for some y € V},
Voi={yeV : d(z,y) =d(W,V) for some z € W}.

In 2011, Basha [I6] gave the following definition of a proximal contraction for
non-self mappings in a metric space:

Definition 1.2. [I6] Let S : W — V be a non-self mapping. Then S is called a
a prozimal contraction if there exists k € [0,1) and for every uy, us, x,y € W,

d(u, Sz) = d(W, V) = d(u1,us2) < kd(x,y). (1.4)
d(uz, Sy) = d(W,V)

Inspired and motivated by the above works, in this article, we introduce the
new concept of a G-proximal generalized contraction for non-self mappings and
establish best proximity point theorems for a G-proximal generalized contraction
in a complete metric space endowed with a directed graph. Moreover, we can
apply our main results to prove an existence of coupled best proximity point in
a complete metric space endowed with a directed graph. An example to support
and explain our main result is also presented.

Next, we recall some mappings and notions regarding a graph.

Let (X,d) be a metric space and G = (V(G), E(G)) a directed graph which
has no parallel edges such that the set V(G) of its vertices coincides with X and
the set E(G) of its edges is a subset of X x X. The conversion of a graph G
denoted by G ! i.e.,

B(G™) = {(w.y) € X x X : (y,2) € B(G)}.
We start with the following definition:

Definition 1.3. Let (X, d) be a metric space and G = (V(G), E(G)) a directed
graph such that V(G) = X. A non-self mapping S : W — V is called a G-prozimal
Kannan mapping if there exists b € [0, %) such that

(z,y) € E(G)

d(u, Sz) = d(W,V) p = d(u,v) < b[d(z,v) + d(y, u)], (1.5)
d(v, Sy) =d(W,V

~—

where z,y, u,v € W.

Definition 1.4. Let (X, d) be a metric space and G = (V(G), E(G)) a directed
graph such that V(G) = X. A non-self mapping S : W — V is said to be
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(1) proximally G-edge-preserving if for each x,y,u,v € W,
(z,y) € E(G)

d(u,Sz) =d(W,V) 3 = (u,v) € E(G);
d(v, Sy) = d(W, V)

(i) G-proximal generalized contraction if there exists k € [0,1) and each z,y,
u,v € W such that
(z,y) € E(G)
d(u, Sz) =dW,V) p = d(u,v) < kM(z,y), (1.6)
d(v, Sy) = d(W, V)

where M (z,y) = max {d(z,y), d(z, u), d(y,v), Le20wn ],

From the Definition [[4{i7), we observe that (1) S is said to be a G-prozimal
contraction, if M(x,y) = d(z,y), and

(2) S is said to be a G-prozimal C-contraction, if M (x,y) = w.

2 Main Results

In this section, we will prove best proximity point theorems for a G-proximal
generalized contraction in a complete metric space endowed with a directed graph.

Theorem 2.1. Let (X,d) be a complete metric space, G = (V(G), E(G)) a di-
rected graph such that V(G) = X. Let W and V' be nonempty closed subsets of X
with Wy is nonempty and let S : W — V be a non-self mapping which satisfies the
following properties:

(1) S is proximally G-edge-preserving, continuous and G-proximal generalized
contraction such that S(Wy) C Vy;

(1i) there exist xo,x1 € Wy such that

d(z1,Szo) = d(W,V) and (zg, 1) € E(G).

Then S has a best proximity point in W, that is, there exists an element w € W
such that d(w, Sw) = d(W, V).
Further, the sequence {x,}, defined by

d(xp, Sxp_1) =d(W,V), for all n € N,

converges to the element w.
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Proof. From the condition (i7), there exist xg,z1 € Wy such that
d(z1,Szo) = d(W,V) and (zo,x1) € E(G). (2.1)
Since S(Wy) C Vi, we have Sz1 € Vj and hence there exits x5 € Wy such that
d(zq,Sx1) = d(W, V). (2.2)

By the proximally G-edge preserving of S and using both () and ([22]), we get
(z1,22) € E(G). By continuing this process, we can form the sequence {z,} in
Wy such that

d(xp, STp_1) = d(W,V) with (x,_1,2,) € E(G), for all n € N. (2.3)

Next, we will show that S has a best proximity point in W. Suppose that
there exists ng € N, such that z,, = zp,+1. By using ([Z3)), we obtain that
d(Tpy, STny) = d(Tng+1, STny) = d(W, V) and so x,, is a best proximity point of
S. Now, Suppose that z,,_1 # 2, for all n € N. We show that {z,} is a Cauchy
sequence in W. As S is G-proximal generalized contraction and for each n € N,

(Tn-1,2,) € E(GQ)
d(xp, STp_1) = d(W,V)
d(xpy1,STn) = d(W, V).
Thus we have
d(Xn, Tnt1) < kM (zp—1,x4), (2.4)

where

M(In—la In) = max {d($n_1, In), d(xn—l ) In), d($n, In+1)a d(mnil’szFQI)er(mmmn) }

d(mnfla anrl) }

> (2.5)

= max {d(mn_l, Zn), A(Tny Tng1),

Case 1. If M (z,—1,z,) = d(p—1,2n), for all n € N, then by ([24]) we obtain
d(n, Tnt1) < kd(xp—1,2,), for all n € N.
By above inequality, we have
d(z1,x9) < kd(zq, 1),

and hence
d(xg,x3) < de(:co, x1).

By induction, we can conclude that

d(xn, Tnt1) < kE"d(zo,21), for all n € N. (2.6)
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From (Z8)), for each m,n € N with m > n,

d(xn; Im) < d(xn; In-{-l) + d($n+1,In+2) + ...+ d(xm—lv xm)
< k"d(zg,z1) + kn+1d(1'0, x1)+ ...+ km_ld(zo, x1)

m—1 .
= d(zo,x1) Z k'

n

<
T 1-k

d(xo,x1).

Since 0 < k < 1, it follows that {x,} is a Cauchy sequence in W.

Case 2. If M(xp—1,2p) = d(xpn, Tnt1), for all n € N, then by using ([24]), we have
d(Xn, Tnt1) < kd(xp, Tn11), and hence k = 1 which is a contradiction.

Case 3. If M(z,_1,2,) = w, for all n € N, then by using 2.4]), we
have

d(xnaxn-i-l) < d(mn—lvxn—i-l)

I
N N

[d(xp—1,2n) + d(xn, Tni1)] -

It implies that

k
d(l’n,l’n+1) S md(l’n,hl’n). (27)

By using the same method as in the Case 1 and 0 < ﬁ < 1, we obtain that {z,}

is a Cauchy sequence in W. Therefore, {z,} is a Cauchy sequence in W. Since W
is closed, there exists w € W such that z,, — w. By the continuing of S, we have
Sz, — Sw as n — 0o. As the metric function is continuous, we obtain

d(zpy1,S2,) — d(w, Sw) as n — oco.
Similarly, By (23) we can conclude that
d(w, Sw) = d(W, V).

This implies that w € W is a best proximity point of S.
Indeed, the sequence {x,} defined by

d(anrl; Smn) = d(VVv V)a ne Na
converges to an element w. The proof is completed. O

Example 2.2. Let X = R? equipped with the metric d given by

d((2,y), (u,v)) = V/(z —w)? + (y — v)2.
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Let W={(z,1): 0<z<1}and V = {(z,-1): 0 <2 < 1}U{(0,y) : —2
—1}. It is easy to see that d(W, V) =2, Wy =W, V = {(z,—1) : 0 <

and W,V are closed subsets of X. Define a directed graph G = (V(G), E(G)) by
V(G) =X and

1
BE(G) = {((z,y), (u,v)) € R x R? : x < w and |y —v| < 5}
Let S: W — V be a mapping defined by
S(x,1) = (%, —1), for all (z,1) € W.

Then S is continuous and S(Wy) C Vj.
We will show that S is both proximally G-edge preserving and G-proximal
generalized contraction. Let (z,1), (y,1) € W such that

((:L'a 1)7 (ya 1)) € E(G)a d((uv 1); S(Za 1)) - d(VVa V) - d((’l), 1)7 S(ya 1))7
where (u, 1), (v,1) € W. Then

7 <y, d((,1),(5,-1) = 2 = d((v,1), (5, ~1)).

kg

This implies that v = § and v = §. Since x < y, it follows that. Thus
((u,1), (v,1)) € E(G). We also note that for all k € [1,1), we have

(1), (0,1)) = gl o]
< klz —y
= kd((ma 1)7 (ya 1))
< k’maX{d((% D, (9.1)), d((z,1), (1. 1)), d((y,1). (0. 1))

d((z,1), (v, 1)) +d((y, 1), (u, 1)) } .
2

Hence S is both a proximally G-edge preserving and a G-proximal generalized
contraction. By Theorem [2.I] we can conclude that S has a best proximity point
in A and (0,1) is a proximity point of S.

Next, we will use the following property instead of continuity of S in Theorem
211 for proving the existence of a best proximity point.

Property (A) [24]. Let {x,} be any sequence in X, if x,, — z, for some z € X
and (2n,Tn+1) € E(G) for all n € N, then there is a subsequence {z,, } with
(n,,x) € E(G) for all k € N.

Theorem 2.3. Suppose that all assumptions of Theorem [21] hold, except the
continuity of S. In addition, suppose that X has the Property (A) and Wy is
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closed. Then there exists an element w € W such that d(w, Sw) = d(W, V).
Further, the sequence {x,}, defined by

d(Xp41,Sn) = d(W,V), for alln € N,
converges to the element w.

Proof. Following the proof of Theorem 2] there exists a sequence {z,} in Wy
satisfying

d(xp, STp_1) = d(W,V) with (x,,_1,2,) € E(G), for all n € N, (2.8)

and x, — u € W. Since Wy is closed, we get u € Wy. Again, by using () of
Theorem 2], we have S(Wy) C Vp, so Su € Vi. Then there exists w € W such
that
d(w, Su) = d(W, V). (2.9)
Since X has Property (A) and (2,—1,2,) € E(G), and z,, — u as n — oo, there
exists a subsequence {x,.} of {z,} such that (z,_ ,u) € E(G), for all » € N.
Indeed, by using [28), (29), and S is a G-proximal generalized contraction, we
get
d(xp, 41, w) < kM (2, ,u), (2.10)

where

M(xnra U) = max {d(xnw ’U,), d(zn7 ) :L'n7,+1), d(ua U)), d(wnr,w)-i_;(anJrhm } '

By taking the limit in the above inequality, we get
lim M(z,,,u) = d(u,w).
r—>00

Suppose that d(u,w) > 0. From 2I0), we have

lim d(zp,+1,w) < kd(u, w).

r—00

Since z,, — u and k € [0,1), we get

0= lim [d(zp,+1,w) —d(u,w)] < (k—1)d(u,w) <0,

T—00

which is a contradiction. Hence © = w. Therefore there exists w € W such that
d(w, Sw) = d(W, V). The proof is completed. O

The following corollaries are obtained directly from Theorems [2.1] and

Corollary 2.4. Let (X,d) be a complete metric space, G = (V(G), E(G)) a di-
rected graph such that V(G) = X. Let W and V' be nonempty closed subsets of X
with Wy is nonempty and let S : W — V' be proximally G-edge-preserving and G-
prozimal contraction such that S(Wy) C Vi. Assume that there exist xo,x1 € Wy
such that

d(z1,Szo) = dW, V) and (zo, 1) € E(G).

Suppose that either
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(1) S is continuous or
(#3) X has the Property (A) and Wy is closed.

Then there exists an element w € W such that d(w, Sw) = d(W, V).
Further, the sequence {x,}, defined by

d(xp, STp_1) =dW,V), for alln € N,
converges to the element w.

Corollary 2.5. Let (X,d) be a complete metric space, G = (V(G), E(G)) a di-
rected graph such that V(G) = X. Let W and V be nonempty closed subsets of
X with Wy is nonempty and let S : W — V' be proximally G-edge-preserving and
a G-prozimal Kannan mapping such that S(Wy) C V. Assume that there exist
xo,r1 € Wy such that

d(z1,Sz) = dW,V) and (z9, 1) € E(Q).

Suppose that either
(1) S is continuous or
(i4) X has the Property (A) and Wy is closed.

Then there exists an element w € W such that d(w, Sw) = d(W, V).
Further, the sequence {x,}, defined by

d(xpn, Stp_1) =dW,V), for alln € N,
converges to the element w.

Corollary 2.6. Let (X,d) be a complete metric space, G = (V(G), E(G)) a di-
rected graph such that V(G) = X. Let W and V be nonempty closed subsets of
X with Wy is nonempty and let S : W — V' be proximally G-edge-preserving
and a G-prozimal C-contraction such that S(Wy) C Vy. Assume that there exist
xo,r1 € Wy such that

d(z1,Szo) = d(W,V) and (xo, 1) € E(G).

Suppose that either
(1) S is continuous or
(#9) X has the Property (A) and Wy is closed.

Then there exists an element w € W such that d(w, Sw) = d(W, V).
Further, the sequence {x,}, defined by

d(xp, STp_1) =dW,V), for alln € N,

converges to the element w.
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3 Applications to Coupled Best Proximity Point
Theorems

In this section, we prove the existence of a coupled best proximity point by
applications of Theorems 2.1l and 2.3]in Section 2. Now, we recall some definitions
and notions regarding coupled best proximity points in a complete metric space
endowed with a directed graph.

Let W and V' be nonempty subsets of any set X, F: W x W — V a non-
self mapping. An element (x,y) € W x W is called a coupled best proximity
point of F if d(z, F(x,y)) = d(W,V) and d(y, F(y,z)) = d(W,V). Recently,
the coupled best proximity point theorems were investigated by many authors
(see [25H27] and the references therein). We assume throughout this section that
W and V are nonempty subsets of a metric space (X, d). We define a new mapping
n:Y xY — [0,00) by

(@, y), (u,v)) = d(z, u) + d(y,v), for all (z,y), (u,v) €Y, (3.1)

where Y = X x X.

It is easy to show that (X, d) is a metric space if and only if (Y, 7) is a metric
space. Moreover, we can prove that (X,d) is a complete metric space if and only
if (Y,n) is a complete metric space. We set W* = W x W, V* =V x V, Wi =
Wo x Wy, Vg = Vo x Vi and the following notions are used in this section:

(W=, Ve =inf{n(z,y) : x=(21,51) € W" and y = (22,92) € V"},

Wg ={z = (z1,51) eW" : n(z,y) = (W, V") for some y = (z2,y2) € V"},

Vo ={y=(22,52) €V" : n(z,y) =n(W", V") for some z = (21,y1) € W*}.
Remark 3.1. We have the following facts:

(1) n(W*,V*) = 2d(W,V).

(2) If x = (z1,y1) € W* and y = (z2,y2) € V* such that n(z,y) = n(W*,V*),
then d(xy,w2) = d(yy,y2) = d(W, V).

For a non-self mapping F' : W x W — V. we define the non-self mapping
Sp: W* = V* by

Sr(z,y) = (F(z,y), F(y,z)) for all (z,y) € Y. (3.2)

We note that an element (z,y) € W x W is a coupled best proximity point of F
if and only if (z,y) is a best proximity point of Sp.

Let (X,d) be a metric space and G = (V(G), E(G)) a directed graph which
has no parallel edges such that the set V(G) of its vertices coincides with X
and the set E(G) of its edges is a subset of X x X. So, we define Gy =
(V(Gy), E(Gy)) such that V(Gy) =Y and E(Gy) = {((z,y), (u,v)) €Y x Y :
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(z,u) € E(G) and (y,v) € E(G™!)} where Y = X x X. Hence Gy is also a
directed graph which has no parallel edges.

In 2014, Chifu and Petrusel [28] presented the concept of edge preserving as
the following.

Definition 3.2. [28] We say that F: X x X — X is edge preserving if (z,u) €
E(G), (y.v) € E(G™!) implies (F(xz,y), F(u,v)) € E(G) and (F(y, ), F(v,u))
€ E(G™).

Now, we give definition of a proximal mixed G-edge preserving for non-self
mapping from the product space W* into V as follows:

Definition 3.3. We say that F': W* — V is a proximally mized G-edge preserving
if for each z,y,u,v € W,

(r,u) € E(G) and (y,v) € E(G™1)
(Wa V) = (UI;UQ) € E(G)v

and

d(vy, F(y,z)) = d(W,V) — (v1,v2) € B(G™Y).
) =d

Indeed, by taking A = B = X in the above definition, the proximal mixed
G-edge preserving reduces to edge preserving of Definition

Theorem 3.4. Let (X,d) be a complete metric space, G = (V(G), E(G)) a di-
rected graph such that V(G) = X, and let W and V' be two nonempty closed subsets
of X such that Wy is a nonempty subset of W. Let F : W* — V is a mapping
satisfying the following properties:

(1) F is prozimally mized G-edge preserving, continuous and F(W§) C Vp;

(1) there ezist (zo,vy0), (z1,y1) € W such that d(z1, F(zo,y0)) = d(W,V),
d(y1, F(yo,0)) = d(W, V), and (z0,21) € E(G), (yo,y1) € E(G™1);

(#i1) there exists k € [0,1), for each x,y,u,v, w1, ws, 21,22 € Wy

(r,u) € B(G) and (y,v) € BE(G™1)
d(wla F(’JJ, y)) + d(zla F(ya SC)) = Qd(W, V)
d(wa, F(u,v)) + d(z2, F(v,u)) = 2d(W,V)

implies d(wyi,wz) + d(z1,22) < kmax{d(x,u) + d(y,v),d(x,w;) + d(y, z1),
d(u, w2) + d(’U, 22), d(m,wg)-l—d(y,zg)—gd(u,wl)+d(v,z1) }

Then F has a coupled best proximity point in W*, i.e., there exists an element
(x*,y*) € W* such that d(z*, F(x*,y*)) = d(W, V) and d(y*, F(y*,z*)) = d(W, V).
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Proof. Let Y = X x X. By using the mapping n : ¥ x Y — [0,00) accord-
ing the equation [BJ), we get (Y,7n) is a complete metric space. Set Gy =
(V(Gy), E(Gy)) such that V(Gy) =Y and

E(Gy) = {((z,y), (w,v)) €Y x Y : (z,u) € E(G) and (y,v) € E(G™")}.

Hence Gy is a directed graph which has no parallel edges. Let Sp: W* — V* be
a non-self mapping defined by B2)). Since F(W§) C Vj, we get Sp(W) C V.
Now, we will show that S satisfies all conditions of Theorem 2.1l We start by the
proving that Sg is a proximally G-edge preserving as follows: Let (z,y), (u,v) € Y
such that

((z,y), (u,v)) € E(Gy),
n((u1,v1), Sr(z,y)) = HUV*‘”)
n((u2,v2), Sk (u,v)) = n(W*, V*).

By using the definition of Sp and E(Gy ), we have

(z,u) € E(G) and (y,v) € E(G™),
d(ulaF(may)) + d(’l)l,F(y,lL')) = 2d(VV7 V)a
d(uz, F(u,v)) + d(ve, F(v,u)) = 2d(W, V).

Using the Remark BI(2), we obtain

(z,u) € B(G) and (y,v) € E(G™1),
d(ula F(x7y)) = 2d(VV7 V)?
d(UQa F(ua U)) = Qd(Wa V)a

and

(r,u) € E(G) and( v) € B(G™1),
(Ula (y,ﬂ?)) (W V)
d(v2, F(v,u)) = 2d(W, V).

Since F' is a proximally mixed G-edge preserving, we have (u1,u2) € E(G) and
(v1,v2) € E(G™1). Again, by the definition of E(Gy) it follows that ((u1,v1),
(u2,v2)) € E(Gy). Hence Sg is a proximally G-edge preserving. From the conti-
nuity of F it is easy to show that Sg is also continuous. Next, from (i) there exist
(x0,Y0), (x1,y1) € W( such that d(z1, F(xo,y0)) = d(y1, F(yo,x0)) = d(W, V) and
(ro,71) € E(G),(y0,v1) € E(G™'). Tt means that ((xo,v0), (r1,y1)) € E(Gy)
and
d(xla F(LL‘(), yO)) + d(yla F(yoa l‘o)) - 2d(VV7 V)

It implies that

(@1, 91), (F(0,90), F (o, 20))) = n(W, V),
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that is,

n((z1,91), Sk(xo,y0) = n(W, V) and ((zo,y0), (x1,y1)) € E(Gy).
Thus Sr satisfies the condition (i7) of Theorem 21l Finally, we will show that Sp

is a G-proximal generalized contraction: Let (zg,yo), (z1,y1) € W such that

((x07y0)a ($1,y1)) € E(GY)a
n((u1,v1), Sk (20, y0)) = n(W*, V"),
77((“2, ’1)2), SF(:L'Ia yl)) = n(W*v V*)a

where (u1,v1), (ug,v2) € W{. Hence
(z0,21) € E(G) and (yo,v1) € E(G™1),
d(u1, F(z0,v0)) + d(vi, F(yo,w0)) = 2d(W, V),
2

F )
d(uz, F(z1,y1)) + d(vz, F(y1,21)) =
By (iii), we have

d(u1,u2) + d(vi,v2) < kmax{d(zo,z1) + d(yo,y1), d(xo,u1) + d(yo,v1),
d(w1,u2) + d(y1,ve), d(xo’u2)+d(y0’ﬂ2);d(xl’ul)er(yl’vl) }-

It means that

n((ula Ul)a (u27 7)2)) < kmaX{ﬂ((mo, yO)v (xla yl))a 7’((1’07 yO)a (ula Ul))a
n((z1,y1), (uz, v2)), n((:co,yo),(uzaw));n((xl,yl),(uuvl)) 1.

Therefore all conditions of Theorem P.] are satisfied. Hence Sg has a best proxim-
ity point in W*, that is, there exists w* = (x*,y*) € W* such that n(w*, Sp(w*)) =
n(W*,V*). Obviously, w* = (*,y*) is a coupled best proximity point of F'. The
proof is completed. O

Next, we will use the following property instead of continuity of F' in Theorem
341 for proving the existence of a coupled best proximity point.

Property (B). Let {z,} and {y,} be sequences in X such that {z,} and {y,}
have the following properties:

o if z, — x, for some z € X and (z,,z,+1) € E(G), for all n € N, then
(xn,x) € E(G) for all n € N and

o if y, — y, for some y € X and (yn,yns1) € BE(G™1), for all n € N, then
(Yn,z) € E(G™!) for all n € N.

Theorem 3.5. Suppose that all assumptions of Theorem hold, except the
continuity of F. In addition, suppose that X has the Property (B) and Wy is
closed. Then F has a coupled best prorimity point in W*, i.e., there exists an
element (x*,y*) € W* such that d(z*, F(z*,y*)) = d(W, V) and d(y*, F (y*, z*)) =
d(W,V).
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Proof. Let Y, Gy, and both mappings n and Sr be as in the proof of Theorem
B4l Then it is sufficient to prove that Y has the Property (A). Let (z,,yn) be
a sequence in Y with (z,,y,) — (z,y), for some (z,y) € Y as n — oo and
((XnyYn), (Xnt1,Ynt1)) € E(Gy), for all n € N. Then we get x,, — =, Yy, — y as
n — 00, and (@, Tnt1) € E(G), (Yn,Yn+1) € E(G™1) for all n € N. Since X has
the Property (B), we have (z,,,z) € E(G) and (yn,y) € E(G™1). It implies that
((Tn,yn), (x,y)) € E(Gy), for all n € N. Therefore Y has Property (A). By using
Theorem 23] we obtain that Sg has a best proximity point in W*, that is, there
exists w* = (z*,y*) € W* such that n(w*, Sp(w*)) =n(W*,V*) or w* = (*, y*)
is coupled best proximity point of F'. O
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