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Abstract : Stochastic programming is a framework for modeling optimization
problems that involve uncertainty. In this paper, we study two-stage stochastic
quadratic symmetric programming to handle uncertainty in data defining (Deter-
ministic) symmetric programs in which a quadratic function is minimized over the
intersection of an affine set and a symmetric cone with finite event space. Two-
stage stochastic programs can be modeled as large deterministic programming and
we present an interior point trust region algorithm to solve this problem. Numer-
ical results on randomly generated data are available for stochastic symmetric
programs. The complexity of our algorithm is proved.
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1 Introduction

Deterministic optimization problems are formulated to find optimal solutions
in problems with certainty in data. In fact, in some applications we cannot specify
the model entirely because it depends on information which is not available at
the time of formulation but that will be determined at some point in the future.
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Stochastic programming began in the 1950s to handle those problems that involve
uncertainty in data. Many real world applications carry an inherent uncertainty
within them. In particular, two-stage stochastic programs have been established
to formulate many applications to linear, non-linear and integer programming.

Conic programming deals with an important class of tractable convex opti-
mization problems. Symmetric programming is a generalization of linear program-
ming that includes second-order cone programming and semidefinite programming
as special cases. All of these problems are treated in a unified theoretical frame-
work for the design of algorithms and the analysis of their complexity. Stochastic
symmetric programming may be viewed as an extension of symmetric program-
ming by allowing uncertainty in data.

Interior point methods are considered to be one of the most successful classes of
algorithms for solving convex optimization problems. We refer to [I] which devel-
oped an interior-point trust-region algorithm for minimizing a quadratic objective
function in the intersection of a symmetric cone and an affine subspace by solving
sequential trust-region subproblems. Global first-order and second-order conver-
gence results were proved. The techniques and properties in both interior-point
algorithms and trust-region methods show the complexity of the algorithm by pro-
viding strong theoretical support. Our algorithm is developed as an interior-point
trust-region algorithm for minimizing stochastic symmetric programming.

In this paper, we present stochastic symmetric programming with a quadratic
function and finite scenarios. And then we will explicitly formulate a problem
as a large scale deterministic program and develop an interior-point trust-region
algorithm to solve it.

The organization of this paper is as follows. In section 2, we present some
concepts and results of symmetric cone and self-concordant barrier function used
in the theory of interior-point method. In section 3, we propose a model of two-
stage stochastic symmetric programs with linear and quadratic function. We also
describe a model in deterministic programming. In section 4, we present an in-
terior point trust-region algorithm for solving stochastic symmetric programming
and provide complexity of our algorithm. In section 5, we present computational
results on a case study problem. In addition, we compared our results with those
of the quadprog function in the MATLAB optimization toolbox in cases of the
nonnegative orthant cones. Our algorithm can solve stochastic symmetric pro-
gramming problems that include variables in second order cone and cones of real
symmetric positive semidefinite matrices. The quadprog function is unable to solve
problems with these variables. Section 6 has some conclusion and remarks.

2 Symmetric Cone and Self-Concordant Barrier

In this section, we introduce some of the concepts and relevant results that
will be useful in section 4. For more detailed exposure to those concepts, see the
reference [2] and [3].

Let E be finite-dimensional real Euclidean space with inner product (-, ).
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Definition 2.1 (Cone). A subset K of E is said to be a cone if for every z € K
and A > 0 imply that Az € K.

Definition 2.2 (Convex cone). A subset K of E is a convex cone if and only if
for every z,y € K and A, u > 0 imply that Az + py € K.

We assume that K is a convex cone in a E. The dual of K is defined as
Definition 2.3 (Dual cone). Let K be a cone. The set
K*={ye E|(z,y) > 0,Vz € K}.
is called the dual cone of K.

As the name suggests, * is a cone, and is always convex, even when the
original cone is not. If cone K and its dual K* coincide, we say that IC is self-dual.
In particular, this implies that C has a nonempty interior and does not contain
any straight line (i.e., it is pointed).

We denote by GL(E), the group of general linear transformations on F, and
by Aut(K), the automorphism group of convex cone K, that is

Aut(K) = {g € GL(E)|g(K) = K}.

Definition 2.4 (Homogeneity). The convex cone K is said to be homogeneous if
for every pair x,y € intkC, there exists an invertible linear operator g for which
gk =K and gz = y.

Definition 2.5 (Symmetric cone). The convex cone K is said to be symmetric if
it is self-dual and homogeneous.

Almost all conic optimization problems in real world applications are associ-
ated with symmetric cones such as nonnegative orthant cones, second-order cones
and cone of positive semi-definite matrices over the real or complex numbers.

The nonnegative orthant cone

" ={r eR"z; >0,i=1,2,...,n}.
The second-order cone (also known as the quadratic, Lorentz, or the ice
cream cone) of dimension n

n—1
Q"Z{IER"|Z$? <22 and z,, > 0}.

i=1
The positive semi-definite cone
T ={X | X € R"™", X is positive semidefinite matric}.

A self-concordant barrier function is crucial to an interior-point methods. We
introduce some of the fundamentals idea a self-concordant barrier function that
will be useful in this paper.
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Definition 2.6 (Self-Concordant Function ). [3] Let K°CKCE and F:K° —R
be a C2 smooth convex function such that F is called self-concordant function if

|F" (@) h, by B]| < 2(F"(x)(h, h))* (2.1)
for all z € K° and for all h € S.

Definition 2.7 (Self-concordant barrier). [3] A self-concordant function F is a
self-concordant barrier for a closed convex set K if

¥ = sup, o (F'(x), F"(z) " F'(2)) (2.2)
the value 9 is called a barrier parameter of F.

In principle, every convex cone admits a self-concordant barrier(see [3], section
4). We consider a self-concordant barrier of symmetric cones as follows

Flx) = =5 Ina with ¥ = n, for cone of nonnegative orthant,
i=1
n—1
F(z) = —In(z? - ;xf) with ¢ = 2, for second-order cone,
F(z) = -—lndet(X) with ¢ = n, for positive semidefinite cone.

Lemma 2.1. [] Let F(x) is a self-concordant barrier for IC, then

F'(z) 'F'(z) = —u, (2.3)

(—F'(x), (z)) = 9. (2.4)

Lemma 2.2. [ If K F(z) is a symmetric cone and F is a self-concordant barrier
for K, then F"(z) is a linear automorphism of K for each x € K°.

The strictly convex assumption of F'(x) implies that F”(z) is positive definite
for every x € K. This allows us to define a norm as follows

1BlIZ = (b, P (x)h) (2.5)

is a norm on E induced by F"(z). Let B,(y,r) denote the open ball of radius r
centered at y, where the radius is measured with respect to ||.| 4.

Lemma 2.3. [d] If F(z) is a self-concordant function for IC, then we have By (x,1)
C KO for all x € K°.

Lemma 2.4. [4] Assume F(x) is a self-concordant function for K, x € K°, and
y € By(x,1), then

y—o F'@)y—2) _ _ lly—=l

F(y) — F(z) — (F'(z),y — =) — 5 30— [ly — [x)

. (2.6)
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Lemma 2.5. [4] Assume F(z) is a self-concordant function for K. If ||n(x)|» <
1/4, then F(x) has a minimizer z and

3ln(2)lI3
(1= In(@)])*”
where n(x) = —F"(x) " F'(x) be the Newton step of F(x).

Iz = 2llz < lln(@)ll- + (2.7)

Lemma 2.6. [4] Assume F(x) is a self-concordant barrier with barrier parameter
9. If v,y € KO, then

(F'(z),y —x) < 9. (2.8)

3 The Problem and Its Modeling

In a standard two-stage stochastic programming model, decision variables are
divided into two subsets. First-stage variables are groups of variables determined
before the realizations of random events are known. Once the uncertain events
have unfolded, further design or operational adjustments can be made through
values of the second-stage known as recourse variables, which are determined after
knowing the realized values of the random events.

A standard formulation of the two-stage stochastic program is

min - f1(z) + E[Q(z, )] (3.1)
st. Aoz =0, (3.2)
S IC1, (33)

where x is the first-stage decision variable, Q(x,&) is the optimal value of the
second-stage problem:

min f2(y,€) (34)
st. T(§)z +W(&)y = h(S), (35)
Yy e Ko (36)

where y is the second-stage variable and the cones K; and Ky are symmetric cones.
The matrix Ap and the vectors b and ¢ are deterministic data, the matrices W (§)
and T'(£) and the vectors h(£) and d(§) are random data whose realizations depend
on an underlying outcome £ with a known probability function p.

3.1 The Stochastic Linear Symmetric Programs (SLSP)

The stochastic linear symmetric programs can be stated as:

min (¢, z) + E[Q(z, ¢)] 3.7)
st. Apx = b, (3.8)
xr € Kl, (39)
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where z is the first-stage decision variable, Q(z, ) is the minimum of the problem

min (9(6),y) (3.10)
st. T(&)z +W(S)y = h(S), (3.11)
y € Ko (3.12)

where y is the second-stage variable and the cones K; and Ko are symmetric
cones. The formulation of the above problem assumes that the second-stage data
& can be modeled as a random vector with a known probability distribution. The
random vector £ has a finite number of possible realizations, called scenarios, say
&1, ...,k with respective probability masses p1,...,px. Then the expectation in
the first-stage problem’s objective function can be written as the summation

K
ElQ(x,9)] = > peQ(x, &)- (3.13)

k=1

A SLSP can be written as a deterministic program and represented as follows:

K
min  q(z,yM,y@, . yK)) = (c,z) + kZ pe(g™,y™*)) (3.14)
=1
st. Aoz = b, (3.15)
THE g + Wk yF) = pF) =12 .. K, (3.16)
reK,y® ey k=1,2,.. K, (3.17)

where z € R™ is the first-stage decision variable and y*) € R2* are the second
stage variable. The matrix Ay € R™:*™  the vectors b € R™ and ¢ € R™
are deterministic data. The matrices W®*) € R™2*n2, T(*) ¢ RM2 XM and
vectors (%) € R, g(¥) € R™ are random data associated with probability for
k=1,2,...,K. The cones K; and Ky are symmetric cone in R™ and R™+ for
k=1,2,...,K (n1,ng, are positive integers).

3.2 The Stochastic Quadratic Symmetric Programs (SQSP)

The stochastic quadratic symmetric programs can also be cast as SLSP. The
matrix Hy € R™*™ Hy > 0 is deterministic data and the matrices Hi(§) is
random data whose realizations depend on an underlying outcome £ with a known

probability function p. Let Hl(k) € R"2k X "2 Hl(k) > 0 be random data associated
with probability for k =1,2,..., K. A SQSP can be formulated as
1
min§<307 Hoz) + (c,x) + E[Q(x,&)] (3.18)

st.Agz = b, (3.19)
T e IC1, (320)
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where z is the first-stage decision variable, and Q(z,£) is the minimum of the
problem

wing (y, H1(€)9) + (9(€).1) (3.21)
SLT(E)2 + W(€)y = h(e), (3.22)
y € Ko, (323)

where y is the second-stage variable and the cones K1 and K3 are symmetric cones.
A SQSP can be equivalently written as a deterministic symmetric programs

as:
; G ) — 1
min Q(may Y Y e Y )—§<LL‘,H0£L'>+<C,LL‘>
Kol (k)
+ 2 pe(5 "W, Hy W) + (g, y)) (3.24)
k=1
st. Apx =0, (3.25)
THE g+ WHEyF) = pF) =12 ... K, (3.26)
reky,y® ey k=1,2,..., K. (3.27)
Define
K=K x Kél) X ICéQ) X ... ,ICéK) is the symmetric cone, (3.28)
K
(n+3> n2y)
X=[z,yV,y® ... yFT R = xe K,y e Ky, for k=1,2,..., K,
(3.29)
K
B=[b, n0, r®, ... pe0T g™ TE" (3.30)
(n1+ 3 na,)
C = [e;p1g®,pag®, - prg®]  eR = (3.31)
Ay 0 0 - 0
T wm o : 0 K K
A= [T® 0 W@ 0| R mTE) g )
T 0 0 .. WE
Hy 0 0o .- 0
0o pHY 0 . 0 « «
Q = 0 0 p2H§2) 0 R(nl+k§1n2k)><(nl+k§1 ’ﬂzk)’
0 0 0 - prH

(3.33)
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we can rewrite a SQSP as a large deterministic program as follow

ming(X) = %(X, QX) + (C, X) (3.34)
st.AX = B, (3.35)
X e k. (3.36)

4 The Interior-Point Trust-Region Algorithm

In this section, we present our interior-point trust-region algorithm for solving
B342)-@334). First, we define the function as

fni(X) = niq(X) + F(X)

= (;@ Hoz) + {c,x +Zpk 9 HPy®) + <g(k),y(’“)>))
K
R+ S RE®) (11)

where F(X) : K — R is a self-concordant barrier for the symmetric cone K with
a barrier parameter ¥. A self-concordant barrier define by F(X) = Fi(x) +

K
S Fy(y™®)) where Fy(x) is a self-concordant barrier function for cone K; with

a barrier parameter 91 and F»(y™*)) is a self-concordant barrier function for cone

O : () & g k)
K5’ with a barrier parameter ¥y for k =1,2,3,..., K and 9 =91 + >, 95 .
k=1
Since ¢(X) is quadratic and from definition[ZGlthen f,, is also a self-concordant

barrier function. Consider interior-point trust-region algorithm in each inner it-
eration for a fix 7; we need to find the central path for decreased the value of
fni(X). For outer iterations we need increase the value of n; to positive infinity,
which implies that the central path converges to a solution that is optimal for the
original problem.

Let d = (dl,dg),dg),dég), e ,déK)) € E be the trail step of f,,. Consider
function f,, in each inner iteration

1 2 2 K 2 K
fnl(x1]+d1’y1] d( )7y1(3) d( ) "'7y13)+d( )) f”]i(z’b,j7yz(])ﬂyz(,])ﬂ'"5yz(,]))

:(niq(xi7j+d1,yl(1])+dé1),y”+d oy 1 dI) + Ry + dh)

K K
k k 2 k k
+ZF y’L(j)+d(2 ))) (n(I(m’L,j7yz(J)7yz(7J)ﬂ)y'L(]))+F1(x’L,])+ZF yz(])))
k=1 k=1
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1
= <§7h<ﬂfz] +di, Ho(zi; + d1)> +nilc, i +di) + Fi(zi; +di)
+Z(2771pk y! ])—l—d(k),Hl(k)(yg;-)—l—dgk)))-l—mpk(g(k),yz(k)—i—d(k))—I—F(k)( (k)—i—d(k))))

1 K

k) (k
( m<:ﬂ1,j,H0:E1,j> + nilc, @i j) + Fi(zj JrZ( Tth y”)aH( )yl(7j)>
k=1

+mipilg ™,y + AV <y§,’§>>)>

K
1
(di,miHody) + <(771H0m” +¢) d1> + E 5 2 ,mp H( )dgk)>
k=1

1
2

M=

+ 3 ik (HPy®) + g®),d8) + Fi(2i; + dy) — Fi(wig)+
k=1
K
k k
> (Bl +db) ~ BLY). (42)
k=1
We want to find the bound of f,, (x; j+d1,y; ])—l—d(;), 1(2])+d(2) Y I(I]()—i-d(K))

then we consider the self-concordant barrier in above equation. From Lemma [Z.3]
1
for any X ” € K° we have X;; +d € K% Given |\F1”(x”)2d1|| <ag,,; <1,

<a ; < ltfor k= and aq; + a - < 1. Imphe

Fy () d(k) 1for k=1,2,...,K and ) < 1. Implied
1 k k k 2

that ||}/ (z;,5)* da]|” + ];I\Fé’(yf])) | < o, Za“

Let F"(X) = F{'(x) + Z Fy'(y*®)) denote the Hessian of a self-concordant
k=1

function F(X). Since it is positive definite for every X € K° implies that F”(X)
is positive definite. For h = [hl,hél),hg), e ,héK)] € E. Let further we de-
fine a norm on E induced by F”(X) as ||h||% = (h, F"(X)h) = (h1, F/'(z)h1) +

K
2 (17 B (g

K
k k k
Fi(x;; +dy) — Fi(x ;) + E yZ(J) d( )) (yz(_])))
k=1

1 ldul3, | K
< (o) ) 50 ) + gy + 2 (0L )
7] k=1

d(k) 3
01

;3@ = 115”1, )

K
L,k k
+;§ (dS), By (yM)ay +
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K
< (Fi(wag),dn) + 5, F i)} + S (FH ), )
k=1
K 3 K (k3
Loy g () )\, L X s,

< (F{(w;,5),dv) + <d1,F1 (z:,)d +Z FY( (k>) PO

k=1
K
K (o 3 ag?)?
k k k k=1
+Zg<d§),F2"( f]))d§)>+g K (4.3)
k=1 1— (o, + > aéi),)
k=1 7

The third inequality of (@3] follows from Lemma 24l From (£3]) we can rewrite

E2) as

2 K
fm (zi,j + dlayz(,lj)+dgl)ay£2]) + d(2) oo 7yl(§() + dgK)) - fm(mtjvyl(])ayl(])a .. 'ayz(,j ))

K
1 1
< g{di,miHody) + <(77iH030i,j +0), d1> + ;5

K
+ (F(@ig), i) + 5 <d1,F1 (wig)di) + > (Fy(y)), dl)
k=1

(dék) ; mpkHl(k)dék)>

& (k)43
K 1 (ali,j + Z 21\1')
+3° ¢ (dP, Fy (y"ddy + . ( =L )
k=1 1= (a1, + > o))
=1

=

l\’)lr—t

1
§<d1, (T]ZHO + F{/(zi,j))d1> + <7h’(HOfL'i,j —+ C) —+ F{(l‘iyj), d1>
K

k k
n %<d(k) nzpkH(k)+FN(yl(lz)) d(k)>+z<7l pk H(k)yz ])+g( ))+F/(yz(])) d(2 )>
k=1

K
L, (e, + S ag)y
k=1
3 - . (4.4)
1- (ali,j + Z agjl)
k=1

+

Now the inequality (4] gives an upper bound for f,, (z; ;+d1,y; ]) +d(1), y12) +

déQ), ceey yz(] ) + d(K)) We can try to minimize this bound given in the right-hand

side of inequality. This lead to the following trust-region subproblem
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min— <d1, (niHo + FY' (ﬂfm))d1> + (ni(Hows j + ¢) + Fi (i), d1)

k k k k
+Z <d<> (e H® 4 F, (yﬁ,j)))d§)>

- Z<mpk Dyt g W) 4 (), dék)>

—m”(dl,dl) d? .. d") (4.5)
k k k) 2
st. ||F{’<x”>zd1||2+2|| () EdSY |2 < a2, +Zaéfj . (46
k=1

Let the transformation

dy = Fy'(z; ;)2 dy, (4.7)
& = Fy(y*)idd for k=1,2,.. K, (4.8)
and define
Qu,; = niF{/(xi,j)féHOF{/(JCi,j)*% +1, (4.9)
Cli,j = Flll(xi7j)_% (ni(HOxi,j + C) + Fll(xi7j)), (410)

O = ) EHP R () 10 for k= 1,2, K, (4.11)
k k k), (k k
O3 = FY ()% (mipe (H{ ) + g®)) + Fy(y)) for k=1,2,... K. (4.12)
We can rewrite equations (L0 and ([@G) as follow

min q;j(d'l, d'2(1)7 d (2) o dh (K))

K
1 1 k
= S{d.Qu i) + (O ) + 3 (5,08 ™) + () ™)) (4.13)
k=1

K

2

st 2+ Sl PP < f + Zaé’f?,. : (4.14)
k=1 k=1

Once d; ; 1s computed then we obtain the trail step

di,, = F'(wiy) 72 d,, (4.15)
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d) = F ) 2aP for k=12, K (4.16)
and from inequality ([@4]) that we have
(1 1 K
fnq,(fi,j"’dlquz]‘f'd )""’y’bj +d ) fm(ximyz(g)ayz(g)a'"7%(]))

(a1, 3 ol )
K “J
S q;’] (dlllu 5 dlét?j, N ’dléi,j)) + g (ﬁ) . (417)

Let n,, (X;,;) = ny, (4, ],yz(lj), . ,yl(lf)) be the Newton step of f,, (z, y W,y )
at the point (xm,yl( ]), y1(2]), e, yz(j )). We should point out that

[I72m, (X',j)| %{1 S
= (= P X)) (Kg) Sy (X)) (= £ (X)) ™ (X)) )
= <f17 X'L]) ! 7/77(le])>
= <7h Hoﬂfz] + )+ Fi(wig), (miHo + Fy' (i)™ x (ni(How, ; +¢) + F{(fﬂi,j))>
K
1
37 (o (HP YY) + 90 + B, o + B )
k=1
x (o ({9 + 90) 4+ By (u5)) )
K 1
_ k - k
= (C1,,,Q7, Ch. ;) + 2@572 7 Q"“’zi,jci,,b (4.18)
k=1

where the last equality follows equalities (£9) - (£12).

Now we are ready to present our algorithm. From what we defined in (3:29)),
B30) and B32), we define the feasible set by F = {X € E | AX = B,z €
Ki,y®) € Ky, for k=1,2,...,K}

Algorithm : An interior-point trust-region algorithm
Step 0 Initialization

seti = 0,7 = 0, choose starting point (o, y(()7137 y(()23, .. ,y(()lg)) e {F},

an initial trust-region radius ag,0 € (0,1), and an initial parameter
7o are given.
Until convergence repeat.

Step 1 Test inner iteration termination compute

1
Y, S am (4.19)

725, (X 5)]

w
(=}
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1
if [|nn, (Xi )%, , < 77 80 to step 2, otherwise set

1 2 K 2 K
(m1+1,j7y1(+)1 Jay1(+)17ja R yz(+1)]) (zl,jvyz( J)ayz(J)a s ayz(,] ))

and go to step 3.

Step 2 Step calculation
solve (L.I3)and [E.Id) to obtain (dj, d’(l) d’(2) ,d’g_(,_))

and compute ([EIH)and [EI6) to obtam (d11 2 d(l) d(2) .. d(K))

1 1
update (xi7j+13y'§,j2l»17 ey yz(,j—k)l): (Iiaj+d17 ]7y’L] +d( ) e 7?]1] )+d )

and go to step 3.
Step 8 Update parameter 7
Set n;4+1 = On; for some 6 > 1, increase ¢ by 1 and go to step 1.

Y

Lemma 4.1. Any global minimizer (d, d’g?j,d'g?j, ce d'g?)

(Z-13) and ({.Ij)satisfies the equation
(Qli,j + Ni,jI)dll.;,j = 7011',3') (420)

of the problems

(Q<k> + g 10" (k) —Cz(f)w fork=1,2,...,K, (4.21)

which Qu, ; +pi I and Qé’:)j +ui,jl(k) fork=1,2,... K are positive semi-definite

K K
k k
pig 2 0 end pig (I, |+ 3 147 - an,, = 32 af) =

This Lemma is well-known in the trust-region literature. For proof see e.g.
Section 7.2 of [5].

K
Theorem 4.2. If we choose ay, ; + ) a(k) = Z then we have
k=1

(2) (K) )

1
1 2 K
fm (Ii,j+17y§,j)+17yz 1o Yigi1) — fm (midvyz(])vyz(])a cet ayz(,j )) <—7F (4'22)

145

which is independent of i and j.

Proof. If the solution of equation EI3) and (IM) line on to boundary of the

trust-region, i.e., ||dj, ||+ Z ||d'(k) | =ai,, + Z a . we have

1 2 K
g (dy, ds) a8 )

(d
1 K
5( 7J’Q171d111> < lJ’ +Z
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1
= <d/1i7j, (qu,,]’d/l,,y]‘ + Clwv)> - §<d/1i,janq,,jd/1,,,j>
K
k k k k k k k
+Z<<d/é) ( (QL)Jd/() +C())> <d/(7)1, éq)]d/()>)
k=1

1 1 1
= —(d'1,,, pijdy, ) — =(d'1, ;. (iFy (zi;) 2 HoFY (2;,5) "% + I)d},
5J 2 »J

=

k k 1 —1 k
(D ) S e ) ) ) )

=
Il
—

k 1 _1
i (7, |1 +Z||d’< D) = (@ ey o) Ry () 2) )

k k)\—1y (k 1
(npeFy )P Y 0 ) =S (I,

K
k
S 2
k=1

l\DI)—‘
FMN
/\

k 2 1 1 _1
= _Mz‘,j(ai,j + Zaéq,,)j ) = §<dl W (771F1 (wi,3) "2 HoFY' (w4 5) 2) llu>
k=1
1 & A SHCE
k k k)y_1 k
*§Z< mp FQN(yl(])) 2H( )F2H( ( )) 2)d/ J> N i(aiwi +Za(2i?j )
k=1 k=1
K
1, RN
<30, - el =g (4.23)

In the above, the third equality follows from the equalities (£9), (£I1), [E20)
and ([@ZI). The inequality follows from the fact that mFl”(zi,j)*%HoFl”(:Ei,j)*%
and
mkaQ”(yz( j)) H(k)F”( (];))_‘ for k=1,2,..., K are positive definite or positive
semidefinite. Therefore we get the last mequahty From (II7) and (£23) we get

2 K 1) (2 K
fm(zz,ﬁrlvyz(])-i-lvyz(g)-i-lv"'vyz(,g-z-l) foi (@ J’yz(_])?yz(])""’yz(,]))
1 (1/4)3 1 (4.24)
<-4
=732 7301 -1/4) 145

If the solution of @I3) and @jZI) lies in the interior of the trust-region, i.e.,
ldg, 112+ z I8 112 < o3, + z a$?? From Lemma 4.2, we know s;; — 0 and

onsequently dlw, = —Qlw, 1 d 2«1 = —Q(k);:jCQ(f)j for k=1,2,..., K which
gives

1 2 K
gy, aS a® )

(dy
1 < 1 <k> (k) (k)
k
5( 7J’Q171d111> < 71’ +Z 5 d/ )Jd/217>+<cél)ﬂ’d/217>)
k=1
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o QW o)

K
<ClwaQ1 ,Cig) 25 2,02,

K
=5 (€15 Qi Cua) + 08, Q3 )
k=1

1
= =5l (Xl - (4.25)

By (£27) and the mechanism of our algorithm, we know that ||n,, (X; ;)[/%.

for all ¢ and j we can rewrite ({17 as

1 2 K 2 K
fm (mi,j+17y§7j)+17yz( _])+1a cee ayz(,]-i)-l) f’l’]i (mz,jvyz( J)ayz(J)a s ayz(,] ))
1 (a1, ,+ 3 gt )?
< —Zn, (X - 2__+_(L>
> 2” m( m)| X, 1_(a1ij+§ o ) (4,26)
k=1 %
1 (1/4)3 1
- 72 3(1-1/4) 145
The proof is completed O

Now, we consider the number of iteration of our algorithm that we can stop the
iteration when the reduction of objective function is smaller than some constant.

Lemma 4.3. Let X* = argminxecxq(X) and X* = [:E*,y(l)*,y@)*, e ,y(K)*]T €

K
( 1+ ) * 1
RS ek y® € Ko for k=1,2,..., K. If [nn(X)|x < . then
o OV
q(X) —q(X™) < P (4.27)
Proof. Let X(n) = argminxexfy(X). From Lemma 27
1
1 37
[X=X(llx <-4+ ——7— <3 (4.28)
-y ?
6
and from Lemma [2.3] we have
X — X(n)llx 1
X-X < < —. 4.29
H ( HX?? 1— HX X(W)HX 2 ( )
Consider
(X)) —q(X*) < ({(X(m),X(n)—X*)
—F'(X Ul *
= (D) ) - x)
n
9
< -, 4.30
= - (4.30)
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The first inequality follows from the convexity of ¢(X). The equality follows from
the fact that f'(X(n)) = 0 and the last inequality follows from Lemma 26 From
the inequality (£28) and ([@29) Then, we have

q(X) — q(X(n))

- <q’(X(n)),X - X(n)> + %<X —X(n),Q(X - X(n))>

~F/(X(n)) 1
_ <%X — X () + 2—n<X — X(1),1Q(X - X(n)))
: %<—F”<X<n>>‘%F’ (X (), F"(X(n) "> (X = X(m)) )
+ 51X — Xl

< [F" (X ()2 F (X ) IF" (X () (X - X)) | + %’

1
2

[

=(F' (X)), F" (X () " F (X ()" (X = X)), F"(X(m) ™ (X = X(m)) )

L
187
X-X
VX - X, 1
n 18n
< @ + 1 < @ (4.31)
2n 18n n

where the third last inequality uses the Lemma and from the fact that 9 is
always greater than 1. By adding the inequalities (£30) and (£3T]), then we have

2(X) - q(x) < 2 *nﬂ.

The proof is completed |

The above Lemma tells us that to get an e solution. Let 7,41 = 0n; for some
6 > 1 and, we only need
9+ VY

n = ot = ———, (4.32)

provided that the number of outer iterations ¢ satisfies

P> In(9 + \/5/6770).

4.
Inb (4.33)

1
Lemma 4.4. If |n,;(X)|x < 6 then

f'r]i+1 (X) - f'r]i+1 (X(ni-i-l)) < 0(19 + \/1_9) (434)
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Proof. From the convexity of f,,.,(X) and the inequality ([Z28), we can show that

Consider

fm+1 (X) - fm+1 (X(ni))

< (o (X), X = X (m3))

= (i1 QX +C) + F/(X), X — X (1))

= L ((QX +0) + F/(X).X = X(n)

i

+ (L) (F(X), X () — X)

i
79< - 2(X)(m(QX+C)+F’(X)) ”2( )(XfX(m))>

+ (6 - D{F"(X)"LF(X), ()"} (X () - X))

<0l f7 72 (X) (m(QX +C) + F'(X )||||f,;'% (X)(X = X))

(
+(0 = DIIF"(X) "2 F'(X)IIF"(X)* (X () — X))
<0l (X[ 12X (i) — X||x+(9*1)f||X(m)

<HE)G) + (0 - )V

< OV9.

Xllx

fm+1( ( )) fﬁ +1( (7714-1))
< (£ (X00)), X () = X (mis1))
= 1 (QX (n) +C) + F'(X (m)),X( ) = X(nis1))
= T QX () + C) o+ F (X (), X () = X (1i+1))
(B ) (F (X)), X (i) X(m)>
= 0{ 5, (X)), X (1) = X (i11))
+ (60— 1)<FI(X(771‘)>7X(771‘+1) - X(m)>

= (0= D(F'(X (1)), X (1:1) = X (1)) < 09,

(4.35)

(4.36)

where the last equality follows from the fact that X (1;) minimizes f, (X) (which
implies that f, (X) = 0), the last inequality follows from Lemma By adding

inequalities (£.35)) and ([@36), then we have

fm+1 (X) - fm+1 (X(n1+1)) < 9(19 + \/1_9)

The proof is completed
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Theorem 4.2 and Lemma 4.4 tell us that the steps in each inner iteration in
at most

1450(9 + V) (4.37)
steps in each inner iteration.

Theorem 4.5. If the initial point Xo o satisfies the conditions ({.19), for any
e > 0, our algorithm obtains the solution X which satisfies ¢(X) — q(X*) < € in
at most

19+\/1_9)

14560(0 — v/9)in(
o (4.38)

Inb

steps, here X* = argminxcicq(X).

Proof. Inequality ([#33)) provides us with the number of outer iterations ¢ and
Theorem 4.2 and Lemma 4.4 provides us with the number of steps in each iteration
7. The number of iterations is at most the number of outer iterations multiply the
number of inner iterations then we have the bound of number of iteration in at
most

Zn(z9+\/1_9

)
_ ___ o
1450(9 — V) x T

steps. O

Consider the case when the initial point Xy ¢ does not satisfy condition ([@I9).
We can start from the analytic center of the feasible set K, since K is a bounded
convex set. Let X (no) = argminxex fn,(X) and X* = argminxexq(X). Since
Xo,0 = argminxexcF(X), we have

Fno(Xo0,0) = Fro (X (m0)) < mo(q(Xo,0) —q(X)) (4.39)

and we choose ng < 1/(g(Xo,0) —¢(X*)), from Theorem 4.2 implies that condition
(#19) will be satisfied after at most 145 steps.

5 Implementing the Algorithm

In this section we discuss the performance of our algorithm when the domain
of the problem is in nonnegative orthant cones and second-order cones. These
cones are all well known examples of symmetric cone. We consider multi dimen-
sion real sets. We compare our results with those of the MATLAB optimization
toolbox is it called “quadprog function”in cases of the nonnegative orthant cones.
Our algorithm can solve stochastic symmetric programming problems that include
variables in second- order cone and cones of real symmetric positive semidefinite
matrices. The quadprog function is unable to solve problems with these variables.
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5.1 Problem Statement

The parameter chosen for deterministic data of SQSP ([B24)-([B27) are shown
below

64 1 4 9 -1
1 81 25 16 2 123 4 33
Ho=1y4 25 100 o] = |3 A‘{1 1 2 1] B_[m]
9 16 9 144 5

The random variables ka), W 7®) k) qk) | =12, ..., K. For simplicity, we
consider the simple case K = 4 scenarios but the procedure can be easily extended
to very large K.

Hy H;” By
64 1 4 9 2 214 511 245 196 ; i
25 1 4 1 81 25 16 4
4 25 100 9 5 6
1 33 25 4 25 100 9 6 9 16 9 144 3 6
4 25 40 9 16 9 144 8
2 4 6 8 36 R S,
13 4 6 6 1 64
HY
20 1 4 9 3 4
1 36 25 16 4 5
4 25 100 9 6 6
9 16 9 144 6 7
2 2 5 3 49 1 8
3 4 6 6 64 9
4 5 6 7 9 40]
e T8 W w®
1 1 1 2 3 4 5
{233}32142 3 45 1 2 3/ (52 L1411
1 1 2 1 1 1 1 2 1 2 1 1 2 3 4 5 6 7
2 1 2 3 5 8 9
RO NS R
91
91
- 77 19 65
42 37 78 00
29 40 140

163
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71 T(2) T3) 7(4)
21 2 1
1 2 3 4
39 1 0 3 3 45 3 9 1 4 3 21 4
1 23 0 2 1 1 2 113 5 2 1 3 2
30 21 9 9 9 9 11 4 2
2 4 3 1

PE R R R CY

1
1 ‘Z -2
aq 11 ) 3
31 (2| |3 4
2| 1 |y |8
2] |5 1
L 1 -

we randomly generate probability function p in 6 cases as shown below.

b1 D2 b3 D4
casel 0.1 0.2 0.3 0.4

case2 04 0.3 0.2 0.1
case3 0.25 0.25 0.25 0.25
cased 0.5 0.2 0.2 0.1
cased 0.9 0.1 0 0

case6 0.3 0.3 0.3 0.1

5.2 Results of an Interior-Point Trust-Region Algorithm

In order to make a comparison, the problems [B.24)-(327) are described in
chapter 4. Our algorithm is then implemented under MATLAB environment re-
lease 2015a. The results are in table () - (2]), for case nonnegative orthant cones,
we compare our results with those of the quadprog function in MATLAB opti-
mization toolbox and our algorithm as in table in table () and (). In particular,
we present our results of stochastic second order cone programming as in Table
@). From the numerical results example, we have the same optimal solutions
with those of the quadprog function and our algorithm. The numerical results for
stochastic second order cone programming, some case of problem are same optimal
solutions and some case are difference because the restrictions of cones.
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Table 1: The solution of SQSP when K; and Ky are nonnegative cone by
quadprog function for R'f.
Casel Case2 Case3 Cased Caseb Caseb

T 1.0676  0.91286  1.0212  0.87326  0.90544 0.82258
o 2.557 2.354 24921 24486  3.0439  2.1565
3 21366 2.3107 21904  2.2066  2.0392  2.4438
4 51021 51118 51058  5.0849  4.9723  5.1332

Y\ 44744 44380  4.464 44208 4.3938  4.4231

ysv 11938 0.8827  1.0988  0.86628  1.1694  0.66718

s 56261  5.9737  5.733 59665  5.5312  6.2284

y'? 1.547 1.5907  1.5593 1.631 1.7314  1.6006

y$? 0.77638  0.79472  0.7818  0.80212  0.80853 0.80395
2 0.79228  0.78553  0.78751  0.88298  1.2586  0.72812

y$? 0.97662  0.9977  0.98368  0.9761  0.86986 1.0246

y? 4.5372 45741 4.5498 4527 4306  4.626

y'® 4.51E-01 7.53E-01 543E-01 7.96E-01 1.8008  0.94799

Y 35633  3.3365  3.4927  3.3736  3.1436  3.1529
y$Y 0.58643  0.5789  0.58513  0.54237  1.6117  0.59316
y$® 22359 21789  2.2182 21884 42732  2.1327
y&® 27175 3.0054 28069  2.9676  1.0372  3.2335
y® 5.4149 5.1841 5.3432 52154  3.5629  5.0007
Y 1.2744  1.8526 14545 17549  0.44043 2.3223
@ 1.3673 14487  1.387 1.6402 57409  1.4042
ys 15263 15039 15222 14023  1.3403  1.5427
ys 21789 2472 2.2693 24529  0.19677 2.6938
Y 3.3081 23796  3.0207 24709 26141  1.66E+00
Y 4.7635 48505  4.7931 47462 5.692  4.9694
Y 78856  8.1594  7.9684 82052  13.714  8.3322

Optimal value 5488.1 4489.4 4991.5 4539.2 4084 4581.5
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Table 2: The solution of SQSP when K and K9 are nonnegative con by an
interior-point trust-region algorithm for R'}.
Casel Case2 Case3 Cased Caseb Caseb

1 1.0676  0.91286 1.0212  0.87326 0.90543 0.82258
2 2557 2354 24921 24486  3.0439  2.1565
3 21366 23107  2.1904  2.2066  2.0392  2.4438
24 51021 51118 51058 5.0849  4.9723  5.1332
e 44744 44380 4464 44208  4.3938  4.4231
ys! 11938 0.88271 1.0988  0.86628 1.1693  0.66719
yiM 56261 59737 5733  5.9665 5.5312  6.2284
yi? 1547 15907 15593 16309 17314  1.6006
ys? 0.77639 0.79473 0.78182 0.80213 0.80859 0.80396
y{? 0.7923  0.78554 0.78751 0.88298 1.2586  0.72812
y{? 0.97665 0.9977  0.98369 0.9761  0.86987 1.0246
yt? 45372 4574 45498 4527 4306 4.626
yt? 0.45125 0.7532  0.54272 0.79587 1.7076  0.948
yt? 3.5633  3.3365  3.4927 3.3736  3.1237  3.1529
y{¥ 0.58646 0.57891 0.58515 0.54238 1.5184  0.59317
y{Y 22359  2.1789 22182 21884  4.0644  2.1327
yt 27175  3.0054  2.8069  2.9676  1.16 3.2335
y$3) 54149 51841 53432 52154  3.8259  5.0007
e 1.2744  1.8526  1.4545 1.7549  1.0404  2.3222
ysY 1.3674  1.4488  1.387  1.6402 24054  1.4042
% 15263 1.5039  1.5222  1.4023 21616  1.5427
y{Y 21789 2472 22693 24529 13539  2.6938
ytY 3.3081  2.3796  3.0207  2.4709  3.2819  1.6607
ytY 47636 4.8505  4.7931  4.7462 32029  4.9694
ybt 7.8856  8.1594  7.9684  8.2052  9.2244  8.3322

Optimal value 5488.1  4489.4  4991.5  4539.2 4084 4581.5
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Table 3: The solution of SQSP when X and Xy are second-order cone by
an interior-point trust-region algorithm for SOCP.

Casel Case2 Case3 Cased Caseb Caseb
1 1.0658  0.91295 1.0212 0.87326 0.90544  0.87815
s 25575  2.3541 24921  2.4486  3.0439  2.2279
3 21375 23106 21904  2.2066  2.0392  2.3819
24 51017 51118 51058 5.0849 4.9723 5.3
yt 43596  4.4387 4464  4.4207 43938  3.837
ys! 1.2485  0.88299 1.0988  0.8663 1.1694  1.0777
yi 56473 59735 5733 59664 55312  6.2044
yi? 15532 15907 15593 1.631  1.7314  1.5657
ys? 0.77621 0.7947  0.7818  0.80212 0.80856  0.82513
y{? 0.79222 0.78552 0.78751 0.88298 1.2586  0.72748
y{? 0.97088 0.99765 0.98368 0.97609 0.86985  1.0236
yt? 45412 45741 45498 4527 4306  4.6022
yt? 0.47082 0.75396 0.54272 0.79593 -18.313  0.88651
y§3) 3.5008 3.3332 34926 3.3733 -88.92  3.1116
y{¥ 0.60241 0.57985 0.58517 0.54246 -18.502  0.6428
yid 22219 21782 22181 21883  -109.73  2.1538
yt? 2706 3.0045 2.8069 2.9675  40.049  3.0888
yt? 54647 51871 53433 52157 191.94  5.1488
yiY 1.28 1.8524  1.4545  1.7549  4.0762  2.2052
yst 1.3638 14483  1.387  1.6402  -0.69272 0.95488
yiY 15334  1.5043  1.5223 14023 10911  1.6957
yiY 21791 24718  2.2693  2.4529  -1.9777  2.712
ytY 33016  2.3801  3.0207  2.4709  -0.22866 2.0532
ytY 47489 4.85 47931 4.7462  -7.0953  4.5863
i 7.8997 81596 7.9684 8.2052 19.165  8.4675
Optimal value 5488.2  4489.4 49915 45392 4084 4585.5
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6 Conclusion and Remarks

In this paper, we present stochastic symmetric programming with linear func-
tion and quadratic function and finite scenarios. We can explicitly formulate the
problem as a large scale deterministic programs. The complexity of our algorithm
is proved to be as good as the interior-point polynomial algorithm. We have veri-
fied our performance of the algorithm on simple case study problems. Numerical
results show the effectiveness of our algorithm.

Acknowledgement : The authors would like to thank the Thailand Research
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