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Abstract : Stochastic programming is a framework for modeling optimization
problems that involve uncertainty. In this paper, we study two-stage stochastic
quadratic symmetric programming to handle uncertainty in data defining (Deter-
ministic) symmetric programs in which a quadratic function is minimized over the
intersection of an affine set and a symmetric cone with finite event space. Two-
stage stochastic programs can be modeled as large deterministic programming and
we present an interior point trust region algorithm to solve this problem. Numer-
ical results on randomly generated data are available for stochastic symmetric
programs. The complexity of our algorithm is proved.
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1 Introduction

Deterministic optimization problems are formulated to find optimal solutions
in problems with certainty in data. In fact, in some applications we cannot specify
the model entirely because it depends on information which is not available at
the time of formulation but that will be determined at some point in the future.
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Stochastic programming began in the 1950s to handle those problems that involve
uncertainty in data. Many real world applications carry an inherent uncertainty
within them. In particular, two-stage stochastic programs have been established
to formulate many applications to linear, non-linear and integer programming.

Conic programming deals with an important class of tractable convex opti-
mization problems. Symmetric programming is a generalization of linear program-
ming that includes second-order cone programming and semidefinite programming
as special cases. All of these problems are treated in a unified theoretical frame-
work for the design of algorithms and the analysis of their complexity. Stochastic
symmetric programming may be viewed as an extension of symmetric program-
ming by allowing uncertainty in data.

Interior point methods are considered to be one of the most successful classes of
algorithms for solving convex optimization problems. We refer to [1] which devel-
oped an interior-point trust-region algorithm for minimizing a quadratic objective
function in the intersection of a symmetric cone and an affine subspace by solving
sequential trust-region subproblems. Global first-order and second-order conver-
gence results were proved. The techniques and properties in both interior-point
algorithms and trust-region methods show the complexity of the algorithm by pro-
viding strong theoretical support. Our algorithm is developed as an interior-point
trust-region algorithm for minimizing stochastic symmetric programming.

In this paper, we present stochastic symmetric programming with a quadratic
function and finite scenarios. And then we will explicitly formulate a problem
as a large scale deterministic program and develop an interior-point trust-region
algorithm to solve it.

The organization of this paper is as follows. In section 2, we present some
concepts and results of symmetric cone and self-concordant barrier function used
in the theory of interior-point method. In section 3, we propose a model of two-
stage stochastic symmetric programs with linear and quadratic function. We also
describe a model in deterministic programming. In section 4, we present an in-
terior point trust-region algorithm for solving stochastic symmetric programming
and provide complexity of our algorithm. In section 5, we present computational
results on a case study problem. In addition, we compared our results with those
of the quadprog function in the MATLAB optimization toolbox in cases of the
nonnegative orthant cones. Our algorithm can solve stochastic symmetric pro-
gramming problems that include variables in second order cone and cones of real
symmetric positive semidefinite matrices. The quadprog function is unable to solve
problems with these variables. Section 6 has some conclusion and remarks.

2 Symmetric Cone and Self-Concordant Barrier

In this section, we introduce some of the concepts and relevant results that
will be useful in section 4. For more detailed exposure to those concepts, see the
reference [2] and [3].

Let E be finite-dimensional real Euclidean space with inner product 〈· , · 〉.
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Definition 2.1 (Cone). A subset K of E is said to be a cone if for every x ∈ K
and λ > 0 imply that λx ∈ K.

Definition 2.2 (Convex cone). A subset K of E is a convex cone if and only if
for every x, y ∈ K and λ, µ > 0 imply that λx + µy ∈ K.

We assume that K is a convex cone in a E. The dual of K is defined as

Definition 2.3 (Dual cone). Let K be a cone. The set

K∗ = {y ∈ E | 〈x, y〉 ≥ 0, ∀x ∈ K}.

is called the dual cone of K.

As the name suggests, K∗ is a cone, and is always convex, even when the
original cone is not. If cone K and its dual K∗ coincide, we say that K is self-dual.
In particular, this implies that K has a nonempty interior and does not contain
any straight line (i.e., it is pointed).

We denote by GL(E), the group of general linear transformations on E, and
by Aut(K), the automorphism group of convex cone K, that is

Aut(K) = {g ∈ GL(E)|g(K) = K}.

Definition 2.4 (Homogeneity). The convex cone K is said to be homogeneous if
for every pair x, y ∈ intK, there exists an invertible linear operator g for which
gK = K and gx = y.

Definition 2.5 (Symmetric cone). The convex cone K is said to be symmetric if
it is self-dual and homogeneous.

Almost all conic optimization problems in real world applications are associ-
ated with symmetric cones such as nonnegative orthant cones, second-order cones
and cone of positive semi-definite matrices over the real or complex numbers.

The nonnegative orthant cone

Rn
+ = {x ∈ R

n|xi ≥ 0, i = 1, 2, ..., n}.

The second-order cone (also known as the quadratic, Lorentz, or the ice
cream cone) of dimension n

Qn = {x ∈ R
n|

n−1
∑

i=1

x2
i ≤ x2

n and xn ≥ 0}.

The positive semi-definite cone

Sn
+ = {X | X ∈ R

n×n, X is positive semidefinite matric}.

A self-concordant barrier function is crucial to an interior-point methods. We
introduce some of the fundamentals idea a self-concordant barrier function that
will be useful in this paper.
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Definition 2.6 (Self-Concordant Function ). [3] Let K0⊂K⊆E and F :K0 →R

be a C3 smooth convex function such that F is called self-concordant function if

|F ′′′(x)[h, h, h]| ≤ 2
(

F ′′(x)(h, h)
)3/2 (2.1)

for all x ∈ K0 and for all h ∈ S.

Definition 2.7 (Self-concordant barrier). [3] A self-concordant function F is a
self-concordant barrier for a closed convex set K if

ϑ = supx∈K0

〈

F ′(x), F ′′(x)−1F ′(x)
〉

(2.2)

the value ϑ is called a barrier parameter of F .

In principle, every convex cone admits a self-concordant barrier(see [3], section
4). We consider a self-concordant barrier of symmetric cones as follows

F (x) = −
n
∑

i=1

lnxi with ϑ = n, for cone of nonnegative orthant,

F (x) = −ln(x2
n −

n−1
∑

i=1

x2
i ) with ϑ = 2, for second-order cone,

F (x) = −lndet(X) with ϑ = n, for positive semidefinite cone.

Lemma 2.1. [4] Let F (x) is a self-concordant barrier for K, then

F ′′(x)−1F ′(x) = −x, (2.3)

〈−F ′(x), (x)〉 = ϑ. (2.4)

Lemma 2.2. [4] If K F (x) is a symmetric cone and F is a self-concordant barrier
for K, then F ′′(x) is a linear automorphism of K for each x ∈ K0.

The strictly convex assumption of F (x) implies that F ′′(x) is positive definite
for every x ∈ K0. This allows us to define a norm as follows

‖h‖2x = 〈h, F ′′(x)h〉 (2.5)

is a norm on E induced by F ′′(x). Let Bx(y, r) denote the open ball of radius r
centered at y, where the radius is measured with respect to ‖.‖x.

Lemma 2.3. [4] If F (x) is a self-concordant function for K, then we have Bx(x, 1)
⊆ K0 for all x ∈ K0.

Lemma 2.4. [4] Assume F (x) is a self-concordant function for K, x ∈ K0, and
y ∈ Bx(x, 1), then

∣

∣

∣
F (y)− F (x) − 〈F ′(x), y − x〉 − 〈y − x, F ′′(x)(y − x)〉

2

∣

∣

∣
≤ ‖y − x‖3x

3(1− ‖y − x‖x)
. (2.6)
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Lemma 2.5. [4] Assume F (x) is a self-concordant function for K. If ‖n(x)‖x ≤
1/4, then F (x) has a minimizer z and

‖z − x‖x ≤ ‖n(x)‖x +
3‖n(x)‖2x

(1− ‖n(x)‖x)3
, (2.7)

where n(x) = −F ′′(x)−1F ′(x) be the Newton step of F (x).

Lemma 2.6. [4] Assume F (x) is a self-concordant barrier with barrier parameter
ϑ. If x, y ∈ K0, then

〈F ′(x), y − x〉 ≤ ϑ. (2.8)

3 The Problem and Its Modeling

In a standard two-stage stochastic programming model, decision variables are
divided into two subsets. First-stage variables are groups of variables determined
before the realizations of random events are known. Once the uncertain events
have unfolded, further design or operational adjustments can be made through
values of the second-stage known as recourse variables, which are determined after
knowing the realized values of the random events.

A standard formulation of the two-stage stochastic program is

min f1(x) + E[Q(x, ξ)] (3.1)

st. A0x = b, (3.2)

x ∈ K1, (3.3)

where x is the first-stage decision variable, Q(x, ξ) is the optimal value of the
second-stage problem:

min f2(y, ξ) (3.4)

st. T (ξ)x+W (ξ)y = h(ξ), (3.5)

y ∈ K2 (3.6)

where y is the second-stage variable and the cones K1 and K2 are symmetric cones.
The matrix A0 and the vectors b and c are deterministic data, the matrices W (ξ)
and T (ξ) and the vectors h(ξ) and d(ξ) are random data whose realizations depend
on an underlying outcome ξ with a known probability function p.

3.1 The Stochastic Linear Symmetric Programs (SLSP)

The stochastic linear symmetric programs can be stated as:

min 〈c, x〉+ E[Q(x, ξ)] (3.7)

st. A0x = b, (3.8)

x ∈ K1, (3.9)



242 Thai J. Math. 15 (2017)/ P. Kabcome and T. Mouktonglang

where x is the first-stage decision variable, Q(x, ξ) is the minimum of the problem

min 〈g(ξ), y〉 (3.10)

st. T (ξ)x+W (ξ)y = h(ξ), (3.11)

y ∈ K2 (3.12)

where y is the second-stage variable and the cones K1 and K2 are symmetric
cones. The formulation of the above problem assumes that the second-stage data
ξ can be modeled as a random vector with a known probability distribution. The
random vector ξ has a finite number of possible realizations, called scenarios, say
ξ1, . . . , ξK with respective probability masses p1, . . . , pK . Then the expectation in
the first-stage problem’s objective function can be written as the summation

E[Q(x, ξ)] =

K
∑

k=1

pkQ(x, ξk). (3.13)

A SLSP can be written as a deterministic program and represented as follows:

min q(x, y(1), y(2), ..., y(K)) = 〈c, x〉+
K
∑

k=1

pk〈g(k), y(k)〉 (3.14)

st. A0x = b, (3.15)

T (k)x+W (k)y(k) = h(k), k = 1, 2, ...,K, (3.16)

x ∈ K1, y
(k) ∈ K2, k = 1, 2, ...,K, (3.17)

where x ∈ R
n1 is the first-stage decision variable and y(k) ∈ R

2k are the second
stage variable. The matrix A0 ∈ R

m1×n1 , the vectors b ∈ R
m1 and c ∈ R

n1

are deterministic data. The matrices W (k) ∈ R
m2k

×n2k , T (k) ∈ R
m2k

×n1 and
vectors h(k) ∈ R

n2k , g(k) ∈ R
n2k are random data associated with probability for

k = 1, 2, . . . ,K. The cones K1 and K2 are symmetric cone in R
n1 and R

n2k for
k = 1, 2, . . . ,K (n1, n2k are positive integers).

3.2 The Stochastic Quadratic Symmetric Programs (SQSP)

The stochastic quadratic symmetric programs can also be cast as SLSP. The
matrix H0 ∈ R

n1×n1 , H0 ≻ 0 is deterministic data and the matrices H1(ξ) is
random data whose realizations depend on an underlying outcome ξ with a known

probability function p. Let H
(k)
1 ∈ R

n2k
×n2k , H

(k)
1 ≻ 0 be random data associated

with probability for k = 1, 2, . . . ,K. A SQSP can be formulated as

min
1

2
〈x,H0x〉+ 〈c, x〉+ E[Q(x, ξ)] (3.18)

st.A0x = b, (3.19)

x ∈ K1, (3.20)
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where x is the first-stage decision variable, and Q(x, ξ) is the minimum of the
problem

min
1

2
〈y,H1(ξ)y〉+ 〈g(ξ), y〉 (3.21)

st.T (ξ)x+W (ξ)y = h(ξ), (3.22)

y ∈ K2, (3.23)

where y is the second-stage variable and the cones K1 and K2 are symmetric cones.

A SQSP can be equivalently written as a deterministic symmetric programs
as:

min q
(

x, y(1), y(2), . . . , y(K)
)

=
1

2
〈x,H0x〉 + 〈c, x〉

+
K
∑

k=1

pk
(1

2
〈y(k), H(k)

1 y(k)〉+ 〈g(k), y(k)〉
)

(3.24)

st. A0x = b, (3.25)

T (k)x+W (k)y(k) = h(k), k = 1, 2, . . . ,K, (3.26)

x ∈ K1, y
(k) ∈ K2, k = 1, 2, . . . ,K. (3.27)

Define

K = K1 ×K(1)
2 ×K(2)

2 × . . . ,K(K)
2 is the symmetric cone, (3.28)

X=[x, y(1), y(2), · · · , y(K)]T ∈ R
(n1+

K∑

k=1

n2k
)
, x∈ K1, y

(k) ∈ K2, for k=1, 2, . . . ,K,
(3.29)

B =
[

b, h(1), h(2), · · · , h(K)
]T ∈ R

(m1+
K∑

k=1

m2k
)
, (3.30)

C =
[

c, p1g
(1), p2g

(2), · · · , pKg(K)
]T ∈ R

(n1+
K∑

k=1

n2k
)
, (3.31)

A =















A0 0 0 · · · 0

T (1) W (1) 0 · · · 0
T (2) 0 W (2) · · · 0

: :
. . .

T (K) 0 0 · · · W (K)















∈ R
(m1+

K∑

k=1

m2k
)×(n1+

K∑

k=1

n2k
)
, (3.32)

Q =

















H0 0 0 · · · 0

0 p1H
(1)
1 0 · · · 0

0 0 p2H
(2)
1 · · · 0

: :
. . .

0 0 0 · · · pKH
(K)
1

















∈ R
(n1+

K∑

k=1

n2k
)×(n1+

K∑

k=1

n2k
)
,

(3.33)
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we can rewrite a SQSP as a large deterministic program as follow

minq(X) =
1

2
〈X,QX〉+ 〈C,X〉 (3.34)

st.AX = B, (3.35)

X ∈ K. (3.36)

4 The Interior-Point Trust-Region Algorithm

In this section, we present our interior-point trust-region algorithm for solving
(3.34)-(3.36). First, we define the function as

fηi
(X) = ηiq(X) + F (X)

= ηi

(1

2
〈x,H0x〉+ 〈c, x〉 +

K
∑

k=1

pk
(1

2
〈y(k), H(k)

1 y(k)〉+ 〈g(k), y(k)〉
)

)

+ F1(x) +

K
∑

k=1

F2(y
(k)) (4.1)

where F (X) : K → R is a self-concordant barrier for the symmetric cone K with
a barrier parameter ϑ. A self-concordant barrier define by F (X) = F1(x) +
K
∑

k=1

F2(y
(k)) where F1(x) is a self-concordant barrier function for cone K1 with

a barrier parameter ϑ1 and F2(y
(k)) is a self-concordant barrier function for cone

K(k)
2 with a barrier parameter ϑ

(k)
2 for k = 1, 2, 3, . . . ,K and ϑ = ϑ1 +

K
∑

k=1

ϑ
(k)
2 .

Since q(X) is quadratic and from definition 2.6 then fηi
is also a self-concordant

barrier function. Consider interior-point trust-region algorithm in each inner it-
eration for a fix ηi we need to find the central path for decreased the value of
fηi

(X). For outer iterations we need increase the value of ηi to positive infinity,
which implies that the central path converges to a solution that is optimal for the
original problem.

Let d =
(

d1, d
(1)
2 , d

(2)
2 , d

(3)
2 , · · · , d(K)

2

)

∈ E be the trail step of fηi
. Consider

function fηi
in each inner iteration

fηi
(xi,j+d1, y

(1)
i,j + d

(1)
2 , y

(2)
i,j + d

(2)
2 , . . . , y

(K)
i,j + d

(K)
2 )− fηi

(xi,j , y
(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j )

=
(

ηiq(xi,j + d1, y
(1)
i,j + d

(1)
2 , y

(2)
i,j + d

(2)
2 , . . . , y

(K)
i,j + d

(K)
2 ) + F1(xi,j + d1)

+

K
∑

k=1

F2(y
(k)
i,j + d

(k)
2 )
)

−
(

ηiq(xi,j , y
(1)
i,j , y

(2)
i,j , . . . , y

(k)
i,j ) + F1(xi,j) +

K
∑

k=1

F2(y
(k)
i,j )
)
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=

(

1

2
ηi
〈

xi,j + d1, H0(xi,j + d1)
〉

+ ηi〈c, xi,j + d1〉+ F1(xi,j + d1)

+

K
∑

k=1

(

1
2ηipk

〈

y
(k)
i,j +d

(k)
2 , H

(k)
1 (y

(k)
i,j +d

(k)
2 )
〉

+ηipk〈g(k), y(k)i,j +d
(k)
2 〉+F

(k)
2 (y

(k)
i,j +d

(k)
2 )
)

)

−
(

1

2
ηi
〈

xi,j , H0xi,j

〉

+ ηi〈c, xi,j〉+ F1(xi,j) +

K
∑

k=1

(1

2
ηipk

〈

y
(k)
i,j , H

(k)
1 y

(k)
i,j

〉

+ ηipk〈g(k), y(k)i,j 〉+ F
(k)
2 (y

(k)
i,j )
)

)

=
1

2
〈d1, ηiH0d1〉+

〈

(ηiH0xi,j + c), d1

〉

+

K
∑

k=1

1

2
〈d(k)2 , ηipkH

(k)
1 d

(k)
2 〉

+

K
∑

k=1

〈

ηipk(H
(k)
1 y

(k)
i,j + g(k)), d

(k)
2

〉

+ F1(xi,j + d1)− F1(xi,j)+

K
∑

k=1

(

F2(y
(k)
i,j + dk2)− F2(y

(k)
i,j )
)

. (4.2)

We want to find the bound of fηi
(xi,j+d1, y

(1)
i,j +d

(1)
2 , y

(2)
i,j +d

(2)
2 , . . . , y

(K)
i,j +d

(K)
2 )

then we consider the self-concordant barrier in above equation. From Lemma 2.3,

for any Xi,j ∈ K0, we have Xi,j + d ∈ K0. Given ‖F ′′
1 (xi,j)

1
2 d1‖ ≤ α1i,j < 1,

‖F ′′
2 (y

(k)
i,j )

1
2
d
(k)
2 ‖ ≤ α

(k)
2i,j

< 1 for k = 1, 2, . . . ,K and α1i,j +
K
∑

k=1

α
(k)
2i,j

< 1. Implied

that ‖F ′′
1 (xi,j)

1
2 d1‖2 +

K
∑

k=1

‖F ′′
2 (y

(k)
i,j )

1
2
d
(k)
2 ‖2 ≤ α2

1i,j +
K
∑

k=1

α
(k)
2i,j

2
< 1.

Let F ′′(X) = F ′′
1 (x) +

K
∑

k=1

F ′′
2 (y

(k)) denote the Hessian of a self-concordant

function F (X). Since it is positive definite for every X ∈ K0 implies that F ′′(X)

is positive definite. For h = [h1, h
(1)
2 , h

(2)
2 , · · · , h(K)

2 ] ∈ E. Let further we de-
fine a norm on E induced by F ′′(X) as ‖h‖2X = 〈h, F ′′(X)h〉 = 〈h1, F

′′
1 (x)h1〉 +

K
∑

k=1

〈h(k)
2 , F ′′

2 (y
(k))h

(k)
2 〉

F1(xi,j + d1)− F1(xi,j) +

K
∑

k=1

(

F2(y
(k)
i,j + d

(k)
2 )− F2(y

(k)
i,j )
)

≤
〈

F ′
1(xi,j), d1

〉

+
1

2

〈

d1, F
′′
1 (xi,j)d1

〉

+
‖d1‖3xi,j

3
(

1− ‖d1‖xi,j

) +

K
∑

k=1

〈

F ′
2(y

(k)
i,j ), d

(k)
2

〉

+
K
∑

k=1

1

2

〈

d
(k)
2 , F ′′

2 (y
(k)
i,j )d

(k)
2

〉

+
K
∑

k=1

‖d(k)2 ‖3
y
(k)
i,j

3
(

1− ‖d(k)2 ‖
y
(k)
i,j

)
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≤
〈

F ′
1(xi,j), d1

〉

+
1

2

〈

d1, F
′′
1 (xi,j)d1

〉

+

K
∑

k=1

〈F ′
2(y

(k)
i,j ), d

(k)
2 〉

+

K
∑

k=1

1

2

〈

d
(k)
2 , F ′′

2 (y
(k)
i,j )d

(k)
2

〉

+
1

3

( α3
1i,j

1− α1i,j

+

K
∑

k=1

α
(k)
2i,j

3

1− α
(k)
2i,j

)

≤
〈

F ′
1(xi,j), d1

〉

+
1

2

〈

d1, F
′′
1 (xi,j)d1

〉

+

K
∑

k=1

〈F ′
2(y

(k)
i,j ), d

(k)
2 〉

+

K
∑

k=1

1

2

〈

d
(k)
2 , F ′′

2 (y
(k)
i,j )d

(k)
2

〉

+
1

3

(

(α1i,j +
K
∑

k=1

α
(k)
2i,j

)3

1− (α1i,j +
K
∑

k=1

α
(k)
2i,j

)

)

. (4.3)

The third inequality of (4.3) follows from Lemma 2.4. From (4.3) we can rewrite
(4.2) as

fηi
(xi,j + d1, y

(1)
i,j +d

(1)
2 , y

(2)
i,j + d

(2)
2 , . . . , y

(K)
i,j + d

(K)
2 )− fηi

(xi,j , y
(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j )

≤ 1

2
〈d1, ηiH0d1〉+

〈

(ηiH0xi,j + c), d1

〉

+

K
∑

k=1

1

2
〈d(k)2 , ηipkH

(k)
1 d

(k)
2 〉

+
〈

F ′
1(xi,j), d1

〉

+
1

2

〈

d1, F
′′
1 (xi,j)d1

〉

+

K
∑

k=1

〈F ′
2(y

(k)
i,j ), d

(k)
2 〉

+

K
∑

k=1

1

2

〈

d
(k)
2 , F ′′

2 (y
(k)
i,j )d

(k)
2

〉

+
1

3

(

(α1i,j +
K
∑

k=1

α
(k)
2i,j

)3

1− (α1i,j +
K
∑

k=1

α
(k)
2i,j

)

)

=
1

2

〈

d1,
(

ηiH0 + F ′′
1 (xi,j)

)

d1

〉

+
〈

ηi(H0xi,j + c) + F ′
1(xi,j), d1

〉

+

K
∑

k=1

1
2

〈

d
(k)
2 ,
(

ηipkH
(k)
1 +F ′′

2 (y
(k)
i,j )
)

d
(k)
2

〉

+

K
∑

k=1

〈

ηipk
(

H
(k)
1 y

(k)
i,j +g(k)

)

+F ′
2(y

(k)
i,j ), d

(k)
2

〉

+
1

3

(

(α1i,j +
K
∑

k=1

α
(k)
2i,j

)3

1− (α1i,j +
K
∑

k=1

α
(k)
2i,j

)

)

. (4.4)

Now the inequality (4.4) gives an upper bound for fηi
(xi,j+d1, y

(1)
i,j +d

(1)
2 , y

(2)
i,j +

d
(2)
2 , . . . , y

(K)
i,j + d

(K)
2 ). We can try to minimize this bound given in the right-hand

side of inequality. This lead to the following trust-region subproblem
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min
1

2

〈

d1,
(

ηiH0 + F ′′
1 (xi,j)

)

d1

〉

+
〈

ηi(H0xi,j + c) + F ′
1(xi,j), d1

〉

+

K
∑

k=1

1

2

〈

d
(k)
2 ,
(

ηipkH
(k)
1 + F ′′

2 (y
(k)
i,j )
)

d
(k)
2

〉

+

K
∑

k=1

〈

ηipk
(

H
(k)
1 y

(k)
i,j + g(k)

)

+ F ′
2(y

(k)
i,j ), d

(k)
2

〉

= mi,j(d1, d
(1)
2 , d

(2)
2 , . . . , d

(K)
2 ) (4.5)

st.‖F ′′
1 (xi,j)

1
2 d1‖2 +

K
∑

k=1

‖F ′′
2 (y

(k)
i,j )

1
2 d

(k)
2 ‖2 ≤ α2

1i,j +

K
∑

k=1

α
(k)
2i,j

2
. (4.6)

Let the transformation

d′1 = F ′′
1 (xi,j)

1
2 d1, (4.7)

d′2
(k)

= F ′′
2 (y

(k)
i,j )

1
2 d

(k)
2 , for k = 1, 2, . . . ,K, (4.8)

and define

Q1i,j = ηiF
′′
1 (xi,j)

− 1
2H0F

′′
1 (xi,j)

− 1
2 + I, (4.9)

C1i,j = F ′′
1 (xi,j)

− 1
2

(

ηi(H0xi,j + c) + F ′
1(xi,j)

)

, (4.10)

Q
(k)
2i,j

= ηipkF
′′
2 (y

(k)
i,j )

− 1
2H

(k)
1 F ′′

2 (y
(k)
i,j )

− 1
2 + I(k), for k = 1, 2, . . . ,K, (4.11)

C
(k)
2i,j

= F ′′
2 (y

(k)
i,j )

− 1
2

(

ηipk(H
(k)
1 y

(k)
i,j + g(k)) + F ′

2(y
(k)
i,j )
)

, for k = 1, 2, . . . ,K. (4.12)

We can rewrite equations (4.5) and (4.6) as follow

min q′i,j(d
′
1, d

′
2
(1)

, d′2
(2)

, . . . , d′2
(K)

)

=
1

2
〈d′1, Q1i,jd

′
1〉+ 〈C1i,j , d

′
1〉+

K
∑

k=1

(1

2
〈d′2

(k)
, Q

(k)
2i,j

d′2
(k)〉+ 〈C(k)

2i,j
, d′2

(k)〉
)

(4.13)

st.‖d′1‖2 +
K
∑

k=1

‖d′2
(k)‖2 ≤ α2

1i,j +

K
∑

k=1

α
(k)
2i,j

2
. (4.14)

Once d′i,j is computed then we obtain the trail step

d1i,j = F ′′
1 (xi,j)

− 1
2 d′1i,j , (4.15)
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d
(k)
2i,j

= F ′′
2 (y

(k)
i,j )

− 1
2 d′

(k)
2i,j for k = 1, 2, . . . ,K (4.16)

and from inequality (4.4) that we have

fηi
(xi,j + d1i,j , y

(1)
i,j + d

(1)
2i,j

, . . . , y
(K)
i,j + d

(K)
2i,j

)− fηi
(xi,j , y

(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j )

≤ q′i,j(d
′
1i,j , d

′(1)
2i,j

, . . . , d′
(K)
2i,j

) +
1

3

( (α1i,j
+

K∑

k=1

α
(k)
2i,j

)3

1−(α1i,j
+

K∑

k=1

α
(k)
2i,j

)

)

. (4.17)

Let nηi
(Xi,j) = nηi

(xi,j , y
(1)
i,j , . . . , y

(K)
i,j ) be the Newton step of fηi

(x, y(1), . . . , y(K))

at the point (xi,j , y
(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j ). We should point out that

‖nηi
(Xi,j)‖2Xi,j

=
〈

− f ′′
ηi
(Xi,j)

−1f ′
ηi
(Xi,j

)

, f ′′
ηi
(Xi,j)

(

− f ′′
ηi
(Xi,j)

−1f ′
ηi
(Xi,j)

)

〉

=
〈

f ′
ηi
(Xi,j), f

′′
ηi
(Xi,j)

−1f ′
ηi
(Xi,j)

〉

=
〈

ηi(H0xi,j + c) + F ′
1(xi,j), (ηiH0 + F ′′

1 (xi,j))
−1 ×

(

ηi(H0xi,j
+ c) + F ′

1(xi,j)
)

〉

+
K
∑

k=1

〈

ηipk(H
(k)
1 y

(k)
i,j + g(k)) + F ′

2(y
(k)
i,j ),

(

ηipkH
(k)
1 + F ′′

2 (y
(k)
i,j )
)−1

×
(

ηipk(H
(k)
1 y

(k)
i,j + g(k)) + F ′

2(y
(k)
i,j )
)

〉

= 〈C1i,j , Q
−1
1i,j

C1i,j 〉+
K
∑

k=1

〈C(k)
2i,j

, Q(k)−1

2i,jC
(k)
2i,j

〉 (4.18)

where the last equality follows equalities (4.9) - (4.12).

Now we are ready to present our algorithm. From what we defined in (3.29),
(3.30) and (3.32), we define the feasible set by F = {X ∈ E | AX = B, x ∈
K1, y

(k) ∈ K2, for k = 1, 2, . . . ,K}

Algorithm : An interior-point trust-region algorithm
Step 0 Initialization

seti = 0, j = 0, choose starting point (x0,0, y
(1)
0,0, y

(2)
0,0, . . . , y

(K)
0,0 ) ∈ {F},

an initial trust-region radius α0,0 ∈ (0, 1), and an initial parameter
η0 are given.
Until convergence repeat.

Step 1 Test inner iteration termination compute

‖nηi
(Xi,j)‖2Xi,j

≤ 1

36
(4.19)
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if ‖nηi
(Xi,j)‖2Xi,j

≤ 1

36
go to step 2, otherwise set

(xi+1,j , y
(1)
i+1,j , y

(2)
i+1,j , . . . , y

(K)
i+1,j) = (xi,j , y

(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j )

and go to step 3.

Step 2 Step calculation

solve (4.13)and (4.14) to obtain (d′1i,j , d
′(1)
2i,j

, d′
(2)
2i,j

, . . . , d′
(K)
2i,j

)

and compute (4.15)and (4.16) to obtain (d1i,j , d
(1)
2i,j

, d
(2)
2i,j

, . . . , d
(K)
2i,j

),

update (xi,j+1, y
(1)
i,j+1, . . . , y

(K)
i,j+1)=(xi,j+d1i,j , y

(1)
i,j +d

(1)
2i,j

, . . . , y
(K)
i,j +d

(K)
2i,j

)

and go to step 3.

Step 3 Update parameter η
Set ηi+1 = θηi for some θ > 1, increase i by 1 and go to step 1.

Lemma 4.1. Any global minimizer (d′1i,j , d
′(1)
2i,j

, d′
(2)
2i,j

, . . . , d′
(K)
2i,j

) of the problems

(4.13) and (4.14)satisfies the equation

(Q1i,j + µi,jI)d
′
1i,j = −C1i,j , (4.20)

(Q
(k)
2i,j

+ µi,jI
(k))d′2

(k)
i,j = −C

(k)
2i,j

, for k = 1, 2, . . . ,K, (4.21)

which Q1i,j +µi,jI and Q
(k)
2i,j

+µi,jI
(k) for k = 1, 2, . . . ,K are positive semi-definite

µi,j ≥ 0 and µi,j

(

‖d′1i,j‖+
K
∑

k=1

‖d′(k)2i,j
‖ − α1i,j −

K
∑

k=1

α
(k)
2i,j

)

= 0.

This Lemma is well-known in the trust-region literature. For proof see e.g.
Section 7.2 of [5].

Theorem 4.2. If we choose α1i,j +
K
∑

k=1

α
(k)
2i,j

=
1

4
, then we have

fηi
(xi,j+1, y

(1)
i,j+1, y

(2)
i,j+1, . . . , y

(K)
i,j+1)− fηi

(xi,j , y
(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j ) < − 1

145
(4.22)

which is independent of i and j.

Proof. If the solution of equation (4.13) and (4.14) line on to boundary of the

trust-region, i.e., ‖d′1i,j‖+
K
∑

k=1

‖d′(k)2i,j
‖ = α1i,j +

K
∑

k=1

α
(k)
2i,j

we have

q′i,j(d
′
1i,j , d

′(1)
2i,j , d

′(2)
2i,j , . . . , d

′(K)
2i,j )

=
1

2
〈d′1i,j , Q1i,jd

′
1i,j 〉+〈C1i,j , d

′
1i,j 〉+

K
∑

k=1

(1

2
〈d′(k)2i,j , Q

(k)
2i,j

d′
(k)
2i,j 〉+ 〈C(k)

2i,j
, d′

(k)
2i,j 〉

)

,
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=
〈

d′1i,j , (Q1i,jd
′
1i,j + C1i,j )

〉

− 1

2
〈d′1i,j , Q1i,jd

′
1i,j 〉

+

K
∑

k=1

(

〈

d′
(k)
2i,j , (Q

(k)
2i,j

d′
(k)
2i,j + C

(k)
2i,j

)
〉

− 1

2
〈d′(k)2i,j , Q

(k)
2i,j

d′
(k)
2i,j 〉

)

= −〈d′1i,j , µi,jd
′
1i,j 〉 −

1

2

〈

d′1i,j ,
(

ηiF
′′
1 (xi,j)

− 1
2H0F

′′
1 (xi,j)

− 1
2 + I

)

d′1i,j

〉

+

K
∑

k=1

(

〈−d′(k)2i,j , µi,jd
′(k)
2i,j 〉−

1

2

〈

d′
(k)
2i,j ,

(

ηipkF
′′
2 (y

(k)
i,j )

− 1
2H

(k)
1 F ′′

2 (y
(k)
i,j )

− 1
2 +I(k))d′

(k)
2i,j

〉

)

= −µi,j

(

‖d′1i,j‖
2+

K
∑

k=1

‖d′(k)2i,j‖
2
)

− 1

2

〈

d′1i,j ,
(

ηiF
′′
1 (xi,j)

− 1
2H0F

′′
1 (xi,j)

− 1
2

)

d′1i,j

〉

−1
2

K
∑

k=1

〈

d′
(k)
2i,j ,

(

ηipkF
′′
2 (y

(k)
i,j )

−
1
2H

(k)
1 F ′′

2 (y
(k)
i,j )

−
1
2

)

d′
(k)
2i,j

〉

− 1

2

(

‖d′1i,j‖2+
K
∑

k=1

‖d′(k)2i,j‖2
)

= −µi,j(α
2
1i,j +

K
∑

k=1

α
(k)
2i,j

2
)− 1

2

〈

d′1i,j ,
(

ηiF
′′
1 (xi,j)

−
1
2H0F

′′
1 (xi,j)

−
1
2

)

d′1i,j
〉

−1

2

K
∑

k=1

〈

d′
(k)
2i,j ,

(

ηipkF
′′
2 (y

(k)
i,j )

− 1
2H

(k)
1 F ′′

2 (y
(k)
i,j )

− 1
2

)

d′
(k)
2i,j

〉

− 1

2
(α2

1i,j +

K
∑

k=1

α
(k)
2i,j

2
)

≤ −1

2
(α2

1i,j +
K
∑

k=1

α
(k)
2i,j

2
) = − 1

32
. (4.23)

In the above, the third equality follows from the equalities (4.9), (4.11), (4.20)

and (4.21). The inequality follows from the fact that ηiF
′′
1 (xi,j)

− 1
2H0F

′′
1 (xi,j)

− 1
2

and
ηipkF

′′
2 (y

(k)
i,j )

− 1
2H

(k)
1 F ′′

2 (y
(k)
i,j )

− 1
2 for k = 1, 2, . . . ,K are positive definite or positive

semidefinite. Therefore we get the last inequality. From (4.17) and (4.23) we get

fηi
(xi,j+1, y

(1)
i,j+1, y

(2)
i,j+1, . . . , y

(K)
i,j+1)− fηi

(xi,j , y
(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j )

≤ − 1

32
+

(1/4)3

3(1− 1/4)
< − 1

145
.

(4.24)

If the solution of (4.13) and (4.14) lies in the interior of the trust-region, i.e.,

‖d′1i,j‖2+
K
∑

k=1

‖d′(k)2i,j
‖2 < α2

1i,j +
K
∑

k=1

α
(k)
2i,j

2
. From Lemma 4.2, we know µi,j = 0 and

consequently d′1i,j = −Q−1
1i,j

C1i,j , d
′(k)
2i,j

= −Q(k)−1

2i,jC
(k)
2i,j

for k = 1, 2, . . . ,K which
gives

q′i,j(d
′
1i,j , d

′(1)
2i,j , d

′(2)
2i,j , . . . , d

′(K)
2i,j )

=
1

2
〈d′1i,j , Q1i,jd

′
1i,j 〉+ 〈C1i,j , d

′
1i,j 〉+

K
∑

k=1

(1

2
〈d′(k)2i,j , Q

(k)
2i,j

d′
(k)
2i,j 〉+ 〈C(k)

2i,j
, d′

(k)
2i,j 〉

)
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= −1

2
〈C1,i,j , Q

−1
1i,j

C1,i,j〉 −
K
∑

k=1

1

2
〈C(k)

2i,j
, Q(k)−1

2i,jC
(k)
2i,j

〉

= −1

2

(

〈C1,i,j , Q
−1
1i,j

C1,i,j〉+
K
∑

k=1

〈C(k)
2i,j

, Q(k)−1

2i,jC
(k)
2i,j

〉
)

= −1

2
‖nηi

(Xi,j)‖2Xi,j
. (4.25)

By (4.25) and the mechanism of our algorithm, we know that ‖nηi
(Xi,j)‖2Xi,j

>
1

36
for all i and j we can rewrite (4.17) as

fηi
(xi,j+1, y

(1)
i,j+1, y

(2)
i,j+1, . . . , y

(K)
i,j+1)− fηi

(xi,j , y
(1)
i,j , y

(2)
i,j , . . . , y

(K)
i,j )

≤ −1

2
‖nηi

(Xi,j)‖2Xi,j
+

1

3

( (α1i,j
+

K∑

k=1

α
(k)
2i,j

)3

1−(α1i,j
+

K∑

k=1

α
(k)
2i,j

)

)

≤ − 1

72
+

(1/4)3

3(1− 1/4)
< − 1

145
.

(4.26)

The proof is completed

Now, we consider the number of iteration of our algorithm that we can stop the
iteration when the reduction of objective function is smaller than some constant.

Lemma 4.3. Let X∗ = argminX∈Kq(X) and X∗ = [x∗, y(1)
∗
, y(2)

∗
, · · · , y(K)∗]T ∈

R
(n1+

K∑

k=1

n2k
)
, x∗ ∈ K1, y

(k)∗ ∈ K2 for k = 1, 2, . . . ,K. If ‖nη(X)‖X ≤ 1

6
, then

q(X)− q(X∗) ≤ ϑ+
√
ϑ

η
. (4.27)

Proof. Let X(η) = argminX∈Kfη(X). From Lemma 2.5

‖X −X(η)‖X ≤ 1

6
+

3(
1

6
)2

(1− (
1

6
))3

<
1

3
(4.28)

and from Lemma 2.3 we have

‖X −X(η)‖X(η) ≤
‖X −X(η)‖X

1− ‖X −X(η)‖X
<

1

2
. (4.29)

Consider

q(X(η))− q(X∗) ≤
〈

q′(X(η)), X(η)−X∗
〉

=
〈−F ′(X(η))

η
,X(η)−X∗

〉

≤ ϑ

η
. (4.30)
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The first inequality follows from the convexity of q(X). The equality follows from
the fact that f ′(X(η)) = 0 and the last inequality follows from Lemma 2.6. From
the inequality (4.28) and (4.29) Then, we have
q(X)− q(X(η))

=
〈

q′
(

X(η)
)

, X −X(η)
〉

+
1

2

〈

X −X(η), Q
(

X −X(η)
)

〉

=
〈−F ′(X(η))

η
,X −X(η)

〉

+
1

2η

〈

X −X(η), ηQ
(

X −X(η)
)

〉

≤ 1

η

〈

−F ′′
(

X(η)
)−

1
2F ′
(

X(η)
)

, F ′′
(

X(η)
)−

1
2
(

X −X(η)
)

〉

+
1

2η
‖X −X(η)‖2X

≤ ‖F ′′
(

X(η)
)−

1
2F ′
(

X(η)
)

‖‖F ′′
(

X(η)
)−

1
2
(

X −X(η)
)

‖+ 1

18η

=
〈

F ′
(

X(η)
)

, F ′′
(

X(η)
)−1

F ′
(

X(η)
〉

1
2
〈

(

X −X(η)
)

, F ′′
(

X(η)
)−1(

X −X(η)
)

〉
1
2

+
1

18η

≤
√
ϑ‖X −X(η)‖X(η)

η
+

1

18η

≤
√
ϑ

2η
+

1

18η
≤

√
ϑ

η
(4.31)

where the third last inequality uses the Lemma 2.6 and from the fact that ϑ is
always greater than 1. By adding the inequalities (4.30) and (4.31), then we have

q(X)− q(X∗) ≤ ϑ+
√
ϑ

η
.

The proof is completed

The above Lemma tells us that to get an ǫ solution. Let ηi+1 = θηi for some
θ > 1 and, we only need

ηi = η0θ
i ≥ ϑ+

√
ϑ

ǫ
, (4.32)

provided that the number of outer iterations i satisfies

i ≥ ln(ϑ+
√
ϑ/ǫη0)

lnθ
. (4.33)

Lemma 4.4. If ‖nηi(X)‖X ≤ 1

6
, then

fηi+1(X)− fηi+1

(

X(ηi+1)
)

≤ θ(ϑ+
√
ϑ). (4.34)
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Proof. From the convexity of fηi+1(X) and the inequality (4.28), we can show that

fηi+1(X)− fηi+1(X(ηi))

≤
〈

f ′
ηi+1

(X), X −X(ηi)
〉

=
〈

ηi+1(QX + C) + F ′(X), X −X(ηi)
〉

=
ηi+1

ηi

〈

ηi(QX + C) + F ′(X), X −X(ηi)
〉

+
(ηi+1

ηi
− 1
)〈

F ′(X), X(ηi)−X
〉

= θ
〈

f ′′
ηi

− 1
2 (X)

(

ηi(QX + C) + F ′(X)
)

, f ′′
ηi

1
2 (X)(X −X(ηi))

〉

+ (θ − 1)
〈

F ′′(X)−
1
2F ′(X), F ′′(X)−

1
2

(

X(ηi)−X
)

〉

≤ θ‖f ′′
ηi

−
1
2 (X)

(

ηi(QX + C) + F ′(X)
)

‖‖f ′′
ηi

1
2 (X)

(

X −X(ηi)
)

‖
+ (θ − 1)‖F ′′(X)−

1
2F ′(X)‖‖F ′′(X)

1
2

(

X(ηi)−X
)

‖
≤ θ‖nηi

(X)‖X‖X(ηi)−X‖X + (θ − 1)
√
ϑ‖X(ηi)−X‖X

≤ θ(
1

6
)(
1

3
) + (θ − 1)

√
ϑ
1

3

≤ θ
√
ϑ. (4.35)

Consider

fηi+1

(

X(ηi)
)

− fηi+1(X(ηi+1))

≤
〈

f ′
ηi+1

(X(ηi)), X(ηi)−X(ηi+1)
〉

= 〈ηi+1(QX(ηi) + C) + F ′(X(ηi)), X(ηi)−X(ηi+1)〉

=
ηi+1

ηi

〈

ηi(QX(ηi) + C) + F ′(X(ηi)), X(ηi)−X(ηi+1)
〉

+
(ηi+1

ηi
− 1
)

〈

F ′
(

X(ηi)
)

, X(ηi+1)−X(ηi)
〉

= θ
〈

f ′
ηi

(

X(ηi)
)

, X(ηi)−X(ηi+1)
〉

+ (θ − 1)
〈

F ′
(

X(ηi)
)

, X(ηi+1)−X(ηi)
〉

= (θ − 1)
〈

F ′
(

X(ηi)
)

, X(ηi+1)−X(ηi)
〉

< θϑ, (4.36)

where the last equality follows from the fact that X(ηi) minimizes fηi
(X) (which

implies that f ′
ηi
(X) = 0), the last inequality follows from Lemma 2.6. By adding

inequalities (4.35) and (4.36), then we have

fηi+1(X)− fηi+1

(

X(ηi+1)
)

≤ θ(ϑ+
√
ϑ).

The proof is completed
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Theorem 4.2 and Lemma 4.4 tell us that the steps in each inner iteration in
at most

145θ(ϑ+
√
ϑ) (4.37)

steps in each inner iteration.

Theorem 4.5. If the initial point X0,0 satisfies the conditions (4.19), for any
ǫ > 0, our algorithm obtains the solution X which satisfies q(X) − q(X∗) < ǫ in
at most

145θ(ϑ−
√
ϑ)ln(

ϑ+
√
ϑ

ǫη0
)

lnθ
(4.38)

steps, here X∗ = argminX∈Kq(X).

Proof. Inequality (4.33) provides us with the number of outer iterations i and
Theorem 4.2 and Lemma 4.4 provides us with the number of steps in each iteration
j. The number of iterations is at most the number of outer iterations multiply the
number of inner iterations then we have the bound of number of iteration in at
most

145θ(ϑ−
√
ϑ)×

ln(
ϑ+

√
ϑ

ǫη0
)

lnθ

steps.

Consider the case when the initial point X0,0 does not satisfy condition (4.19).
We can start from the analytic center of the feasible set K, since K is a bounded
convex set. Let X(η0) = argminX∈Kfη0(X) and X∗ = argminX∈Kq(X). Since
X0,0 = argminX∈KF (X), we have

fη0(X0,0)− fη0

(

X(η0)
)

≤ η0
(

q(X0,0)− q(X∗)
)

(4.39)

and we choose η0 ≤ 1/
(

q(X0,0)−q(X∗)
)

, from Theorem 4.2 implies that condition
(4.19) will be satisfied after at most 145 steps.

5 Implementing the Algorithm

In this section we discuss the performance of our algorithm when the domain
of the problem is in nonnegative orthant cones and second-order cones. These
cones are all well known examples of symmetric cone. We consider multi dimen-
sion real sets. We compare our results with those of the MATLAB optimization
toolbox is it called “quadprog function”in cases of the nonnegative orthant cones.
Our algorithm can solve stochastic symmetric programming problems that include
variables in second- order cone and cones of real symmetric positive semidefinite
matrices. The quadprog function is unable to solve problems with these variables.
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5.1 Problem Statement

The parameter chosen for deterministic data of SQSP (3.24)-(3.27) are shown
below.

H0 =









64 1 4 9
1 81 25 16
4 25 100 9
9 16 9 144









c =









−1
2
−3
5









A =

[

1 2 3 4
1 1 2 1

]

B =

[

33
13

]

The random variables H
(k)
1 ,W (k), T (k), h(k), d(k), k = 1, 2, ...,K. For simplicity, we

consider the simple case K = 4 scenarios but the procedure can be easily extended
to very large K.

H
(1)
1 H

(2)
1 H

(3)
1





25 1 4
1 33 25
4 25 40

















64 1 4 9 2
1 81 25 16 4
4 25 100 9 6
9 16 9 144 8
2 4 6 8 36





























24 1 4 9 2 3
1 51 25 16 2 4
4 25 100 9 5 6
9 16 9 144 3 6
2 2 5 3 49 1
3 4 6 6 1 64

















H
(4)
1





















20 1 4 9 2 3 4
1 36 25 16 2 4 5
4 25 100 9 5 6 6
9 16 9 144 3 6 7
2 2 5 3 49 1 8
3 4 6 6 1 64 9
4 5 6 7 8 9 40





















W (1) W (2) W (3) W (4)

[

1 1 3
2 3 3

]





1 2 3 4 5
3 2 1 4 2
1 1 2 1 1













1 2 3 6 5 4
2 1 1 1 2 1
3 4 5 1 2 3
1 1 2 1 2 1



















1 1 1 2 3 4 5
2 2 2 3 2 1 1
5 2 1 1 4 1 1
1 2 3 4 5 6 7
2 1 2 3 5 8 9











h(1) h(2) h(3) h(4)

[

33
42

]





77
37
22













91
49
78
40





















91
65
60
140
163












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T (1) T (2) T (3) T (4)

[

3 2 1 0
1 2 3 0

]





3 3 4 5
2 1 1 2
3 0 2 1













1 2 3 4
3 2 1 4
1 1 3 5
2 2 2 2





















2 1 2 1
3 2 1 4
2 1 3 2
1 1 4 2
2 4 3 1













g(1) g(2) g(3) g(4)





4
3
2

















1
1
2
1
2





























3
4
1
3
4
5





































1
−2
3
4
−5
1
1





















we randomly generate probability function p in 6 cases as shown below.

p1 p2 p3 p4
case1 0.1 0.2 0.3 0.4

case2 0.4 0.3 0.2 0.1

case3 0.25 0.25 0.25 0.25

case4 0.5 0.2 0.2 0.1

case5 0.9 0.1 0 0

case6 0.3 0.3 0.3 0.1

5.2 Results of an Interior-Point Trust-Region Algorithm

In order to make a comparison, the problems (3.24)-(3.27) are described in
chapter 4. Our algorithm is then implemented under MATLAB environment re-
lease 2015a. The results are in table (1) - (2), for case nonnegative orthant cones,
we compare our results with those of the quadprog function in MATLAB opti-
mization toolbox and our algorithm as in table in table (1) and (2). In particular,
we present our results of stochastic second order cone programming as in Table
(3). From the numerical results example, we have the same optimal solutions
with those of the quadprog function and our algorithm. The numerical results for
stochastic second order cone programming, some case of problem are same optimal
solutions and some case are difference because the restrictions of cones.
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Table 1: The solution of SQSP when K1 and K2 are nonnegative cone by
quadprog function for Rn

+.
Case1 Case2 Case3 Case4 Case5 Case6

x1 1.0676 0.91286 1.0212 0.87326 0.90544 0.82258

x2 2.557 2.354 2.4921 2.4486 3.0439 2.1565

x3 2.1366 2.3107 2.1904 2.2966 2.0392 2.4438

x4 5.1021 5.1118 5.1058 5.0849 4.9723 5.1332

y
(1)
1 4.4744 4.4389 4.464 4.4208 4.3938 4.4231

y
(1)
2 1.1938 0.8827 1.0988 0.86628 1.1694 0.66718

y
(1)
3 5.6261 5.9737 5.733 5.9665 5.5312 6.2284

y
(2)
1 1.547 1.5907 1.5593 1.631 1.7314 1.6006

y
(2)
2 0.77638 0.79472 0.7818 0.80212 0.80853 0.80395

y
(2)
3 0.79228 0.78553 0.78751 0.88298 1.2586 0.72812

y
(2)
4 0.97662 0.9977 0.98368 0.9761 0.86986 1.0246

y
(2)
5 4.5372 4.5741 4.5498 4.527 4.306 4.626

y
(3)
1 4.51E-01 7.53E-01 5.43E-01 7.96E-01 1.8008 0.94799

y
(3)
2 3.5633 3.3365 3.4927 3.3736 3.1436 3.1529

y
(3)
3 0.58643 0.5789 0.58513 0.54237 1.6117 0.59316

y
(3)
4 2.2359 2.1789 2.2182 2.1884 4.2732 2.1327

y
(3)
5 2.7175 3.0054 2.8069 2.9676 1.0372 3.2335

y
(3)
6 5.4149 5.1841 5.3432 5.2154 3.5629 5.0007

y
(4)
1 1.2744 1.8526 1.4545 1.7549 0.44043 2.3223

y
(4)
2 1.3673 1.4487 1.387 1.6402 5.7409 1.4042

y
(4)
3 1.5263 1.5039 1.5222 1.4023 1.3403 1.5427

y
(4)
4 2.1789 2.472 2.2693 2.4529 0.19677 2.6938

y
(4)
5 3.3081 2.3796 3.0207 2.4709 2.6141 1.66E+00

y
(4)
6 4.7635 4.8505 4.7931 4.7462 5.692 4.9694

y
(4)
7 7.8856 8.1594 7.9684 8.2052 13.714 8.3322

Optimal value 5488.1 4489.4 4991.5 4539.2 4084 4581.5
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Table 2: The solution of SQSP when K1 and K2 are nonnegative con by an
interior-point trust-region algorithm for Rn

+.
Case1 Case2 Case3 Case4 Case5 Case6

x1 1.0676 0.91286 1.0212 0.87326 0.90543 0.82258
x2 2.557 2.354 2.4921 2.4486 3.0439 2.1565
x3 2.1366 2.3107 2.1904 2.2966 2.0392 2.4438
x4 5.1021 5.1118 5.1058 5.0849 4.9723 5.1332

y
(1)
1 4.4744 4.4389 4.464 4.4208 4.3938 4.4231

y
(1)
2 1.1938 0.88271 1.0988 0.86628 1.1693 0.66719

y
(1)
3 5.6261 5.9737 5.733 5.9665 5.5312 6.2284

y
(2)
1 1.547 1.5907 1.5593 1.6309 1.7314 1.6006

y
(2)
2 0.77639 0.79473 0.78182 0.80213 0.80859 0.80396

y
(2)
3 0.7923 0.78554 0.78751 0.88298 1.2586 0.72812

y
(2)
4 0.97665 0.9977 0.98369 0.9761 0.86987 1.0246

y
(2)
5 4.5372 4.574 4.5498 4.527 4.306 4.626

y
(3)
1 0.45125 0.7532 0.54272 0.79587 1.7076 0.948

y
(3)
2 3.5633 3.3365 3.4927 3.3736 3.1237 3.1529

y
(3)
3 0.58646 0.57891 0.58515 0.54238 1.5184 0.59317

y
(3)
4 2.2359 2.1789 2.2182 2.1884 4.0644 2.1327

y
(3)
5 2.7175 3.0054 2.8069 2.9676 1.16 3.2335

y
(3)
6 5.4149 5.1841 5.3432 5.2154 3.8259 5.0007

y
(4)
1 1.2744 1.8526 1.4545 1.7549 1.0404 2.3222

y
(4)
2 1.3674 1.4488 1.387 1.6402 2.4054 1.4042

y
(4)
3 1.5263 1.5039 1.5222 1.4023 2.1616 1.5427

y
(4)
4 2.1789 2.472 2.2693 2.4529 1.3539 2.6938

y
(4)
5 3.3081 2.3796 3.0207 2.4709 3.2819 1.6607

y
(4)
6 4.7636 4.8505 4.7931 4.7462 3.2029 4.9694

y
(4)
7 7.8856 8.1594 7.9684 8.2052 9.2244 8.3322

Optimal value 5488.1 4489.4 4991.5 4539.2 4084 4581.5
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Table 3: The solution of SQSP when K1 and K2 are second-order cone by
an interior-point trust-region algorithm for SOCP.

Case1 Case2 Case3 Case4 Case5 Case6
x1 1.0658 0.91295 1.0212 0.87326 0.90544 0.87815
x2 2.5575 2.3541 2.4921 2.4486 3.0439 2.2279
x3 2.1375 2.3106 2.1904 2.2966 2.0392 2.3819
x4 5.1017 5.1118 5.1058 5.0849 4.9723 5.13

y
(1)
1 4.3596 4.4387 4.464 4.4207 4.3938 3.837

y
(1)
2 1.2485 0.88299 1.0988 0.8663 1.1694 1.0777

y
(1)
3 5.6473 5.9735 5.733 5.9664 5.5312 6.2044

y
(2)
1 1.5532 1.5907 1.5593 1.631 1.7314 1.5657

y
(2)
2 0.77621 0.7947 0.7818 0.80212 0.80856 0.82513

y
(2)
3 0.79222 0.78552 0.78751 0.88298 1.2586 0.72748

y
(2)
4 0.97088 0.99765 0.98368 0.97609 0.86985 1.0236

y
(2)
5 4.5412 4.5741 4.5498 4.527 4.306 4.6022

y
(3)
1 0.47082 0.75396 0.54272 0.79593 -18.313 0.88651

y
(3)
2 3.5008 3.3332 3.4926 3.3733 -88.92 3.1116

y
(3)
3 0.60241 0.57985 0.58517 0.54246 -18.502 0.6428

y
(3)
4 2.2219 2.1782 2.2181 2.1883 -109.73 2.1538

y
(3)
5 2.706 3.0045 2.8069 2.9675 40.049 3.0888

y
(3)
6 5.4647 5.1871 5.3433 5.2157 191.94 5.1488

y
(4)
1 1.28 1.8524 1.4545 1.7549 4.0762 2.2052

y
(4)
2 1.3638 1.4483 1.387 1.6402 -0.69272 0.95488

y
(4)
3 1.5334 1.5043 1.5223 1.4023 10.911 1.6957

y
(4)
4 2.1791 2.4718 2.2693 2.4529 -1.9777 2.712

y
(4)
5 3.3016 2.3801 3.0207 2.4709 -0.22866 2.0532

y
(4)
6 4.7489 4.85 4.7931 4.7462 -7.0953 4.5863

y
(4)
7 7.8997 8.1596 7.9684 8.2052 19.165 8.4675

Optimal value 5488.2 4489.4 4991.5 4539.2 4084 4585.5
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6 Conclusion and Remarks

In this paper, we present stochastic symmetric programming with linear func-
tion and quadratic function and finite scenarios. We can explicitly formulate the
problem as a large scale deterministic programs. The complexity of our algorithm
is proved to be as good as the interior-point polynomial algorithm. We have veri-
fied our performance of the algorithm on simple case study problems. Numerical
results show the effectiveness of our algorithm.
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