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Abstract : We find minimal enclosures by rectangles for two and three regions
of given areas. We show that each minimizer has connected regions and has shape
depending on ratio of areas.
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1 Introduction

The planar soap bubble problem deals with the least-perimeter way to enclose
and separate m regions of m given areas. Rigorously, speaking, an enclosure for m
regions of areas A1, . . . , Am is a closed subset E of R2 for which (1) its complement
is composed of m+1 regions R1, . . . , Rm, and R0, (2) each region is a union of open
(connected) components, and (3) for each i = 1, . . . , m, the region Ri has area Ai

and R0 = (R2 \E)\∪m
i=1Ri. The region R0 is called the exterior region. We define

the length of an enclosure to be its one-dimensional measure. The existence of the
solutions to this problem is guaranteed by Morgan [3]. Together with Bleicher’s
work [1], the regularity of solutions is well studied. A minimizing enclosure is
composed of finitely many circular arcs or straight segments meeting in threes at
120 degree angles. Although it is natural to believe that each region, including
the exterior region, is connected, there is no proof for the case m ≥ 4. For a single
area (m = 1), the unique solution is a circle. This has just been proved in 1880.
For two areas, Foisy et al showed that the standard double bubble is the unique
solution (see Figure 1) [2]. In 2002, Wichiramala proved that the standard triple
bubble is the unique minimizing enclosure for three areas (see Figure 2) [7, 6]. The
problem is still open for m ≥ 4.

Minimal enclosing of two areas are studied on many surfaces, e.g. flat torus,
cylinder, and cone. In 1998, Morgan, French and Greenleaf proved that the mini-
mizing enclosure for two areas by vertical and horizontal segments is one of those
in Figure 3 , depending on the ratio of the two areas. For a single area, the obvious
solution is a square.

In this work, we study minimal enclosures of two and three given areas by
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Figure 1: The standard double bubble.

Figure 2: The standard triple bubble.

Figure 3: Minimal enclosures for two areas by vertical and horizontal seg-
ments.
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rectangles. In other words, we only consider enclosures for two or three regions
whose components are rectangles. Figure 4 shows an enclosure E for two regions,
light gray and dark gray. Each region is a union of several components. Both
regions and the exterior region are disconnected and E is not path connected. For
the case of two areas, progress has been made by Morgan et. al. [4], but the
problem is not yet fully solved. The reason is that the minimal enclosures are
not necessary composed of only rectangles. The technique we used here provides
a simpler proof of the main result in [4] (see [5].) However, there are too many
complications in studying the case of three given areas enclosed by vertical and
horizontal segments.

2 Elementary

In our figures, capital letters inside rectangles denote their areas and side lengths
are indicated by lower-case letters or expressions. Lengths of dotted segments will
not be considered. For clarification, we break up our result into many lemmas.

Lemma 2.1. For A > 0, we have
(1)Figure 5(a) and (c) have minimum length if and only if x =

√
A.

(2)Figure 5(b) has minimum length if and only if x =
√

2A.

Proof. The proof is omitted.

Lemma 2.2. For 0 < A ≤ B and w > 0, we have
(1) if A < B, then Figure 6(c) has more length than Figure 6(a) for some b.
(2) if 2A < B, then Figure 6(b) has more length than Figure 6(a) for some b.
(3) if 2A ≥ B, then Figure 6(a) has more length than Figure 6(b) for some b.

Proof. (1) Assume than A < B. Choose b = c. From Figure 6(c), we have
bw = cw > A + B. Then bwB − bwA > B2 − A2. Hence bwB −B2 > bwA− A2.
Thus B

bw−A > A
bw−B . Therefore Figure 6(a) has less length than Figure 6(c).

(2) Assume that 2A < B. Choose b = 6B(A+B)
w(2A+5B) . Therefore the length of Figure

6(a) is w + 3
w (−(2A+B)2(A+B)

(2A+5B)(4A+B) + A + B) < w + 3
w (A + B), which is the length of

Figure 6(b).
(3) Assume that 2A ≥ B. From Figure 6(a), we have 0 < a < A+B

w and a
A < w.

Then A
a > A+B

3a > w
3 . Let t = A+B

w − a. Hence 3(A+B
w ) = 3t + 3a = 2(

w
3

w−w
3

)t +

2t + 3a < 2(
A
a

w−A
a

)t + 2t + 3a = a + 2 B
w−A

a

. Therefore Figure 6(b) has less length
than Figure 6(a).

Lemma 2.3. For 0 < A1 ≤ A2, we have
(1) if A1 = A2 and both rectangles are squares, then Figure 7(a,b,c) have the same
length.
(2) otherwise, Figure 7(a) has more length than Figure 7(b) or (c).
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Figure 4: An enclosure for two regions, each of which consists of several
components.

Figure 5: Rectangles on the plane, a half plane, and in a right-angle corner.

Figure 6: Double rectangles on a wall of length w.

Figure 7: The smaller rectangle is attached to the bigger rectangle.
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Proof. (1) It is obvious.
(2) We may assume that x ≥ y. First we will consider the case that x > y or that
x = y and A1 < A2. Then x

√
A1 > A1 = A1 + A2 − xy. Figure 7(a) has length

less than or equal to 2
√

A1 +2x+2y < 2(A1+A2
x −y)+2x+2y which is the length

of Figure 7(b). The other case where x = y and A1 = A2 (and rectangle A1 is not
square) is similar.

3 Enclosures for two areas

In this section, we show that a minimizing enclosure for two areas is described by
Figure 8. First we will show in the next theorem that each region of a minimizing
enclosure must be a single rectangle.

Theorem 3.1. A minimizing enclosure for two areas has connected regions.

Proof. Suppose that a minimizing enclosure E has some disconnected region. By
translation, we can assume that E is (path) connected. For region Ri, i = 1, 2, we
choose a component with maximum area Ci. These two maximum components
may not share any part of their boundaries. We now consider Figure 9. First, for
each rectangular component, we remove its lower segment(s) and right segment(s)
which are not parts of the upper side or the lower side of another component.
For each region Ri, we combine its components, except Ci, to a single rectangle
as illustrated in Figure 10. This process reduces total length and still works
when there are infinitely many components since Ai is finite. If it is possible, we
translate C1 vertically or horizontally to touch C2 The total length of removed
segments is enough to fill up the boundary of the paired C1 and C2. Next we
use Lemma 2.3, for each region, to add the combined rectangle into the maximum
component. Finally, we create an enclosure with connected regions and less length,
a contradiction. Therefore every region must be connected.

The previous proof can be adapted to solve the problem of finding minimal
enclosures by vertical and horizontal segments. In [5], we provide a simpler proof
to the one in [4]. The key point is that we allow areas to increase and then show
later that areas should be decrease back to the original ones. This approach is
called the weak approach as described in [7] and [6].

Theorem 3.2. For 0 < A ≤ B, among enclosures of areas A and B with connected
regions,
(1) if 2A < B, then Figure 11(a) is minimizing.
(2) if 2A ≥ B, then Figure 11(b) is minimizing.

Proof. The result comes from elementary calculations.

By the previous theorem, we know the shapes of minimizing enclosures for two
areas. Note that the corresponding shapes depend on ratio of the areas.



56 Thai J. Math.(Special Issue, 2006)/ B. Sroysang and W. Wichiramala

Figure 8: Minimal enclosures for two area by rectangles.

Figure 9: The process of pairing the two maximum components.

Figure 10: The process of combining components of a region to a single
piece.

Figure 11: Minimal enclosures of connected regions.
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4 Enclosures for three areas

In this section, we show that a minimizing enclosure for three areas is described by
Figure 12. First we will show in the next theorem that each region of a minimizing
enclosure must be a single rectangle.

Theorem 4.1. A minimizing enclosures for three areas has connected regions.

Proof. Argument for two areas also work here.

Proposition 4.2. Each enclosure in Figure 13 has more length than some enclo-
sure in Figure 12.

Proof. Figure 13(r) has more length than some enclosure in Figure 12. Each
enclosure in Figure 13(m-q) has more length than Figure 13(r). Each enclosure
in Figure 13(a,d,g,j) has more length than Figure 12(b) or (e). Each enclosure
in Figure 13(b,h,f,l) has more length than Figure 12(c) or (f). Each enclosure
in Figure 13(c,e,i,k) has more length than Figure 12 (a), (b), (c), (f) or Figure
13(r).

Theorem 4.3. For 0 < A ≤ B ≤ C, a minimizing enclosure of areas A,B, C is
as follows.
(1) For 2A < B, we have

(1.1) if
√

C <
√

A+
√

2A
2 , then Figure 12(a) is minimizing where a1 =

√
2A,

b1 =
√

B, c1 =
√

2C.
(1.2) if

√
c >

√
A+

√
2B, then Figure 12(b) is minimizing where a2 =

√
A, b2 =√

2B, c2 =
√

C.
(1.3) if

√
A+

√
2B

2 ≤ √
C ≤ √

A +
√

2B, then Figure 12(c) is minimizing where

a3 =
√

A
3 ((

√
A+

√
2B)2+2C)√

A+
√

2B
, b3 = a3

√
2B
A .

(2) For 2A ≥ B, we have

(2.1) if C < 3
4 (A+B) then Figure 12(d) is minimizing where a4 =

√
2
3 (A + B),

c4 =
√

2C.
(2.2) if C > 3(A + B) then Figure 12(e) is minimizing where a5 =

√
A+B

3 ,

c5 =
√

C.
(2.3) if 3

4 (A + B) ≤ C ≤ 3(A + B) then Figure 12(f) is minimizing where
a6 = A+B√

A+B+ 2
3 C

.

Proof. The result comes from elementary calculations.

In conclusion, the shapes of minimizing enclosures depends on ratio of the
areas as described in Figure 14. Figure 15 shows when each of the six patterns is
minimizing.

We believe that our technique can be used to shed some light to the problem of
finding minimizing enclosures by vertical and horizontal segments for three regions
of given areas.
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Figure 12: Six patterns of minimizing enclosures for three areas.

Figure 13: All possible enclosures that may be minimizing for three areas.

Figure 14: Table indicating shapes of minimizing enclosures for three areas.
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Figure 15: Ratio of the three areas A ≤ B ≤ C = 1 indicating shapes of
minimizing enclosures.


