Thai Journal of Mathematics Volume 15 (2017) Number 1 : 227–236

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Generalized Fuzzy Ideals in Semigroups

Young Bae Jun^{\dagger} and Seok-Zun $\text{Song}^{\ddagger,1}$

[†]Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea e-mail : skywine@gmail.com
[‡]Department of Mathematics, Jeju National University, Jeju 63243, Korea e-mail : szsong@jejunu.ac.kr

Abstract: The notion of $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy bi-ideals in semigroups is introduced, and related properties are investigated. Characterizations of $(\in, \in \lor q_0^{\delta})$ -generalized fuzzy bi-ideals are provided.

Keywords : $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy subsemigroup; $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy generalized bi-ideal. **2010 Mathematics Subject Classification** : 20M12; 03E72; 08A72.

1 Introduction

The idea of quasicoincidence of a fuzzy point with a fuzzy set, which is mentioned in [1], played a vital role to generate some different types of fuzzy subgroups. It is worth pointing out that Bhakat and Das [2, 3] gave the concepts of (α, β) fuzzy subgroups by using the "belongs to" relation (\in) and "quasi-coincident with" relation (q) between a fuzzy point and a fuzzy subgroup, and introduced the concept of an (\in , $\in \lor q$)-fuzzy subgroup. In particular, (\in , $\in \lor q$)-fuzzy subgroup is an important and useful generalization of Rosenfeld's fuzzy subgroup. Bhakat et al. applied the (\in , $\in \lor q$)-fuzzy type to group and ring (see [2, 3, 4, 5]). Dudek et al. [6] characterized different types of (α, β)-fuzzy ideals of hemirings. In [7] Jun and Song initiated the study of (α, β)-fuzzy bi-ideals of a semigroup. Shabir et al. [9] introduced the concept of (α, β)-fuzzy ideal, (α, β)-fuzzy generalized bi-ideal,

Copyright c 2017 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

and characterized regular semigroups by the properties of these ideals. Jun et al. [10] considered more general form of quasi-coincident fuzzy point, and they [11] introduced the notions of $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy subsemigroups in semigroups, and investigate related properties. They provided characterizations of $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroups, and considered a condition for an $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroup to be an (\in, \in) -fuzzy subsemigroup. Given a fuzzy set with finite images, they established an $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroup generated by the given fuzzy set. Yuan et al. [12] provided a generalization of fuzzy subgroups and $(\in, \in \lor q_0^{\delta})$ -fuzzy subgroups.

The aim of this paper is to generalize the notions and results in the paper [9]. We introduce the notions of $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy bi-ideals in semigroups, and investigate related properties. We discuss characterizations of $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideals.

2 Preliminaries

An element a of a semigroup S is called a regular element if there exists an element x of S such that a = axa. A semigroup S is said to be regular if every element of S is regular.

A nonempty subset B of a semigroup S is called

- a subsemigroup of S if $B^2 \subseteq B$,
- a left (resp. right) ideal of S if $SB \subseteq B$ (resp. $BS \subseteq B$),
- a generalized bi-ideal of S if $BSB \subseteq B$,
- a *bi-ideal of* S *if* it is both subsemigroup and a generalized bi-ideal of S.

For two fuzzy set λ and ν in S, we say $\lambda \leq \nu$ if $\lambda(x) \leq \nu(x)$ for all $x \in S$. We define $\lambda \wedge \nu$ and $\lambda \vee \nu$ as follows:

$$\lambda \wedge \nu : S \to [0,1], x \mapsto \min\{\lambda(x), \nu(x)\}$$

and

$$\lambda \lor \nu : S \to [0,1], x \mapsto \max\{\lambda(x), \nu(x)\}$$

respectively. The product $\lambda \circ \nu$ of λ and ν is defined to be fuzzy set in S as follows:

$$(\lambda \circ \nu)(x) := \begin{cases} \bigvee_{\substack{x=yz\\0}} \min\{\lambda(y), \nu(z)\} & \text{if } \exists y, z \in S \text{ such that } x = yz, \\ 0 & \text{otherwise.} \end{cases}$$

A fuzzy set λ in a set S of the form

$$\lambda(y) := \begin{cases} t \in (0,1] & \text{if } y = x, \\ 0 & \text{if } y \neq x, \end{cases}$$
(2.1)

is said to be a *fuzzy point* with support x and value t and is denoted by x_t . It is clear that $x_t \circ y_r = (xy)_{\min\{t,r\}}$ for all fuzzy points x_t and y_r in a set S.

For a fuzzy point x_t and a fuzzy set λ in a set S, we say that

- $x_t \in \lambda$ (resp. $x_t q \lambda$) (see [1]) if $\lambda(x) \ge t$ (resp. $\lambda(x) + t > 1$). In this case, x_t is said to belong to (resp. be quasi-coincident with) a fuzzy set λ .
- $x_t \in \forall q \lambda$ (resp. $x_t \in \land q \lambda$) (see [1]) if $x_t \in \lambda$ or $x_t q \lambda$ (resp. $x_t \in \lambda$ and $x_t q \lambda$).

Let $\delta \in (0, 1]$. For a fuzzy point x_t and a fuzzy set λ in a set X, we say that

- x_t is a δ -quasi-coincident with λ , written $x_t q_0^{\delta} \lambda$, (see [10]) if $\lambda(x) + t > \delta$,
- $x_t \in \lor q_0^{\delta} \lambda$ (resp. $x_t \in \land q_0^{\delta} \lambda$) (see [10]) if $x_t \in \lambda$ or $x_t q_0^{\delta} \lambda$ (resp. $x_t \in \lambda$ and $x_t q_0^{\delta} \lambda$).

Obviously, $x_t q \lambda$ implies $x_t q_0^{\delta} \lambda$. If $\delta = 1$, then the δ -quasi-coincident with λ is the quasi-coincident with λ , that is, $x_t q_0^1 \lambda = x_t q \lambda$.

For $\alpha \in \{ \in, q, \in \lor q, \in \land q, \in \lor q_0^{\delta}, \in \land q_0^{\delta} \}$, we say that $x_t \overline{\alpha} \lambda$ if $x_t \alpha \lambda$ does not hold.

3 Main Results

In what follows, let δ be an element of (0, 1] and let S be a semigroup and $\widetilde{\alpha}$ and $\widetilde{\beta}$ denote any one of \in , q_0^{δ} , $\in \lor q_0^{\delta}$ and $\in \land q_0^{\delta}$ unless otherwise specified.

Definition 3.1 ([11]). A fuzzy set λ in S is called an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy subsemigroup of S, where $\tilde{\alpha} \neq \in \land q_0^{\delta}$, if

$$(\forall x, y \in S) (\forall t, r \in (0, \delta]) \left(x_t \,\widetilde{\alpha} \,\lambda, \, y_r \,\widetilde{\alpha} \,\lambda \, \Rightarrow \, x_t \circ y_r \,\widetilde{\beta} \,\lambda \right). \tag{3.1}$$

Let λ be a fuzzy set in S such that $\lambda(x) \leq \frac{\delta}{2}$ for all $x \in S$. Let $x \in S$ and $t \in (0, \delta]$ be such that $x_t \in \wedge q_0^{\delta} \lambda$. Then $\lambda(x) \geq t$ and $\lambda(x) + t > \delta$. It follows that $\delta < \lambda(x) + t \leq 2\lambda(x)$, so that $\lambda(x) \geq \frac{\delta}{2}$. This means that $\{x_t \mid x_t \in \wedge q_0^{\delta} \lambda\} = \emptyset$. Hence the case $\tilde{\alpha} = \in \wedge q_0^{\delta}$ should be omitted.

Definition 3.2. A fuzzy set λ in S is called an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy left (resp. right) ideal of S if for any $x, y \in S$ and $t \in (0, \delta]$,

$$y_t \widetilde{\alpha} \lambda \Rightarrow (xy)_t \widetilde{\beta} \lambda \text{ (resp. } (yx)_t \widetilde{\beta} \lambda \text{).}$$
 (3.2)

A fuzzy set λ in S is called an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy ideal of S if it is both an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy left ideal and an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy right ideal of S.

Definition 3.3. A fuzzy set λ in S is called an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy bi-ideal of S if it satisfies the condition (3.1) and for any $x, y, z \in S$ and $t, r \in (0, \delta]$,

$$x_t \,\widetilde{\alpha} \,\lambda, \, z_r \,\widetilde{\alpha} \,\lambda \, \Rightarrow \, (xyz)_{\min\{t,r\}} \,\widetilde{\beta} \,\lambda. \tag{3.3}$$

If a fuzzy set λ in S satisfies the condition (3.3) only is called an $(\tilde{\alpha}, \tilde{\beta})$ -fuzzy generalized bi-ideal of S.

•	a	b	С	d
a	a	a	a	a
b	a	a	a	a
c	a	a	b	a
d	a	a	b	b

Table 1: Cayley table of the operation \cdot

Example 3.4 ([13]). Consider a semigroup $S = \{a, b, c, d\}$ with the multiplication \cdot which is described by Table 1.

Let δ be a fuzzy set in S defined by

$$\delta: S \to [0,1], \ x \mapsto \begin{cases} \frac{\delta}{2} & \text{if } x = a, \\ \frac{\delta}{5} & \text{if } x = c, \\ \frac{\delta}{10} & \text{if } x \in \{b,d\}, \end{cases}$$

Then δ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S.

Let λ and ν be fuzzy sets in S defined by

$$\lambda: S \to [0,1], \ x \mapsto \begin{cases} \frac{\delta}{2} & \text{if } x = a, \\ \frac{3\delta}{5} & \text{if } x = b, \\ \frac{7\delta}{10} & \text{if } x = c, \\ 0 & \text{if } x = d, \end{cases}$$

and

$$\nu: S \to [0,1], \ x \mapsto \begin{cases} \frac{7\delta}{10} & \text{if } x = a, \\ \frac{\delta}{2} & \text{if } x = b, \\ \frac{3\delta}{5} & \text{if } x = c, \\ \frac{\delta}{5} & \text{if } x = d, \end{cases}$$

respectively. Then λ and ν are $(\in, \in \lor q_0^{\delta})$ -fuzzy ideals of S. It follows $\lambda \circ \nu$ and $\lambda \wedge \nu$ are $(\in, \in \lor q_0^{\delta})$ -fuzzy ideals of S. Moreover, we know that $\lambda \circ \nu \nleq \lambda \wedge \nu$ since

$$(\lambda \circ \nu)(b) = \bigvee_{b=xy} \min\{\lambda(x), \nu(y)\} = \frac{3\delta}{5} > \frac{\delta}{2} = (\lambda \wedge \nu)(b).$$

Lemma 3.5 ([13]). A fuzzy set λ in S is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S if and only if the following assertion is valid.

$$(\forall x, y, z \in S) \left(\lambda(xyz) \ge \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\} \right).$$
(3.4)

We provide a condition for an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal to be an (\in, \in) -fuzzy generalized bi-ideal.

Lemma 3.6 ([11]). Let λ be an $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroup of S such that $\lambda(x) < \frac{\delta}{2}$ for all $x \in S$. Then λ is an (\in, \in) -fuzzy subsemigroup of S.

Lemma 3.7. Let λ be an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S. If $\operatorname{Im}(\lambda) \subseteq [0, \frac{\delta}{2})$, then λ is an (\in, \in) -fuzzy generalized bi-ideal of S.

Proof. Let $x, y, z \in S$ and $t, r \in (0, \delta]$ be such that $x_t \in \lambda$ and $z_r \in \lambda$. Then $t \leq \lambda(x) < \frac{\delta}{2}$ and $r \leq \lambda(z) < \frac{\delta}{2}$. It follows from the hypothesis and Lemma 3.5 that

 $\lambda(xyz) \ge \min\{\lambda(x), \, \lambda(z), \, \frac{\delta}{2}\} = \min\{\lambda(x), \, \lambda(z)\} \ge \min\{t, \, r\}$

so that $(xyz)_{\min\{t,r\}} \in \lambda$. Hence λ is an (\in, \in) -fuzzy generalized bi-ideal of S. \Box

Corollary 3.8. Let λ be an $(\in, \in \lor q)$ -fuzzy generalized bi-ideal of S such that $\lambda(x) < 0.5$ for all $x \in S$. Then λ is an (\in, \in) -fuzzy generalized bi-ideal of S.

Using Lemmas 3.6 and 3.7 induce the following theorem.

Theorem 3.9. Let λ be an $(\in, \in \lor q_0^{\delta})$ -fuzzy bi-ideal of S. If $\operatorname{Im}(\lambda) \subseteq [0, \frac{\delta}{2})$, then λ is an (\in, \in) -fuzzy bi-ideal of S.

Lemma 3.10 ([11]). A fuzzy set λ in S is an (\in, \in) -fuzzy subsemigroup of S if and only if the set

$$Q_0^{\delta}(\lambda; t) := \{ x \in S \mid x_t q_0^{\delta} \lambda \}$$

is a subsemigroup of S when it is nonempty for all $t \in (0, \delta]$.

Theorem 3.11. A fuzzy set λ in S is an (\in, \in) -fuzzy generalized bi-ideal of S if and only if the set

$$Q_0^{\delta}(\lambda; t) := \{ x \in S \mid x_t q_0^{\delta} \lambda \}$$

is a generalized bi-ideal of S when it is nonempty for all $t \in (0, \delta]$.

Proof. Assume that λ is an (\in, \in) -fuzzy generalized bi-ideal of S. Let $y \in S$ and $x, z \in Q_0^{\delta}(\lambda; t)$. Then $x_t q_0^{\delta} \lambda$ and $z_t q_0^{\delta} \lambda$, i.e., $\lambda(x) + t > \delta$ and $\lambda(z) + t > \delta$. Hence

$$\lambda(xyz) \ge \min\{\lambda(x), \lambda(z)\} > \delta - t,$$

and so $(xyz)_t q_0^{\delta} \lambda$. Thus $xyz \in Q_0^{\delta}(\lambda; t)$, and therefore $Q_0^{\delta}(\lambda; t)$ is a generalized bi-ideal of S.

Conversely, suppose that $Q_0^{\delta}(\lambda; t)$ is a generalized bi-ideal of S for all $t \in (0, \delta]$ with $Q_0^{\delta}(\lambda; t) \neq \emptyset$. If λ is not an (\in, \in) -fuzzy generalized bi-ideal of S, then

$$\lambda(abc) + t \le \delta < \min\{\lambda(a), \lambda(c)\} + t$$

for some $a, b, c \in S$ and $t \in (0, \delta]$. It follows that $a, c \in Q_0^{\delta}(\lambda; t)$, and so that $abc \in Q_0^{\delta}(\lambda; t)$ since $Q_0^{\delta}(\lambda; t)$ is a generalized bi-ideal of S. Thus $\lambda(abc) + t > \delta$, a contradiction. Therefore λ is an (\in, \in) -fuzzy generalized bi-ideal of S.

Theorem 3.12. A fuzzy set λ in S is an (\in, \in) -fuzzy bi-ideal of S if and only if the set

$$Q_0^{\delta}(\lambda; t) := \{ x \in S \mid x_t q_0^{\delta} \lambda \}$$

is a bi-ideal of S when it is nonempty for all $t \in (0, \delta]$.

Proof. It is by Lemma 3.10 and Theorem 3.11.

Lemma 3.13 ([11]). If λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroup of S, then the set $Q_0^{\delta}(\lambda;t)$ is a subsemigroup of S when it is nonempty for all $t \in (\frac{\delta}{2}, 1]$.

Theorem 3.14. If λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S, then the set $Q_0^{\delta}(\lambda;t)$ is a generalized bi-ideal of S when it is nonempty for all $t \in (\frac{\delta}{2}, 1]$.

Proof. Assume that λ is an $(\in, \in \vee q_0^{\delta})$ -fuzzy generalized bi-ideal of S and let $t \in (\frac{\delta}{2}, 1]$ such that $Q_0^{\delta}(\lambda; t) \neq \emptyset$. Let $x, z \in Q_0^{\delta}(\lambda; t)$ and $y \in S$. Then $x_t q_0^{\delta} \lambda$ and $z_t q_0^{\delta} \lambda$, i.e., $\lambda(x) + t > \delta$ and $\lambda(z) + t > \delta$. Using (3.4), we have

$$\begin{split} \lambda(xyz) &\geq \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\} \\ &= \begin{cases} \min\{\lambda(x), \lambda(z)\} & \text{ if } \lambda(x) < \frac{\delta}{2} \text{ or } \lambda(z) < \frac{\delta}{2}, \\ \frac{\delta}{2} & \text{ if } \lambda(x) \geq \frac{\delta}{2} \text{ and } \lambda(z) \geq \frac{\delta}{2} \\ &> \delta - t. \end{cases} \end{split}$$

Hence $xyz \in Q_0^{\delta}(\lambda; t)$, and $Q_0^{\delta}(\lambda; t)$ is a generalized bi-ideal of S for all $t \in (\frac{\delta}{2}, 1]$.

Theorem 3.15. If λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy bi-ideal of S, then the set $Q_0^{\delta}(\lambda; t)$ is a bi-ideal of S when it is nonempty for all $t \in (\frac{\delta}{2}, 1]$.

Proof. It follows from Lemma 3.13 and Theorem 3.14.

Corollary 3.16. If λ is an $(\in, \in \lor q)$ -fuzzy bi-ideal of S, then the set

$$Q(\lambda; t) := \{ x \in S \mid x_t q \lambda \}$$

is a bi-ideal of S when it is nonempty for all $t \in (0.5, 1]$.

Lemma 3.17 ([11]). A fuzzy set λ in S is an $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroup of S if and only if the set

$$U(\lambda; t) := \{ x \in S \mid \lambda(x) \ge t \}$$

is a subsemigroup of S for all $t \in (0, \frac{\delta}{2}]$.

Theorem 3.18. A fuzzy set λ in S is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S if and only if the set

$$U(\lambda; t) := \{ x \in S \mid \lambda(x) \ge t \}$$

is a generalized bi-ideal of S for all $t \in (0, \frac{\delta}{2}]$.

232

Proof. Assume that λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S. Let $t \in (0, \frac{\delta}{2}]$ and $x, z \in U(\lambda; t)$. Then $\lambda(x) \ge t$ and $\lambda(z) \ge t$. It follows from (3.4) that

$$\lambda(xyz) \ge \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\} \ge \min\{t, \frac{\delta}{2}\} = t$$

for all $y \in S$ and so that $xyz \in U(\lambda; t)$. Therefore $U(\lambda; t)$ is a generalized bi-ideal of S.

Conversely, let λ be a fuzzy set in S such that $U(\lambda; t)$ is a generalized bi-ideal of S for all $t \in (0, \frac{\delta}{2}]$. Suppose that there are elements a, b and c of S such that

$$\lambda(abc) < \min\{\lambda(a), \lambda(c), \frac{\delta}{2}\},\$$

and take $t \in (0, \delta]$ such that $\lambda(abc) < t \leq \min\{\lambda(a), \lambda(c), \frac{\delta}{2}\}$. Then $a, c \in U(\lambda; t)$ and $t \leq \frac{\delta}{2}$, which implies that $abc \in U(\lambda; t)$ since $U(\lambda; t)$ is a generalized bi-ideal of S. This induces $\lambda(abc) \geq t$, and this is a contradiction. Hence $\lambda(xyz) \geq \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\}$ for all $x, y, z \in S$, and therefore λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S by Lemma 3.5.

Using Lemma 3.17 and Theorem 3.18, we have the following theorem.

Theorem 3.19. A fuzzy set λ in S is an $(\in, \in \lor q_0^{\delta})$ -fuzzy bi-ideal of S if and only if the set

$$U(\lambda; t) := \{ x \in S \mid \lambda(x) \ge t \}$$

is a bi-ideal of S for all $t \in (0, \frac{\delta}{2}]$.

Corollary 3.20. A fuzzy set λ in S is an $(\in, \in \lor q)$ -fuzzy bi-ideal of S if and only if the set

$$U(\lambda;t) := \{x \in S \mid \lambda(x) \ge t\}$$

is a bi-ideal of S for all $t \in (0, 0.5]$.

For a subset Q of S, a fuzzy set χ_Q^{δ} in S defined by

$$\chi_Q^{\delta}: S \to [0,1], \ x \mapsto \begin{cases} \delta & \text{if } x \in Q, \\ 0 & \text{otherwise,} \end{cases}$$

is called a δ -characteristic fuzzy set of Q in S (see [10]). The following is a corollary of Theorem 3.18.

Corollary 3.21. For any subset Q of S and the δ -characteristic fuzzy set χ_Q^{δ} of Q in S, the following are equivalent:

- (i) Q is a generalized bi-ideal of S.
- (ii) χ_Q^{δ} is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S.

Lemma 3.22 ([11]). For any subset Q of S and the δ -characteristic fuzzy set χ_Q^{δ} of Q in S, the following are equivalent:

(i) Q is a subsemigroup of S.

(ii) χ_Q^{δ} is an $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroup of S.

Using Lemma 3.22 and Corollary 3.21, we have the following theorem.

Theorem 3.23. For any subset Q of S and the δ -characteristic fuzzy set χ_Q^{δ} of Q in S, the following are equivalent:

- (i) Q is a bi-ideal of S.
- (ii) χ_Q^{δ} is an $(\in, \in \lor q_0^{\delta})$ -fuzzy bi-ideal of S.

Lemma 3.24 ([11]). For any fuzzy set λ in S, the following are equivalent.

- (i) λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy subsemigroup of S.
- (ii) The set $UQ_0^{\delta}(\lambda;t) := \{x \in S \mid x_t \in \lor q_0^{\delta} \lambda\}$ is a subsemigroup of S for all $t \in (0, \delta]$ with $UQ_0^{\delta}(\lambda;t) \neq \emptyset$.

Theorem 3.25. For any fuzzy set λ in S, the following are equivalent.

- (i) λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S.
- (ii) The set $UQ_0^{\delta}(\lambda;t) := \{x \in S \mid x_t \in \lor q_0^{\delta} \lambda\}$ is a generalized bi-ideal of S for all $t \in (0, \delta]$ with $UQ_0^{\delta}(\lambda; t) \neq \emptyset$.

Proof. Assume that λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S. Let $t \in (0, \delta]$ be such that $UQ_0^{\delta}(\lambda; t) \neq \emptyset$. Note that $UQ_0^{\delta}(\lambda; t) = U(\lambda; t) \cup Q_0^{\delta}(\lambda; t)$. Let $y \in S$ and $x, z \in UQ_0^{\delta}(\lambda; t)$. Then $x_t \in \lor q_0^{\delta} \lambda$ and $z_t \in \lor q_0^{\delta} \lambda$, that is, $\lambda(x) \geq t$ or $\lambda(x) + t > \delta$, and $\lambda(z) \geq t$ or $\lambda(z) + t > \delta$. We consider four cases:

- (1) $\lambda(x) \ge t$ and $\lambda(z) \ge t$,
- (2) $\lambda(x) \ge t$ and $\lambda(z) + t > \delta$,
- (3) $\lambda(x) + t > \delta$ and $\lambda(z) \ge t$,
- (4) $\lambda(x) + t > \delta$ and $\lambda(z) + t > \delta$.

For the first case, (3.4) implies that

$$\lambda(xyz) \ge \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\} \ge \min\{t, \frac{\delta}{2}\} = \begin{cases} \frac{\delta}{2} & \text{if } t > \frac{\delta}{2}, \\ t & \text{if } t \le \frac{\delta}{2}. \end{cases}$$

Hence $(xyz)_t \in \lambda$ or $\lambda(xyz) + t = \frac{\delta}{2} + t > \frac{\delta}{2} + \frac{\delta}{2} = \delta$. It follows that $xyz \in U(\lambda;t) \cup Q_0^{\delta}(\lambda;t) = UQ_0^{\delta}(\lambda;t)$. For the second case, if $t > \frac{\delta}{2}$ then $\delta - t < \frac{\delta}{2}$. Hence

$$\lambda(xyz) \ge \min\{\lambda(z), \frac{\delta}{2}\} > \delta - t$$

whenever $\min\{\lambda(z), \frac{\delta}{2}\} \leq \lambda(x)$, and $\lambda(xyz) \geq \lambda(x) \geq t$ whenever $\min\{\lambda(z), \frac{\delta}{2}\} > \lambda(x)$. Thus $xyz \in U(\lambda; t) \cup Q_0^{\delta}(\lambda; t) = UQ_0^{\delta}(\lambda; t)$. If $t \leq \frac{\delta}{2}$, then $\delta - t \geq \frac{\delta}{2}$ and so

$$\lambda(xyz) \ge \min\{\lambda(x), \frac{\delta}{2}\} \ge t$$

whenever $\min\{\lambda(x), \frac{\delta}{2}\} \leq \lambda(z)$, and $\lambda(xyz) \geq \lambda(z) > \delta - t$ whenever $\min\{\lambda(x), \frac{\delta}{2}\} > \lambda(z)$. Hence $xyz \in U(\lambda; t) \cup Q_0^{\delta}(\lambda; t) = UQ_0^{\delta}(\lambda; t)$. We have similar result for the third case. For the final case, if $t > \frac{\delta}{2}$ then $\delta - t < \frac{\delta}{2}$. It follows that

$$\begin{split} \lambda(xyz) &\geq \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\} \\ &= \begin{cases} \frac{\delta}{2} > \delta - t & \text{if } \min\{\lambda(x), \lambda(z)\} \geq \frac{\delta}{2}, \\ \min\{\lambda(x), \lambda(z)\} > \delta - t & \text{if } \min\{\lambda(x), \lambda(z)\} < \frac{\delta}{2}, \end{cases} \end{split}$$

and so that $xyz \in Q_0^{\delta}(\lambda;t) \subseteq UQ_0^{\delta}(\lambda;t)$. If $t \leq \frac{\delta}{2}$, then $\delta - t \geq \frac{\delta}{2}$ and thus

$$\begin{split} \lambda(xyz) &\geq \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\} \\ &= \begin{cases} \frac{\delta}{2} \geq t & \text{if } \min\{\lambda(x), \lambda(z)\} \geq \frac{\delta}{2}, \\ \min\{\lambda(x), \lambda(z)\} > \delta - t & \text{if } \min\{\lambda(x), \lambda(z)\} < \frac{\delta}{2}. \end{cases} \end{split}$$

Hence $xyz \in U(\lambda; t) \cup Q_0^{\delta}(\lambda; t) = UQ_0^{\delta}(\lambda; t)$. Consequently, $UQ_0^{\delta}(\lambda; t)$ is a generalized bi-ideal of S for all $t \in (0, \delta]$ with $UQ_0^{\delta}(\lambda; t) \neq \emptyset$.

Conversely, suppose that (ii) is valid and there exist $a, b, c \in S$ such that

$$\lambda(abc) < \min\{\lambda(a), \lambda(c), \frac{\delta}{2}\}.$$

Then $\lambda(abc) < r \leq \min\{\lambda(a), \lambda(c), \frac{\delta}{2}\}\$ for some $r \in (0, \frac{\delta}{2}]$. It follows that $a, c \in U(\lambda; r) \subseteq UQ_0^{\delta}(\lambda; r)$ so that $abc \in UQ_0^{\delta}(\lambda; r)$. Hence $\lambda(abc) \geq r$ or $\lambda(abc) + r > \delta$, which is a contradiction. Therefore $\lambda(xyz) \geq \min\{\lambda(x), \lambda(z), \frac{\delta}{2}\}\$ for all $x, y, z \in S$. Using Lemma 3.5, we know that λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy generalized bi-ideal of S.

Combining Lemma 3.24 and Theorem 3.25 induce the following theorem.

Theorem 3.26. For any fuzzy set λ in S, the following are equivalent.

- (i) λ is an $(\in, \in \lor q_0^{\delta})$ -fuzzy bi-ideal of S.
- (ii) The set $UQ_0^{\delta}(\lambda; t)$ is a bi-ideal of S for all $t \in (0, \delta]$ with $UQ_0^{\delta}(\lambda; t) \neq \emptyset$.

Corollary 3.27. For any fuzzy set λ in S, the following are equivalent.

- (i) λ is an $(\in, \in \lor q)$ -fuzzy bi-ideal of S.
- (ii) The set $UQ(\lambda;t) := \{x \in S \mid x_t \in \lor q \lambda\}$ is a bi-ideal of S for all $t \in (0,1]$ with $UQ(\lambda;t) \neq \emptyset$.

References

- P.M. Pu, Y.M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- [2] S.K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems 51 (1992) 235–241.

- [3] S.K. Bhakat, P. Das, (∈, ∈ ∨ q)-Fuzzy subgroup, Fuzzy Sets and Systems 80 (1996) 359–368.
- [4] S.K. Bhakat, $(\in, \in \lor q)$ -Fuzzy normal, quasinormal and maximal subgroups, Fuzzy Sets and Systems 112 (2000) 299–312.
- [5] S.K. Bhakat, P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81 (1996) 383–393.
- [6] W.A. Dudek, M. Shabir, M. Irfan Ali, (α, β)-Fuzzy ideals of hemirings, Comput. Math. Appl. 58 (2009) 310–321.
- [7] Y.B. Jun, S.Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176 (2006) 3079–3093.
- [8] O. Kazanci, S. Yamak, Generalized fuzzy bi-ideals of semigroup, Soft Computing 12 (2008) 1119–1124.
- [9] M. Shabir, Y.B. Jun, Y. Zawaz, Characterizations of regular semigroups by (α, β)-fuzzy ideals, Comput. Math. Appl. 59 (2010) 161–175.
- [10] Y.B. Jun, M.A. Öztürk, G. Muhiuddin, A generalization of $(\in, \in \lor q)$ -fuzzy subgroups, Int. J. Comput. Math. (submitted).
- [11] Y.B. Jun, M.A. Öztürk and G. Muhiuddin, A novel generalization of fuzzy sub-subgroups, Neutral Computing and Applications (submitted).
- [12] X. Yuan, C. Zhang, Y. Ren, Generalized fuzzy groups and many-valued implications, Fuzzy Sets and Systems 138 (2003) 205–211.
- [13] Y.B. Jun, S.Z. Song, A novel generalization of fuzzy ideals in semigroups, Applied Mathematical Sciences 10 (51) (2016) 2537-2546

(Received 6 July 2012) (Accepted 6 July 2016)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th