Thai Journal of Mathematics Volume 15 (2017) Number 1 : 193–206

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Generalized Projection Methods for Nonlinear Mappings

$\label{eq:preedaporn} \mbox{ Freedaporn Kanjanasamranwong, Sarapee Chairat} \\ \mbox{ and Siwaporn Saewan}^1$

Department of Mathematics and Statistics, Faculty of Science Thaksin University, Thailand e-mail: ypreedaporn@hotmail.com (P. Kanjanasamranwong) sarapee@tsu.ac.th (S. Chairat) siwaporn@scholar.tsu.ac.th (S. Saewan)

Abstract: We present a new hybrid iterative process for finding an element in the solution of variational inequality problem and the fixed point set of relatively nonexpansive multi-valued mapping in Banach spaces. This theorem improve and extend some recent results.

 ${\bf Keywords}$: multi-valued mapping; variational inequality; relatively nonexpansive.

2010 Mathematics Subject Classification : 47H05; 47H09: 47H10; 47J10.

1 Introduction

Let C be a nonempty closed and convex subset of a Banach space E with dual E^* . A mapping $A: C \to E^*$ is said to be:

(1) monotone if

$$\langle x - y, Ax - Ay \rangle \ge 0$$

for all $x, y \in C$;

(2) α -inverse-strongly monotone if there exists a constant $\alpha > 0$ such that

$$\langle x - y, Ax - Ay \rangle \ge \alpha \|Ax - Ay\|^2$$

¹Corresponding author.

Copyright \bigodot 2017 by the Mathematical Association of Thailand. All rights reserved.

for all $x, y \in C$.

If $A: C \to E^*$ is α -inverse-strongly monotone, then it is Lipschitz continuous with constant $\frac{1}{\alpha}$, that is,

$$\|Ax - Ay\| = \frac{1}{\alpha} \|x - y\|$$

for all $x, y \in C$. Clearly, the class of monotone mappings include the class of α -inverse-strongly monotone mappings.

The class of inverse-strongly monotone have been studied by many authors to approximate a common fixed point (see [1, 2] for more details).

The variational inequality problem for an operator A is to find $\hat{z} \in C$ such that

$$\langle y - \hat{z}, A\hat{z} \rangle \ge 0, \ \forall y \in C.$$
 (1.1)

The set of solution of (1.1) is denoted by VI(A, C).

Let E be a Banach space with the dual space E^* . The normalized duality mapping from E to 2^{E^*} defined by

$$J(x) = \{ f^* \in E^* : \langle x, f^* \rangle = \|x\|^2, \|f^*\| = \|x\| \}.$$

If E is a Hilbert space, then J = I, where I is the identity mapping. Consider the functional $\phi : E \times E \to \mathbb{R}$ defined by

$$\phi(x,y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$
(1.2)

for all $x, y \in E$, where J is the normalized duality mapping. It is obvious from the definition of function ϕ that

$$(\|y\| - \|x\|)^2 \le \phi(y, x) \le (\|y\| + \|x\|)^2$$
(1.3)

for all $x, y \in E$ and

$$\phi(x,y) = \phi(z,y) + \phi(x,z) + 2\langle z - x, Jy - Jz \rangle$$
(1.4)

for all $x, y, z \in E$.

If E is a Hilbert space, then $\phi(y, x) = ||y - x||^2$.

Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then, for any $x, y \in E$, $\phi(x, y) = 0$ if and only if x = y. It is sufficient to show that, if $\phi(x, y) = 0$, then x = y. From (1.2), we have ||x|| = ||y||. This implies that $\langle x, Jy \rangle = ||x||^2 = ||Jy||^2$. From the definition of J, one has Jx = Jy. Therefore, we have x = y (see [3, 4] for more details).

The generalized projection $\Pi_C : E \to C$ is a mapping that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(x, y)$, that is, $\Pi_C x = \bar{x}$, where \bar{x} is the solution to the minimization problem:

$$\phi(\bar{x}, x) = \inf_{y \in C} \phi(y, x). \tag{1.5}$$

The existence and uniqueness of the operator Π_C follows from the properties of the functional $\phi(y, x)$ and the strict monotonicity of the mapping J (see, for example, [3–7]). If E is a Hilbert space, then Π_C becomes the metric projection of E onto C. If E is a smooth, strictly convex and reflexive Banach space, then Π_C is a closed relatively quasi-nonexpansive mapping from E onto C with $F(\Pi_C) = C$ ([8]).

Let C be a nonempty closed and convex subset of a real Banach space E. A mapping $T: C \to C$ is said to be *nonexpansive* if

$$||Tx - Ty|| \le ||x - y|$$

for all $x, y \in C$. A point $x \in C$ is a fixed point of T provided Tx = x. Denoted by F(T) the set of fixed points of T, that is, $F(T) = \{x \in C : Tx = x\}$. A point p in C is called an *asymptotic fixed point* of T [6] if C contains a sequence $\{x_n\}$ which converges weakly to p such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. The asymptotic fixed point set of T is denoted by $\widehat{F}(T)$.

Recall that a mapping $T: C \to C$ is *closed* if, for each $\{x_n\}$ in $C, x_n \to x$ and $Tx_n \to y$ imply that Tx = y.

- A mapping $T: C \to$ is called *relatively nonexpansive* ([9–11]) if
- (R1) F(T) is nonempty;
- (R2) $\phi(p, Tx) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$;
- (R3) $\widehat{F}(T) = F(T)$.

Let CB(C) and N(C) denoted the family of nonempty closed bounded subsets of C and nonempty subsets, respectively. The *Hausdorff metric* on CB(C) is defined by

$$H(A_1, A_2) = \max\{\sup_{x \in A_2} d(x, A_1), \sup_{y \in A_1} d(y, A_2)\}$$

for all $A_1, A_2 \in CB(C)$, where $d(x, A_1) = \inf\{||x - y||; y \in A_1\}, x \in C$. A multivalued mapping $T : C \to CB(C)$ is said to be *nonexpansive* if

$$H(T(x), T(y)) \le ||x - y||$$

for all $x, y \in C$. A multi-valued mapping $T : C \to CB(C)$ is said to be quasinonexpansive if F(T) is nonempty and

$$H(T(x), T(p)) \le ||x - p||$$

for all $x \in C$ and all $p \in F(T)$. An element $p \in C$ is called a fixed point of $T: C \to N(C)$ if $p \in T(p)$. The set of fixed point of T is denoted by F(T).

Let C be a nonempty closed convex subset of a smooth Banach space E. A point $p \in C$ is called an *asymptotic fixed point* of a multi-valued mapping $T: C \to N(C)$ if there exists a sequence $\{x_n\}$ in C which converges weakly to p and $\lim_{n \to \infty} d(x_n, T(x_n)) = 0$.

A multi-valued mapping $T:C\to N(C)$ is said to be relatively nonexpansive if

Thai J.~Math. 15 (2017)/ P. Kanjanasamranwong et al.

- $(\acute{R}1)$ F(T) is nonempty;
- ($\dot{R}2$) $\phi(p,z) \le \phi(p,x)$ for all $x \in C, z \in T(x)$ and, $p \in F(T)$;
- $(\acute{R}3) \ \widehat{F}(T) = F(T).$

Sastry and Babu [12] proved that the Mann and Ishikawa iteration schemes for a multi-valued mapping T with a fixed point p converge to a fixed point q of Tunder certain conditions. Panyanak [13] extended the result of Sastry and Babu to uniformly convex Banach spaces. In 2009, Shahzad and Zegeye [14] proved strong convergence theorems for the Ishikawa iteration scheme involving quasinonexpansive multi-valued mappings in uniformly convex Banach spaces.

In 2014, Homaeipour and Razani [15] introduced an iterative sequence for two relatively nonexpansive multi-valued mappings in Banach spaces. Further, they proved that $\{x_n\}$ converges strongly to $\Pi_{F(T)\cap EP(f)}(x_0)$ under appropriate condition.

From the recent works, in this paper, we obtain new hybrid iterative scheme to find a common element of the fixed point set of relatively nonexpansive multivalued mapping and the solution set of variational inequality problem in Banach spaces.

2 Preliminaries

Let E be a Banach space and let $U = \{x \in E : ||x|| = 1\}$ be the unit sphere of E.

- 1. A Banach space E is said to be *strictly convex* if $\|\frac{x+y}{2}\| < 1$ for all $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \neq y$.
- 2. A Banach space E is said to be *smooth* if the limit $\lim_{t\to 0} \frac{||x+ty|| ||x||}{t}$ exists for each $x, y \in U$.
- 3. The norm of E is said to be *Fréchet differentiable* if, for each $x \in U$, the limit is attained uniformly for $y \in U$.
- 4. A Banach space E is said to be *uniformly smooth* if the limit exists uniformly in $x, y \in U$.
- 5. The modulus of convexity of E is the function $\delta: [0,2] \to [0,1]$ defined by

$$\delta(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in E, \|x\| = \|y\| = 1, \|x-y\| \ge \varepsilon \right\}.$$

6. *E* is said to be *uniformly convex* if $\delta(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

Remark 2.1. Let E be a Banach space. Then the following are well known (see [3] for more details):

- (1) If E is an arbitrary Banach space, then J is monotone and bounded.
- (2) If E is a strictly convex, then J is strictly monotone.
- (3) If E is a smooth, then J is single valued and semi-continuous.

(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

(5) If E is reflexive, smooth and strictly convex, then the normalized duality mapping J is single valued, one-to-one and onto.

(6) If E is reflexive, smooth and strictly convex, then J^{-1} is also single valued, one-to-one, onto and it is the duality mapping from E^* into E.

(7) If E is uniformly smooth, then E is smooth and reflexive.

(8) E is uniformly smooth if and only if E^* is uniformly convex.

We also need the following lemmas for the proof of our main results.

Lemma 2.2 ([16]). Let E be a strictly convex and smooth Banach space. Then, for all $x, y \in E$, $\phi(x, y) = 0$ if and only if x = y.

Lemma 2.3 ([6]). Let C be a nonempty closed convex subset of a smooth Banach space E and $x \in E$. Then $x_0 = \prod_C x$ if and only if

$$\langle x_0 - y, Jx - Jx_0 \rangle \ge 0$$

for all $y \in C$.

Lemma 2.4 ([6]). Let E be a reflexive, strictly convex and smooth Banach space, C be a nonempty closed convex subset of E and $x \in E$. Then

$$\phi(y, \Pi_C x) + \phi(\Pi_C x, x) \le \phi(y, x)$$

for all $y \in C$.

Lemma 2.5 ([15]). Let E be a smooth and strictly convex Banach space and C be a nonempty closed convex subset of E. Suppose $T : C \to N(C)$ is a relatively nonexpansive multi-valued mapping. Then F(T) is a closed convex subset of C.

Lemma 2.6 ([17]). Let E be a uniformly convex and smooth Banach space and r > 0. Then there exists a strictly increasing, continuous and convex function $g: [0, \infty] \rightarrow [0, \infty]$ with g(0) = 0 such that

$$g(\|y - z\|) \le \phi(y, z)$$

for all $y, z \in B_r(0) = \{ ||x|| \le r \}.$

Lemma 2.7 ([18]). Let E be a uniformly convex Banach space and $B_r(0)$ be a closed ball of E. Then there exists a strictly increasing, continuous and convex function $h : [0, \infty) \to [0, \infty)$ with h(0) = 0 such that

$$\|\lambda x + \mu y + \gamma z\|^{2} \le \lambda \|x\|^{2} + \mu \|y\|^{2} + \gamma \|z\|^{2} - \lambda \mu h(\|x - y\|)$$

for all $x, y, z \in B_r(0)$ and $\lambda, \mu, \gamma \in [0, 1]$ with $\lambda + \mu + \gamma = 1$.

Lemma 2.8 ([19]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly convex real Banach space E and $A : C \to E^*$ be a continuous monotone mapping. For any r > 0, define a mapping $F_r : E \to C$ as follows:

$$F_r x = \{ z \in C : \langle y - z, Az \rangle + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge 0, \ \forall y \in C \}$$

for all $x \in C$. Then the following hold:

- (1) F_r is a single-valued mapping;
- (2) $F(F_r) = VI(A, C);$
- (3) VI(A, C) is a closed and convex subset of C;
- (4) $\phi(q, F_r x) + \phi(F_r x, x) \le \phi(q, x)$ for all $q \in F(F_r)$.

3 Main Results

In this section, we prove some new convergence theorems for finding a common solution of the set of common fixed points of relatively nonexpansive multi-valued mappings and the set of the variational inequality problems in a real uniformly smooth and uniformly convex Banach space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T : C \to N(C)$ be a relatively nonexpansive multi-valued mapping and A be a continuous monotone mapping of C into E^* . Define a mapping $F_{r_n} : E \to C$ by

$$F_{r_n}x = \{z \in C : \langle y - z, Az \rangle + \frac{1}{r_n} \langle y - z, Jz - Jx \rangle \ge 0, \ \forall y \in C \}.$$

Assume that $\Theta := F(T) \cap VI(A, C) \neq \emptyset$. For an initial point $x_1 \in C$, define the iterative sequence $\{x_n\}$ in C as follows:

$$\begin{cases} u_n = F_{r_n} x_n, \\ x_{n+1} = \prod_C J^{-1} (\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n) \end{cases}$$
(3.1)

for all $n \ge 1$, where $z_n \in Tx_n$. Assume that $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are the sequences in [0,1] such that $\alpha_n + \beta_n + \gamma_n = 1$. Then $\{\Pi_{\Theta} x_n\}$ converges strongly to a point in Θ , where Π_{Θ} is the generalized projection from E onto Θ .

Proof. Let T be a relatively nonexpansive multi-value mapping. Since Θ is closed and convex, for any $p \in \Theta$, we have

$$\phi(p, x_{n+1}) = \phi(p, \Pi_C J^{-1}(\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n))$$

$$\leq \phi(p, J^{-1}(\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n))$$

$$= \|p\|^2 - 2\alpha_n \langle p, J x_n \rangle - 2\beta_n \langle p, J u_n \rangle - 2\gamma_n \langle p, J z_n \rangle$$

$$+ \|\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n\|^2$$

$$\leq \|p\|^2 - 2\alpha_n \langle p, J x_n \rangle - 2\beta_n \langle p, J u_n \rangle - 2\gamma_n \langle p, J z_n \rangle$$

$$+ \alpha_n \|Jx_n\|^2 + \beta_n \|Ju_n\|^2 + \gamma_n \|Jz_n\|^2$$

$$= \alpha_n \phi(p, x_n) + \beta_n \phi(p, u_n) + \gamma_n \phi(p, z_n)$$

$$= \alpha_n \phi(p, x_n) + \beta_n \phi(p, F_{r_n} x_n) + \gamma_n \phi(p, z_n)$$

$$\leq \alpha_n \phi(p, x_n) + \beta_n \phi(p, x_n) + \gamma_n \phi(p, x_n)$$

$$= \phi(p, x_n).$$
(3.2)

Hence $\lim_{n\to\infty} \phi(p, x_n)$ exist. Thus $\{\phi(p, x_n)\}$ is bounded and, further, by (1.3), $\{x_n\}$ is bounded and so are $\{z_n\}$ and $\{u_n\}$. Let $y_n = \prod_{\Theta} x_n$ for all $n \ge 1$. It follows from (3.2) that

$$\phi(y_n, x_{n+1}) \le \phi(y_n, x_n) \tag{3.3}$$

and so, for all $m \ge 1$,

$$\phi(y_n, x_{n+m}) \le \phi(y_n, x_n). \tag{3.4}$$

Thus it follows from Lemma 2.4 that

$$\begin{aligned}
\phi(y_{n+1}, x_{n+1}) &= \phi(\Pi_{\Theta} x_n, x_{n+1}) \\
&\leq \phi(y_n, x_{n+1}) - \phi(y_n, \Pi_{\Theta} x_{n+1}) \\
&= \phi(y_n, x_{n+1}) - \phi(y_n, y_{n+1}) \\
&\leq \phi(y_n, x_{n+1}) \\
&\leq \phi(y_n, x_n).
\end{aligned}$$
(3.5)

Therefore $\{\phi(y_n, x_n)\}$ is a convergence sequence. For all $m, n \ge 1$ with n > m, it follows from Lemma 2.4 that

$$\phi(y_n, y_{n+m}) + \phi(y_{n+m}, x_{n+m}) \le \phi(y_n, x_{n+m})$$

and so, from (3.5),

$$\begin{aligned} \phi(y_n, y_{n+m}) &\leq \phi(y_n, x_{n+m}) - \phi(y_{n+m}, x_{n+m}) \\ &\leq \phi(y_n, x_n) - \phi(y_{n+m}, x_{n+m}). \end{aligned}$$

Let $r = \sup_{n \in \mathbb{N}} ||y_n||$. It follows from Lemma 2.6 that there exist a continuous, strictly increasing, and convex function $g : [0, \infty) \to [0, \infty)$ with g(0) = 0 such that

$$g(\|y_m - y_n\|) \leq \phi(y_m, y_n) \tag{3.6}$$

$$\leq \phi(y_m, x_m) - \phi(y_n, x_n). \tag{3.7}$$

Thus, from the property of g, we can show that $\{y_n\}$ is a Cauchy sequence for all $m, n \geq 1$. Since E is complete and $\Theta := F(T) \cap VI(A, C)$ is closed and convex, there exist $q \in \Theta$ such that $\{y_n\}$ converges strongly to a point $q \in \Theta$, where $y_n = \prod_{\Theta} x_n$. This completes the proof.

In Theorem 3.1, if $\beta_n = 0$, then we have the following:

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T : C \to N(C)$ be a relatively nonexpansive multi-valued mapping. For an initial point $x_1 \in C$, define the iterative sequence $\{x_n\}$ in C as follows:

$$\{ x_{n+1} = \prod_C J^{-1}(\alpha_n J x_n + (1 - \alpha_n) J z_n)$$
(3.8)

for all $n \geq 1$, where $z_n \in Tx_n$. Assume that $\{\alpha_n\}$ is a sequence in [0,1]. Then $\{\Pi_{\Theta}x_n\}$ converges strongly to some point of T. Where $\Pi_{F(T)}$ is the generalized projection from C onto F(T).

Let f be a bifunction from $C \times C$ to \mathbb{R} , where \mathbb{R} denotes the set of real numbers. The equilibrium problem (for short, EP) is to find $x^* \in C$ such that

$$f(x^*, y) \ge 0, \quad \forall y \in C.$$
(3.9)

The set of solutions of (3.9) is denoted by EP(f).

For solving the equilibrium problem for a bifunction $f: C \times C \to \mathbb{R}$, let us assume that f satisfies the following conditions:

- (A1) f(x, x) = 0 for all $x \in C$;
- (A2) f is monotone, i.e., $f(x, y) + f(y, x) \le 0$ for all $x, y \in C$;
- (A3) for each $x, y, z \in C$,

$$\lim_{t \downarrow 0} f(tz + (1-t)x, y) \le f(x, y);$$

(A4) for each $x \in C$, $y \mapsto f(x, y)$ is convex and lower semi-continuous.

Lemma 3.3 (Blum and Oettli [20]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E, let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4), and let r > 0 and $x \in E$. Then, there exists $z \in C$ such that

$$f(z,y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge 0, \quad \forall y \in C.$$

Lemma 3.4 (Takahashi and Zembayashi [21]). Let C be a closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E and let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). For r > 0 and $x \in E$, define a mapping $T_r : E \to C$ as follows:

$$T_r x = \{ z \in C : f(z, y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge 0, \quad \forall y \in C \},$$

for all $x \in C$. Then the following hold:

(1) T_r is single-valued;

(2) T_r is a firmly nonexpansive-type mapping, for all $x, y \in E$,

$$\langle T_r x - T_r y, JT_r x - JT_r y \rangle \leq \langle T_r x - T_r y, Jx - Jy \rangle;$$

- (3) $F(T_r) = EP(f);$
- (4) EP(f) is closed and convex.

Lemma 3.5 (Takahashi and Zembayashi [21]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space E, let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let r > 0. Then, for $x \in E$ and $q \in F(T_r)$,

$$\phi(q, T_r x) + \phi(T_r x, x) \le \phi(q, x).$$

In Theorem 3.1, if $\langle y - z, Az \rangle = f(z, y)$, then we have the following:

Corollary 3.6. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T: C \to N(C)$ be a relatively nonexpansive multi-valued mapping and Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Define a mapping $F_{r_n}: E \to C$ by

$$T_{r_n}x = \{z \in C : f(z,y) + \frac{1}{r_n} \langle y - z, Jz - Jx \rangle \ge 0, \ \forall y \in C\}.$$

Assume that $\Theta := F(T) \cap EP(f) \neq \emptyset$. For an initial point $x_1 \in C$, define the iterative sequence $\{x_n\}$ in C as follows:

$$\begin{cases} u_n = T_{r_n} x_n, \\ x_{n+1} = \prod_C J^{-1} (\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n) \end{cases}$$
(3.10)

for all $n \ge 1$, where $z_n \in Tx_n$. Assume that $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are the sequences in [0,1] such that $\alpha_n + \beta_n + \gamma_n = 1$. Then $\{\Pi_{\Theta}x_n\}$ converges strongly to a point in Θ , where Π_{Θ} is the generalized projection from E onto Θ .

In the following theorem, we can show that the sequence $\{x_n\}$ defined in (3.1) also converges strongly to some point of Θ .

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T : C \to N(C)$ be a relatively nonexpansive multi-valued mapping and A be a continuous monotone mapping of C into E^* . Define a mapping $F_{r_n} : E \to C$ by

$$F_{r_n}x = \{z \in C : \langle y - z, Az \rangle + \frac{1}{r_n} \langle y - z, Jz - Jx \rangle \ge 0, \ \forall y \in C \}.$$

Assume that $\Theta := F(T) \cap VI(A, C) \neq \emptyset$. For an initial point $x_1 \in C$, define the iterative sequence $\{x_n\}$ in C as follows:

$$\begin{cases} u_n = F_{r_n} x_n, \\ x_{n+1} = \prod_C J^{-1} (\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n) \end{cases}$$
(3.11)

for all $n \ge 1$, where $z_n \in Tx_n$. Assume that $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are the sequences in [0,1] satisfying the conditions:

- (a) $\alpha_n + \beta_n + \gamma_n = 1;$
- (b) $\liminf_{n\to\infty} \alpha_n \beta_n > 0$, $\liminf_{n\to\infty} \alpha_n \gamma_n > 0$;
- (c) $\{r_n\} \subset [d, \infty)$ for some d > 0.

Then $\{x_n\}$ converges strongly to some point of Θ .

Proof. As in the proof of Theorem 3.1, we have $\{x_n\}, \{u_n\}$ and $\{z_n\}$ are bounded. So, there exists $r_1 = \sup_{n \ge 1} \{ \|x_n\|, \|z_n\|, \|u_n\| \}$ such that $x_n, z_n \in B_r(0)$ for all $n \ge 1$. Since E is a uniformly smooth Banach space, E^* is a uniformly convex Banach space. Since Θ is nonempty, there exist $p \in \Theta$. By Lemma 2.7, there exists a continuous, strictly increasing and convex function $h : [0, \infty) \to [0, \infty)$ with h(0) = 0 such that

$$\begin{aligned}
\phi(p, x_{n+1}) &= \phi(p, \Pi_C J^{-1}(\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n)) \\
&\leq \phi(p, J^{-1}(\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n)) \\
&= \|p\|^2 - 2\alpha_n \langle p, J x_n \rangle - 2\beta_n \langle p, J u_n \rangle - 2\gamma_n \langle p, J z_n \rangle \\
&+ \|\alpha_n J x_n + \beta_n J u_n + \gamma_n J z_n\|^2 \\
&\leq \|p\|^2 - 2\alpha_n \langle p, J x_n \rangle - 2\beta_n \langle p, J u_n \rangle - 2\gamma_n \langle p, J z_n \rangle \\
&+ \alpha_n \|J x_n\|^2 + \beta_n \|J u_n\|^2 + \gamma_n \|J z_n\|^2 - \alpha_n \gamma_n h(\|J x_n - J z_n\|) \\
&= \alpha_n \phi(p, x_n) + \beta_n \phi(p, u_n) + \gamma_n \phi(p, z_n) - \alpha_n \gamma_n h(\|J x_n - J z_n\|) \\
&\leq \phi(p, x_n) - \alpha_n \gamma_n h(\|J x_n - J z_n\|)
\end{aligned}$$
(3.12)

and so

$$\alpha_n \gamma_n h(\|Jx_n - Jz_n\|) \le \phi(p, x_n) - \phi(p, x_{n+1}).$$

Since $\{\phi(p, x_n)\}$ is convergent and $\liminf_{n\to\infty} \alpha_n \gamma_n > 0$, we have

$$\lim_{n \to \infty} h(\|Jx_n - Jz_n\|) = 0$$
(3.13)

and so

$$\lim_{n \to \infty} \|Jx_n - Jz_n\| = 0.$$
 (3.14)

Since J^{-1} is uniformly norm-to-norm continuous on bounded sets, we have

$$\lim_{n \to \infty} \|x_n - z_n\| = 0.$$
 (3.15)

Therefore,

$$\lim_{n \to \infty} d(x_n, Tx_n) = 0.$$
(3.16)

Let $p \in \Theta$ and r > 0. Then there exists $p + rk \in \Theta$, whenever $||k|| \le 1$. Thus, by (1.4), for any $q \in \Theta$, we have

$$\phi(q, x_n) = \phi(x_{n+1}, x_n) + \phi(q, x_{n+1}) + 2\langle x_{n+1} - q, Jx_n - Jx_{n+1} \rangle, \qquad (3.17)$$

which implies

$$\frac{1}{2}(\phi(q,x_n) - \phi(q,x_{n+1})) = \frac{1}{2}\phi(x_{n+1},x_n) + \langle x_{n+1} - q, Jx_n - Jx_{n+1} \rangle.$$
(3.18)

Follow from (3.2), we have

$$0 \le \frac{1}{2}\phi(x_{n+1}, x_n) + \langle x_{n+1} - q, Jx_n - Jx_{n+1} \rangle$$
(3.19)

and

$$-\langle x_{n+1} - q, Jx_n - Jx_{n+1} \rangle \le \frac{1}{2}\phi(x_{n+1}, x_n).$$
(3.20)

Since

$$\langle x_{n+1} - p, Jx_n - Jx_{n+1} \rangle = \langle x_{n+1} - (p+rk) + rk, Jx_n - Jx_{n+1} \rangle = \langle x_{n+1} - (p+rk), Jx_n - Jx_{n+1} \rangle + r \langle k, Jx_n - Jx_{n+1} \rangle$$
(3.21)

and so

$$r\langle k, Jx_n - Jx_{n+1} \rangle = \langle x_{n+1} - p, Jx_n - Jx_{n+1} \rangle - \langle x_{n+1} - (p+rk) + rk, Jx_n - Jx_{n+1} \rangle.$$

Thus it follows from (3.19), we have

$$-\langle x_{n+1} - (p+rk), Jx_n - Jx_{n+1} \rangle \le \frac{1}{2}\phi(x_{n+1}, x_n),$$

we obtain that

$$\begin{split} r\langle k, Jx_n - Jx_{n+1} \rangle &\leq \langle x_{n+1} - p, Jx_n - Jx_{n+1} \rangle + \frac{1}{2} \phi(x_{n+1}, x_n) \\ &= \frac{1}{2} (\phi(p, x_n) - \phi(p, x_{n+1})) \end{split}$$

and hence

$$\langle k, Jx_n - Jx_{n+1} \rangle \leq \frac{1}{2r} (\phi(p, x_n) - \phi(p, x_{n+1})).$$

On the other hand, since $p + rk \in \Theta$, it follows from Theorem 3.1 that

$$\phi(p + rk, x_{n+1}) \le \phi(p + rk, x_n).$$
(3.22)

Since $||k|| \leq 1$, we obtain

$$||Jx_n - Jx_{n+1}|| \le \frac{1}{2r}(\phi(p, x_n) - \phi(p, x_{n+1}))$$
(3.23)

and so, for all $m, n \ge 1$ with n > m, we have

$$\begin{aligned} \|Jx_m - Jx_n\| &\leq \sum_{i=m}^{n-1} \|Jx_i - Jx_{i+1}\| \\ &\leq \frac{1}{2r} \sum_{i=m}^{n-1} (\phi(p, x_i) - \phi(p, x_{i+1})) \\ &= \frac{1}{2r} (\phi(p, x_m) - \phi(p, x_n)). \end{aligned}$$
(3.24)

Since $\{\phi(p, x_n)\}$ converges, $\{Jx_n\}$ is a Cauchy sequence. Since E is uniformly convex and uniformly smooth and E^* is complete, $\{Jx_n\}$ converge strongly to

some point in E^* . Since E^* has a Fréchet differentiable norm, J^{-1} is norm-tonorm continuous on E^* . Hence $\{x_n\}$ converges strongly to some point x in C. Thus, from 3.16 and T is a relatively nonexpansive, we have $x \in F(T)$.

Also, from (3.12) and $\liminf_{n\to\infty} \alpha_n \beta_n > 0$, we have

$$\lim_{n \to \infty} h(\|Jx_n - Ju_n\|) = 0$$
(3.25)

and so

$$\lim_{n \to \infty} \|Jx_n - Ju_n\| = 0.$$
(3.26)

Since J^{-1} is norm-to-norm continuous on E^* , it follows that

$$\lim_{n \to \infty} \|x_n - u_n\| = 0.$$
 (3.27)

Thus, from (3.26), for all $r_n > 0$, we obtain

$$\lim_{n \to \infty} \frac{\|Jx_n - Ju_n\|}{r_n} = 0.$$
(3.28)

Thus, from $F_{r_n} x_n = u_n \in C$ and $u_n \to x$, we have

$$\langle v - u_n, Au_n \rangle + \frac{1}{r_n} \langle v - u_n, Ju_n - Jx_n \rangle \ge 0$$
(3.29)

for all $v \in C$, that is,

$$\langle v-u_n,Au_n\rangle+\langle v-u_n,\frac{Ju_n-Jx_n}{r_n}\rangle\geq 0$$

For all $t \in (0, 1)$, define $v_t = tv + (1 - t)x$. Then $v_t \in C$ and it follows from (3.29) that

$$\langle v_t - u_n, Au_n \rangle + \langle v_t - u_n, \frac{Ju_n - Jx_n}{r_n} \rangle \ge 0$$

for all $v \in C$ and

$$\langle v_t - u_n, Av_t \rangle \geq \langle v_t - u_n, Av_t \rangle - \langle v_t - u_n, Au_n \rangle - \langle v_t - u_n, \frac{Ju_n - Jx_n}{r_n} \rangle \geq 0.$$
(3.30)

From (3.30), we have $\frac{Ju_n - Jx_n}{r_n} \to 0$. Since A is monotone, we have

$$\langle v_t - u_n, Av_t \rangle \ge \langle v_t - u_n, Av_t - Au_n \rangle \ge 0$$

and

$$\lim_{n \to \infty} \langle v_t - u_n, Av_t \rangle = \langle v_t - x, Av_t \rangle \ge 0.$$

Taking $t \to 0$, it follows that

$$\langle v - x, Ax \rangle \ge 0$$

for all $v \in C$ and so $x \in VI(A, C)$. Therefore, $x \in F(T) \cap VI(A, C)$. This completes the proof.

Acknowledgements : This work was supported by Thaksin University Research Fund (2016).

References

- Y. Su, M. Shang, X. Qin, A general iterative scheme for nonexpansive mappings and inverse strongly monotone mappings, J. Appl. Math. Comput. 28 (2008) 283-294.
- [2] H. Zhou, X. Gao, An iterative method of fixed points for closed and quasistrict pseudo-contractions in Banach spaces, J. Appl. Math. Comput. 33 (2010) 227-237.
- [3] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
- [4] W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and Its Application, Yokohama-Publishers, 2000.
- [5] Y.I. Alber, S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, PanAmer. Math. J. 4 (1994) 39-54.
- [6] Y.I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, 15-50.
- [7] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002) 938-945.
- [8] X. Qin, Y.J. Cho, S.M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009) 20-30.
- [9] W. Nilsrakoo, S. Saejung, Strong convergence to common fixed points of countable relatively quasi-nonexpansive mappings, Fixed Point Theory Appl. 2008 (2008) Article ID 312454, 19 pages.
- [10] Y. Su, D. Wang, M. Shang, Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed Point Theory Appl. 2008 (2008) Article ID 284613, 8 pages.
- [11] H. Zegeye, N. Shahzad, Strong convergence for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009) 2707-2716.
- [12] K.P.R. Sastry, G.V.R. Babu, Convergence of Ishikawa iterates for a multivalued mappings with a fixed point, Czechoslovak Math. J. 55 (2005) 817-826.
- [13] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comput. Math. Appl. 54 (2007) 872-877.
- [14] N. Shahzad, H. Zegeye, On Mann and Ishikawa iteration schemes for multivalued maps in Banach spaces, Nonlinear Anal. 71 (2009) 838-844.

- [15] S. Homaeipour, A. Razani, Convergence of an iterative method for relatively nonexpansive multi-valued mappings and equilibrium problems in Banach spaces, Optim. Lett. 8 (1) (2014) 211-225.
- [16] S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005) 257-266.
- [17] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13 (2008) 938-945.
- [18] Y.J. Cho, H. Zhou, G. Guo, Weak and strong convergence theorems for threestep iteration with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47 (2004) 707-717.
- [19] H. Zegeye, N. Shahzad, A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems, Nonlinear Anal. 74 (2011) 263-272.
- [20] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145.
- [21] W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory and Appl. 2008 (2008) Article ID 528476, 11 pages.

(Received 9 July 2014) (Accepted 29 April 2016)

 $\mathbf{T}\mathrm{HAI}\ \mathbf{J.}\ \mathbf{M}\mathrm{ATH}.$ Online @ http://thaijmath.in.cmu.ac.th