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1 Introduction

Let C be a nonempty closed and convex subset of a Banach space E with dual
E∗. A mapping A : C → E∗ is said to be:

(1) monotone if
〈x − y,Ax−Ay〉 ≥ 0

for all x, y ∈ C;
(2) α-inverse-strongly monotone if there exists a constant α > 0 such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2

1
Corresponding author.

Copyright c© 2017 by the Mathematical Association of Thailand.

All rights reserved.



194 Thai J. Math. 15 (2017)/ P. Kanjanasamranwong et al.

for all x, y ∈ C.

If A : C → E∗ is α-inverse-strongly monotone, then it is Lipschitz continuous
with constant 1

α
, that is,

‖Ax−Ay‖ =
1

α
‖x− y‖

for all x, y ∈ C. Clearly, the class of monotone mappings include the class of
α-inverse-strongly monotone mappings.

The class of inverse-strongly monotone have been studied by many authors to
approximate a common fixed point (see [1, 2] for more details).

The variational inequality problem for an operator A is to find ẑ ∈ C such that

〈y − ẑ, Aẑ〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solution of (1.1) is denoted by V I(A,C).
Let E be a Banach space with the dual space E∗. The normalized duality

mapping from E to 2E
∗

defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2, ‖f∗‖ = ‖x‖}.

If E is a Hilbert space, then J = I, where I is the identity mapping.
Consider the functional φ : E × E → R defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 (1.2)

for all x, y ∈ E, where J is the normalized duality mapping. It is obvious from
the definition of function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 (1.3)

for all x, y ∈ E and

φ(x, y) = φ(z, y) + φ(x, z) + 2〈z − x, Jy − Jz〉 (1.4)

for all x, y, z ∈ E.
If E is a Hilbert space, then φ(y, x) = ‖y − x‖2.

Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then,
for any x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to show that,
if φ(x, y) = 0, then x = y. From (1.2), we have ‖x‖ = ‖y‖. This implies that
〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J, one has Jx = Jy. Therefore,
we have x = y (see [3,4] for more details).

The generalized projection ΠC : E → C is a mapping that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx =
x̄, where x̄ is the solution to the minimization problem:

φ(x̄, x) = inf
y∈C

φ(y, x). (1.5)
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The existence and uniqueness of the operator ΠC follows from the properties
of the functional φ(y, x) and the strict monotonicity of the mapping J (see, for
example, [3–7]). If E is a Hilbert space, then ΠC becomes the metric projection of
E onto C. If E is a smooth, strictly convex and reflexive Banach space, then ΠC is
a closed relatively quasi-nonexpansive mapping from E onto C with F (ΠC) = C

([8]).

Let C be a nonempty closed and convex subset of a real Banach space E. A
mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x. Denoted by
F (T ) the set of fixed points of T , that is, F (T ) = {x ∈ C : Tx = x}. A point p in
C is called an asymptotic fixed point of T [6] if C contains a sequence {xn} which
converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. The asymptotic fixed

point set of T is denoted by F̂ (T ).
Recall that a mapping T : C → C is closed if, for each {xn} in C, xn → x and

Txn → y imply that Tx = y.

A mapping T : C → is called relatively nonexpansive ([9–11]) if
(R1) F (T ) is nonempty;
(R2) φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T );

(R3) F̂ (T ) = F (T ).

Let CB(C) and N(C) denoted the family of nonempty closed bounded subsets
of C and nonempty subsets, respectively. The Hausdorff metric on CB(C) is
defined by

H(A1, A2) = max{ sup
x∈A2

d(x,A1), sup
y∈A1

d(y,A2)}

for all A1, A2 ∈ CB(C), where d(x,A1) = inf{‖x− y‖; y ∈ A1}, x ∈ C. A multi-
valued mapping T : C → CB(C) is said to be nonexpansive if

H(T (x), T (y)) ≤ ‖x− y‖

for all x, y ∈ C. A multi-valued mapping T : C → CB(C) is said to be quasi-
nonexpansive if F (T ) is nonempty and

H(T (x), T (p)) ≤ ‖x− p‖

for all x ∈ C and all p ∈ F (T ). An element p ∈ C is called a fixed point of
T : C → N(C) if p ∈ T (p). The set of fixed point of T is denoted by F (T ).

Let C be a nonempty closed convex subset of a smooth Banach space E.
A point p ∈ C is called an asymptotic fixed point of a multi-valued mapping
T : C → N(C) if there exists a sequence {xn} in C which converges weakly to p

and lim
n→∞

d(xn, T (xn)) = 0.

A multi-valued mapping T : C → N(C) is said to be relatively nonexpansive
if
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(Ŕ1) F (T ) is nonempty;
(Ŕ2) φ(p, z) ≤ φ(p, x) for all x ∈ C, z ∈ T (x) and, p ∈ F (T );

(Ŕ3) F̂ (T ) = F (T ).

Sastry and Babu [12] proved that the Mann and Ishikawa iteration schemes
for a multi-valued mapping T with a fixed point p converge to a fixed point q of T
under certain conditions. Panyanak [13] extended the result of Sastry and Babu
to uniformly convex Banach spaces. In 2009, Shahzad and Zegeye [14] proved
strong convergence theorems for the Ishikawa iteration scheme involving quasi-
nonexpansive multi-valued mappings in uniformly convex Banach spaces.

In 2014, Homaeipour and Razani [15] introduced an iterative sequence for
two relatively nonexpansive multi-valued mappings in Banach spaces. Further.
they proved that {xn} converges strongly to ΠF (T )∩EP (f)(x0) under appropriate
condition.

From the recent works, in this paper, we obtain new hybrid iterative scheme
to find a common element of the fixed point set of relatively nonexpansive multi-
valued mapping and the solution set of variational inequality problem in Banach
spaces.

2 Preliminaries

Let E be a Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of
E.

1. A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x 6= y.

2. A Banach space E is said to be smooth if the limit lim
t→0

‖x+ty‖−‖x‖
t

exists for

each x, y ∈ U.

3. The norm of E is said to be Fréchet differentiable if, for each x ∈ U , the
limit is attained uniformly for y ∈ U .

4. A Banach space E is said to be uniformly smooth if the limit exists uniformly
in x, y ∈ U .

5. The modulus of convexity of E is the function δ : [0, 2] → [0, 1] defined by

δ(ε) = inf
{
1−

∥∥∥x+ y

2

∥∥∥ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}
.

6. E is said to be uniformly convex if δ(ε) > 0 for all ε ∈ (0, 2].

Remark 2.1. Let E be a Banach space. Then the following are well known (see [3]
for more details):

(1) If E is an arbitrary Banach space, then J is monotone and bounded.
(2) If E is a strictly convex, then J is strictly monotone.
(3) If E is a smooth, then J is single valued and semi-continuous.
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(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E.

(5) If E is reflexive, smooth and strictly convex, then the normalized duality
mapping J is single valued, one-to-one and onto.

(6) If E is reflexive, smooth and strictly convex, then J−1 is also single valued,
one-to-one, onto and it is the duality mapping from E∗ into E.

(7) If E is uniformly smooth, then E is smooth and reflexive.
(8) E is uniformly smooth if and only if E∗ is uniformly convex.

We also need the following lemmas for the proof of our main results.

Lemma 2.2 ([16]). Let E be a strictly convex and smooth Banach space. Then,
for all x, y ∈ E, φ(x, y) = 0 if and only if x = y.

Lemma 2.3 ([6]). Let C be a nonempty closed convex subset of a smooth Banach
space E and x ∈ E. Then x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0

for all y ∈ C.

Lemma 2.4 ([6]). Let E be a reflexive, strictly convex and smooth Banach space,
C be a nonempty closed convex subset of E and x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x)

for all y ∈ C.

Lemma 2.5 ([15]). Let E be a smooth and strictly convex Banach space and C

be a nonempty closed convex subset of E. Suppose T : C → N(C) is a relatively
nonexpansive multi-valued mapping. Then F (T ) is a closed convex subset of C.

Lemma 2.6 ([17]). Let E be a uniformly convex and smooth Banach space and
r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0,∞] → [0,∞] with g(0) = 0 such that

g(‖y − z‖) ≤ φ(y, z)

for all y, z ∈ Br(0) = {‖x‖ ≤ r}.

Lemma 2.7 ([18]). Let E be a uniformly convex Banach space and Br(0) be a
closed ball of E. Then there exists a strictly increasing, continuous and convex
function h : [0,∞) → [0,∞) with h(0) = 0 such that

‖λx+ µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµh(‖x− y‖)

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ+ µ+ γ = 1.
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Lemma 2.8 ( [19]). Let C be a nonempty closed convex subset of a uniformly
smooth, strictly convex real Banach space E and A : C → E∗ be a continuous
monotone mapping. For any r > 0, define a mapping Fr : E → C as follows:

Frx = {z ∈ C : 〈y − z, Az〉+
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}

for all x ∈ C. Then the following hold:
(1) Fr is a single-valued mapping;
(2) F (Fr) = V I(A,C);
(3) V I(A,C) is a closed and convex subset of C;
(4) φ(q, Frx) + φ(Frx, x) ≤ φ(q, x) for all q ∈ F (Fr).

3 Main Results

In this section, we prove some new convergence theorems for finding a common
solution of the set of common fixed points of relatively nonexpansive multi-valued
mappings and the set of the variational inequality problems in a real uniformly
smooth and uniformly convex Banach space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C → N(C) be a relatively
nonexpansive multi-valued mapping and A be a continuous monotone mapping of
C into E∗. Define a mapping Frn : E → C by

Frnx = {z ∈ C : 〈y − z, Az〉+
1

rn
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Assume that Θ := F (T ) ∩ V I(A,C) 6= ∅. For an initial point x1 ∈ C, define the
iterative sequence {xn} in C as follows:

{
un = Frnxn,

xn+1 = ΠCJ
−1(αnJxn + βnJun + γnJzn)

(3.1)

for all n ≥ 1, where zn ∈ Txn. Assume that {αn}, {βn} and {γn} are the sequences
in [0, 1] such that αn + βn + γn = 1. Then {ΠΘxn} converges strongly to a point
in Θ, where ΠΘ is the generalized projection from E onto Θ.

Proof. Let T be a relatively nonexpansive multi-value mapping. Since Θ is closed
and convex, for any p ∈ Θ, we have

φ(p, xn+1) = φ(p,ΠCJ
−1(αnJxn + βnJun + γnJzn))

≤ φ(p, J−1(αnJxn + βnJun + γnJzn))

= ‖p‖2 − 2αn〈p, Jxn〉 − 2βn〈p, Jun〉 − 2γn〈p, Jzn〉

+ ‖αnJxn + βnJun + γnJzn‖
2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2βn〈p, Jun〉 − 2γn〈p, Jzn〉
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+ αn‖Jxn‖
2 + βn‖Jun‖

2 + γn‖Jzn‖
2

= αnφ(p, xn) + βnφ(p, un) + γnφ(p, zn)

= αnφ(p, xn) + βnφ(p, Frnxn) + γnφ(p, zn)

≤ αnφ(p, xn) + βnφ(p, xn) + γnφ(p, xn)

= φ(p, xn). (3.2)

Hence lim
n→∞

φ(p, xn) exist. Thus {φ(p, xn)} is bounded and, further, by (1.3),

{xn} is bounded and so are {zn} and {un}. Let yn = ΠΘxn for all n ≥ 1. It
follows from (3.2) that

φ(yn, xn+1) ≤ φ(yn, xn) (3.3)

and so, for all m ≥ 1,
φ(yn, xn+m) ≤ φ(yn, xn). (3.4)

Thus it follows from Lemma 2.4 that

φ(yn+1, xn+1) = φ(ΠΘxn, xn+1)

≤ φ(yn, xn+1)− φ(yn,ΠΘxn+1)

= φ(yn, xn+1)− φ(yn, yn+1) (3.5)

≤ φ(yn, xn+1)

≤ φ(yn, xn).

Therefore {φ(yn, xn)} is a convergence sequence. For all m,n ≥ 1 with n > m, it
follows from Lemma 2.4 that

φ(yn, yn+m) + φ(yn+m, xn+m) ≤ φ(yn, xn+m)

and so, from (3.5),

φ(yn, yn+m) ≤ φ(yn, xn+m)− φ(yn+m, xn+m)

≤ φ(yn, xn)− φ(yn+m, xn+m).

Let r = supn∈N‖yn‖. It follows from Lemma 2.6 that there exist a continuous,
strictly increasing, and convex function g : [0,∞) → [0,∞) with g(0) = 0 such
that

g(‖ym − yn‖) ≤ φ(ym, yn) (3.6)

≤ φ(ym, xm)− φ(yn, xn). (3.7)

Thus, from the property of g, we can show that {yn} is a Cauchy sequence for all
m,n ≥ 1. Since E is complete and Θ := F (T ) ∩ V I(A,C) is closed and convex,
there exist q ∈ Θ such that {yn} converges strongly to a point q ∈ Θ, where
yn = ΠΘxn. This completes the proof.

In Theorem 3.1, if βn = 0, then we have the following:
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Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C → N(C) be a rela-
tively nonexpansive multi-valued mapping. For an initial point x1 ∈ C, define the
iterative sequence {xn} in C as follows:

{
xn+1 = ΠCJ

−1(αnJxn + (1 − αn)Jzn) (3.8)

for all n ≥ 1, where zn ∈ Txn. Assume that {αn} is a sequence in [0, 1]. Then
{ΠΘxn} converges strongly to some point of T . Where ΠF (T ) is the generalized
projection from C onto F (T ).

Let f be a bifunction from C×C to R, where R denotes the set of real numbers.
The equilibrium problem (for short, EP) is to find x∗ ∈ C such that

f(x∗, y) ≥ 0, ∀y ∈ C. (3.9)

The set of solutions of (3.9) is denoted by EP (f).
For solving the equilibrium problem for a bifunction f : C × C → R, let us

assume that f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semi-continuous.

Lemma 3.3 (Blum and Oettli [20]). Let C be a closed convex subset of a smooth,
strictly convex and reflexive Banach space E, let f be a bifunction from C ×C to
R satisfying (A1)-(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such
that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 3.4 (Takahashi and Zembayashi [21]). Let C be a closed convex subset
of a uniformly smooth, strictly convex and reflexive Banach space E and let f be
a bifunction from C × C to R satisfying (A1)-(A4). For r > 0 and x ∈ E, define
a mapping Tr : E → C as follows:

Trx = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C},

for all x ∈ C. Then the following hold:

(1) Tr is single-valued;
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(2) Tr is a firmly nonexpansive-type mapping, for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;

(3) F (Tr) = EP (f);

(4) EP (f) is closed and convex.

Lemma 3.5 (Takahashi and Zembayashi [21]). Let C be a closed convex subset of
a smooth, strictly convex, and reflexive Banach space E, let f be a bifunction from
C × C to R satisfying (A1)-(A4) and let r > 0. Then, for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

In Theorem 3.1, if 〈y − z, Az〉 = f(z, y), then we have the following:

Corollary 3.6. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C → N(C) be a relatively
nonexpansive multi-valued mapping and Let f be a bifunction from C × C to R

satisfying (A1)-(A4). Define a mapping Frn : E → C by

Trnx = {z ∈ C : f(z, y) +
1

rn
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Assume that Θ := F (T ) ∩ EP (f) 6= ∅. For an initial point x1 ∈ C, define the
iterative sequence {xn} in C as follows:

{
un = Trnxn,

xn+1 = ΠCJ
−1(αnJxn + βnJun + γnJzn)

(3.10)

for all n ≥ 1, where zn ∈ Txn. Assume that {αn}, {βn} and {γn} are the sequences
in [0, 1] such that αn + βn + γn = 1. Then {ΠΘxn} converges strongly to a point
in Θ, where ΠΘ is the generalized projection from E onto Θ.

In the following theorem, we can show that the sequence {xn} defined in (3.1)
also converges strongly to some point of Θ.

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly convex
and uniformly smooth Banach space E. Let T : C → N(C) be a relatively non-
expansive multi-valued mapping and A be a continuous monotone mapping of C
into E∗. Define a mapping Frn : E → C by

Frnx = {z ∈ C : 〈y − z, Az〉+
1

rn
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Assume that Θ := F (T ) ∩ V I(A,C) 6= ∅. For an initial point x1 ∈ C, define the
iterative sequence {xn} in C as follows:

{
un = Frnxn,

xn+1 = ΠCJ
−1(αnJxn + βnJun + γnJzn)

(3.11)
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for all n ≥ 1, where zn ∈ Txn. Assume that {αn}, {βn} and {γn} are the sequences
in [0, 1] satisfying the conditions:

(a) αn + βn + γn = 1;
(b) lim infn→∞ αnβn > 0, lim infn→∞ αnγn > 0;
(c) {rn} ⊂ [d,∞) for some d > 0.

Then {xn} converges strongly to some point of Θ.

Proof. As in the proof of Theorem 3.1, we have {xn}, {un} and {zn} are bounded.
So, there exists r1 = supn≥1{‖xn‖, ‖zn‖, ‖un‖} such that xn, zn ∈ Br(0) for all
n ≥ 1. Since E is a uniformly smooth Banach space, E∗ is a uniformly convex
Banach space. Since Θ is nonempty, there exist p ∈ Θ. By Lemma 2.7, there
exists a continuous, strictly increasing and convex function h : [0,∞) → [0,∞)
with h(0) = 0 such that

φ(p, xn+1) = φ(p,ΠCJ
−1(αnJxn + βnJun + γnJzn))

≤ φ(p, J−1(αnJxn + βnJun + γnJzn))
= ‖p‖2 − 2αn〈p, Jxn〉 − 2βn〈p, Jun〉 − 2γn〈p, Jzn〉

+‖αnJxn + βnJun + γnJzn‖2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2βn〈p, Jun〉 − 2γn〈p, Jzn〉
+αn‖Jxn‖2 + βn‖Jun‖2 + γn‖Jzn‖2 − αnγnh(‖Jxn − Jzn‖)

= αnφ(p, xn) + βnφ(p, un) + γnφ(p, zn)− αnγnh(‖Jxn − Jzn‖)
≤ φ(p, xn)− αnγnh(‖Jxn − Jzn‖)

(3.12)
and so

αnγnh(‖Jxn − Jzn‖) ≤ φ(p, xn)− φ(p, xn+1).

Since {φ(p, xn)} is convergent and lim infn→∞ αnγn > 0, we have

lim
n→∞

h(‖Jxn − Jzn‖) = 0 (3.13)

and so
lim
n→∞

‖Jxn − Jzn‖ = 0. (3.14)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn − zn‖ = 0. (3.15)

Therefore,
lim
n→∞

d(xn, T xn) = 0. (3.16)

Let p ∈ Θ and r > 0. Then there exists p+ rk ∈ Θ, whenever ‖k‖ ≤ 1. Thus, by
(1.4), for any q ∈ Θ, we have

φ(q, xn) = φ(xn+1, xn) + φ(q, xn+1) + 2〈xn+1 − q, Jxn − Jxn+1〉, (3.17)

which implies

1

2
(φ(q, xn)− φ(q, xn+1)) =

1

2
φ(xn+1, xn) + 〈xn+1 − q, Jxn − Jxn+1〉. (3.18)
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Follow from (3.2), we have

0 ≤
1

2
φ(xn+1, xn) + 〈xn+1 − q, Jxn − Jxn+1〉 (3.19)

and

− 〈xn+1 − q, Jxn − Jxn+1〉 ≤
1

2
φ(xn+1, xn). (3.20)

Since

〈xn+1 − p, Jxn − Jxn+1〉 = 〈xn+1 − (p+ rk) + rk, Jxn − Jxn+1〉

= 〈xn+1 − (p+ rk), Jxn − Jxn+1〉+ r〈k, Jxn − Jxn+1〉
(3.21)

and so

r〈k, Jxn−Jxn+1〉 = 〈xn+1−p, Jxn−Jxn+1〉−〈xn+1−(p+rk)+rk, Jxn−Jxn+1〉.

Thus it follows from (3.19), we have

−〈xn+1 − (p+ rk), Jxn − Jxn+1〉 ≤
1

2
φ(xn+1, xn),

we obtain that

r〈k, Jxn − Jxn+1〉 ≤ 〈xn+1 − p, Jxn − Jxn+1〉+
1

2
φ(xn+1, xn)

=
1

2
(φ(p, xn)− φ(p, xn+1))

and hence

〈k, Jxn − Jxn+1〉 ≤
1

2r
(φ(p, xn)− φ(p, xn+1)).

On the other hand, since p+ rk ∈ Θ, it follows from Theorem 3.1 that

φ(p+ rk, xn+1) ≤ φ(p+ rk, xn). (3.22)

Since ‖k‖ ≤ 1, we obtain

‖Jxn − Jxn+1‖ ≤
1

2r
(φ(p, xn)− φ(p, xn+1)) (3.23)

and so, for all m,n ≥ 1 with n > m, we have

‖Jxm − Jxn‖ ≤
∑n−1

i=m ‖Jxi − Jxi+1‖

≤ 1
2r

∑n−1
i=m(φ(p, xi)− φ(p, xi+1))

= 1
2r (φ(p, xm)− φ(p, xn)).

(3.24)

Since {φ(p, xn)} converges, {Jxn} is a Cauchy sequence. Since E is uniformly
convex and uniformly smooth and E∗ is complete, {Jxn} converge strongly to
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some point in E∗. Since E∗ has a Fréchet differentiable norm, J−1 is norm-to-
norm continuous on E∗. Hence {xn} converges strongly to some point x in C.
Thus, from 3.16 and T is a relatively nonexpansive, we have x ∈ F (T ).

Also, from (3.12) and lim infn→∞ αnβn > 0, we have

lim
n→∞

h(‖Jxn − Jun‖) = 0 (3.25)

and so
lim
n→∞

‖Jxn − Jun‖ = 0. (3.26)

Since J−1 is norm-to-norm continuous on E∗, it follows that

lim
n→∞

‖xn − un‖ = 0. (3.27)

Thus, from (3.26), for all rn > 0, we obtain

lim
n→∞

‖Jxn−Jun‖
rn

= 0. (3.28)

Thus, from Frnxn = un ∈ C and un → x, we have

〈v − un, Aun〉+
1
rn
〈v − un, Jun − Jxn〉 ≥ 0 (3.29)

for all v ∈ C, that is,

〈v − un, Aun〉+ 〈v − un,
Jun − Jxn

rn
〉 ≥ 0.

For all t ∈ (0, 1), define vt = tv+ (1− t)x. Then vt ∈ C and it follows from (3.29)
that

〈vt − un, Aun〉+ 〈vt − un,
Jun−Jxn

rn
〉 ≥ 0

for all v ∈ C and

〈vt − un, Avt〉 ≥ 〈vt − un, Avt〉 − 〈vt − un, Aun〉 − 〈vt − un,
Jun−Jxn

rn
〉 ≥ 0.
(3.30)

From (3.30), we have Jun−Jxn

rn
→ 0. Since A is monotone, we have

〈vt − un, Avt〉 ≥ 〈vt − un, Avt −Aun〉 ≥ 0

and
lim
n→∞

〈vt − un, Avt〉 = 〈vt − x,Avt〉 ≥ 0.

Taking t → 0, it follows that

〈v − x,Ax〉 ≥ 0

for all v ∈ C and so x ∈ V I(A,C). Therefore, x ∈ F (T ) ∩ V I(A,C). This
completes the proof.
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