Generalized Projection Methods for Nonlinear Mappings

Preedaporn Kanjanasamranwong, Sarapee Chairat and Siwaporn Saewan ${ }^{11}$
Department of Mathematics and Statistics, Faculty of Science Thaksin University, Thailand
e-mail : ypreedaporn@hotmail.com (P. Kanjanasamranwong)
sarapee@tsu.ac.th (S. Chairat)
siwaporn@scholar.tsu.ac.th (S. Saewan)

Abstract

We present a new hybrid iterative process for finding an element in the solution of variational inequality problem and the fixed point set of relatively nonexpansive multi-valued mapping in Banach spaces. This theorem improve and extend some recent results.

Keywords : multi-valued mapping; variational inequality; relatively nonexpansive.
2010 Mathematics Subject Classification : 47H05; 47H09: 47H10; 47 J 10.

1 Introduction

Let C be a nonempty closed and convex subset of a Banach space E with dual E^{*}. A mapping $A: C \rightarrow E^{*}$ is said to be:
(1) monotone if

$$
\langle x-y, A x-A y\rangle \geq 0
$$

for all $x, y \in C$;
(2) α-inverse-strongly monotone if there exists a constant $\alpha>0$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$

[^0]Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.
for all $x, y \in C$.
If $A: C \rightarrow E^{*}$ is α-inverse-strongly monotone, then it is Lipschitz continuous with constant $\frac{1}{\alpha}$, that is,

$$
\|A x-A y\|=\frac{1}{\alpha}\|x-y\|
$$

for all $x, y \in C$. Clearly, the class of monotone mappings include the class of α-inverse-strongly monotone mappings.

The class of inverse-strongly monotone have been studied by many authors to approximate a common fixed point (see [1,2] for more details).

The variational inequality problem for an operator A is to find $\hat{z} \in C$ such that

$$
\begin{equation*}
\langle y-\hat{z}, A \hat{z}\rangle \geq 0, \forall y \in C \tag{1.1}
\end{equation*}
$$

The set of solution of (1.1) is denoted by $V I(A, C)$.
Let E be a Banach space with the dual space E^{*}. The normalized duality mapping from E to $2^{E^{*}}$ defined by

$$
J(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{2},\left\|f^{*}\right\|=\|x\|\right\}
$$

If E is a Hilbert space, then $J=I$, where I is the identity mapping.
Consider the functional $\phi: E \times E \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2} \tag{1.2}
\end{equation*}
$$

for all $x, y \in E$, where J is the normalized duality mapping. It is obvious from the definition of function ϕ that

$$
\begin{equation*}
(\|y\|-\|x\|)^{2} \leq \phi(y, x) \leq(\|y\|+\|x\|)^{2} \tag{1.3}
\end{equation*}
$$

for all $x, y \in E$ and

$$
\begin{equation*}
\phi(x, y)=\phi(z, y)+\phi(x, z)+2\langle z-x, J y-J z\rangle \tag{1.4}
\end{equation*}
$$

for all $x, y, z \in E$.
If E is a Hilbert space, then $\phi(y, x)=\|y-x\|^{2}$.
Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then, for any $x, y \in E, \phi(x, y)=0$ if and only if $x=y$. It is sufficient to show that, if $\phi(x, y)=0$, then $x=y$. From (1.2), we have $\|x\|=\|y\|$. This implies that $\langle x, J y\rangle=\|x\|^{2}=\|J y\|^{2}$. From the definition of J, one has Jx $=$ Jy. Therefore, we have $x=y$ (see [3, 4] for more details).

The generalized projection $\Pi_{C}: E \rightarrow C$ is a mapping that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(x, y)$, that is, $\Pi_{C} x=$ \bar{x}, where \bar{x} is the solution to the minimization problem:

$$
\begin{equation*}
\phi(\bar{x}, x)=\inf _{y \in C} \phi(y, x) \tag{1.5}
\end{equation*}
$$

The existence and uniqueness of the operator Π_{C} follows from the properties of the functional $\phi(y, x)$ and the strict monotonicity of the mapping J (see, for example, [3-7]). If E is a Hilbert space, then Π_{C} becomes the metric projection of E onto C. If E is a smooth, strictly convex and reflexive Banach space, then Π_{C} is a closed relatively quasi-nonexpansive mapping from E onto C with $F\left(\Pi_{C}\right)=C$ (8).

Let C be a nonempty closed and convex subset of a real Banach space E. A mapping $T: C \rightarrow C$ is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|
$$

for all $x, y \in C$. A point $x \in C$ is a fixed point of T provided $T x=x$. Denoted by $F(T)$ the set of fixed points of T, that is, $F(T)=\{x \in C: T x=x\}$. A point p in C is called an asymptotic fixed point of T [6] if C contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. The asymptotic fixed point set of T is denoted by $\widehat{F}(T)$.

Recall that a mapping $T: C \rightarrow C$ is closed if, for each $\left\{x_{n}\right\}$ in $C, x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$ imply that $T x=y$.

A mapping $T: C \rightarrow$ is called relatively nonexpansive ($9-11$) if
(R1) $F(T)$ is nonempty;
(R2) $\phi(p, T x) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$;
(R3) $\widehat{F}(T)=F(T)$.
Let $C B(C)$ and $N(C)$ denoted the family of nonempty closed bounded subsets of C and nonempty subsets, respectively. The Hausdorff metric on $C B(C)$ is defined by

$$
H\left(A_{1}, A_{2}\right)=\max \left\{\sup _{x \in A_{2}} d\left(x, A_{1}\right), \sup _{y \in A_{1}} d\left(y, A_{2}\right)\right\}
$$

for all $A_{1}, A_{2} \in C B(C)$, where $d\left(x, A_{1}\right)=\inf \left\{\|x-y\| ; y \in A_{1}\right\}, x \in C$. A multivalued mapping $T: C \rightarrow C B(C)$ is said to be nonexpansive if

$$
H(T(x), T(y)) \leq\|x-y\|
$$

for all $x, y \in C$. A multi-valued mapping $T: C \rightarrow C B(C)$ is said to be quasinonexpansive if $F(T)$ is nonempty and

$$
H(T(x), T(p)) \leq\|x-p\|
$$

for all $x \in C$ and all $p \in F(T)$. An element $p \in C$ is called a fixed point of $T: C \rightarrow N(C)$ if $p \in T(p)$. The set of fixed point of T is denoted by $F(T)$.

Let C be a nonempty closed convex subset of a smooth Banach space E. A point $p \in C$ is called an asymptotic fixed point of a multi-valued mapping $T: C \rightarrow N(C)$ if there exists a sequence $\left\{x_{n}\right\}$ in C which converges weakly to p and $\lim _{n \rightarrow \infty} d\left(x_{n}, T\left(x_{n}\right)\right)=0$.

A multi-valued mapping $T: C \rightarrow N(C)$ is said to be relatively nonexpansive if
(R_{1}) $F(T)$ is nonempty;
(Ŕ2) $\phi(p, z) \leq \phi(p, x)$ for all $x \in C, z \in T(x)$ and, $p \in F(T)$;
$(\hat{R} 3) \widehat{F}(T)=F(T)$.
Sastry and Babu [12] proved that the Mann and Ishikawa iteration schemes for a multi-valued mapping T with a fixed point p converge to a fixed point q of T under certain conditions. Panyanak [13 extended the result of Sastry and Babu to uniformly convex Banach spaces. In 2009, Shahzad and Zegeye [14] proved strong convergence theorems for the Ishikawa iteration scheme involving quasinonexpansive multi-valued mappings in uniformly convex Banach spaces.

In 2014, Homaeipour and Razani 15 introduced an iterative sequence for two relatively nonexpansive multi-valued mappings in Banach spaces. Further. they proved that $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F(T) \cap E P(f)}\left(x_{0}\right)$ under appropriate condition.

From the recent works, in this paper, we obtain new hybrid iterative scheme to find a common element of the fixed point set of relatively nonexpansive multivalued mapping and the solution set of variational inequality problem in Banach spaces.

2 Preliminaries

Let E be a Banach space and let $U=\{x \in E:\|x\|=1\}$ be the unit sphere of E.

1. A Banach space E is said to be strictly convex if $\left\|\frac{x+y}{2}\right\|<1$ for all $x, y \in E$ with $\|x\|=\|y\|=1$ and $x \neq y$.
2. A Banach space E is said to be smooth if the limit $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for each $x, y \in U$.
3. The norm of E is said to be Fréchet differentiable if, for each $x \in U$, the limit is attained uniformly for $y \in U$.
4. A Banach space E is said to be uniformly smooth if the limit exists uniformly in $x, y \in U$.
5. The modulus of convexity of E is the function $\delta:[0,2] \rightarrow[0,1]$ defined by

$$
\delta(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in E,\|x\|=\|y\|=1,\|x-y\| \geq \varepsilon\right\}
$$

6. E is said to be uniformly convex if $\delta(\varepsilon)>0$ for all $\varepsilon \in(0,2]$.

Remark 2.1. Let E be a Banach space. Then the following are well known (see [3] for more details):
(1) If E is an arbitrary Banach space, then J is monotone and bounded.
(2) If E is a strictly convex, then J is strictly monotone.
(3) If E is a smooth, then J is single valued and semi-continuous.
(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.
(5) If E is reflexive, smooth and strictly convex, then the normalized duality mapping J is single valued, one-to-one and onto.
(6) If E is reflexive, smooth and strictly convex, then J^{-1} is also single valued, one-to-one, onto and it is the duality mapping from E^{*} into E.
(7) If E is uniformly smooth, then E is smooth and reflexive.
(8) E is uniformly smooth if and only if E^{*} is uniformly convex.

We also need the following lemmas for the proof of our main results.
Lemma 2.2 ([16). Let E be a strictly convex and smooth Banach space. Then, for all $x, y \in E, \phi(x, y)=0$ if and only if $x=y$.

Lemma 2.3 (6). Let C be a nonempty closed convex subset of a smooth Banach space E and $x \in E$. Then $x_{0}=\Pi_{C} x$ if and only if

$$
\left\langle x_{0}-y, J x-J x_{0}\right\rangle \geq 0
$$

for all $y \in C$.
Lemma 2.4 (6]). Let E be a reflexive, strictly convex and smooth Banach space, C be a nonempty closed convex subset of E and $x \in E$. Then

$$
\phi\left(y, \Pi_{C} x\right)+\phi\left(\Pi_{C} x, x\right) \leq \phi(y, x)
$$

for all $y \in C$.
Lemma 2.5 (15). Let E be a smooth and strictly convex Banach space and C be a nonempty closed convex subset of E. Suppose $T: C \rightarrow N(C)$ is a relatively nonexpansive multi-valued mapping. Then $F(T)$ is a closed convex subset of C.

Lemma 2.6 ([17]). Let E be a uniformly convex and smooth Banach space and $r>0$. Then there exists a strictly increasing, continuous and convex function $g:[0, \infty] \rightarrow[0, \infty]$ with $g(0)=0$ such that

$$
g(\|y-z\|) \leq \phi(y, z)
$$

for all $y, z \in B_{r}(0)=\{\|x\| \leq r\}$.
Lemma 2.7 (18). Let E be a uniformly convex Banach space and $B_{r}(0)$ be a closed ball of E. Then there exists a strictly increasing, continuous and convex function $h:[0, \infty) \rightarrow[0, \infty)$ with $h(0)=0$ such that

$$
\|\lambda x+\mu y+\gamma z\|^{2} \leq \lambda\|x\|^{2}+\mu\|y\|^{2}+\gamma\|z\|^{2}-\lambda \mu h(\|x-y\|)
$$

for all $x, y, z \in B_{r}(0)$ and $\lambda, \mu, \gamma \in[0,1]$ with $\lambda+\mu+\gamma=1$.

Lemma 2.8 (19). Let C be a nonempty closed convex subset of a uniformly smooth, strictly convex real Banach space E and $A: C \rightarrow E^{*}$ be a continuous monotone mapping. For any $r>0$, define a mapping $F_{r}: E \rightarrow C$ as follows:

$$
F_{r} x=\left\{z \in C:\langle y-z, A z\rangle+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in C$. Then the following hold:
(1) F_{r} is a single-valued mapping;
(2) $F\left(F_{r}\right)=V I(A, C)$;
(3) $V I(A, C)$ is a closed and convex subset of C;
(4) $\phi\left(q, F_{r} x\right)+\phi\left(F_{r} x, x\right) \leq \phi(q, x)$ for all $q \in F\left(F_{r}\right)$.

3 Main Results

In this section, we prove some new convergence theorems for finding a common solution of the set of common fixed points of relatively nonexpansive multi-valued mappings and the set of the variational inequality problems in a real uniformly smooth and uniformly convex Banach space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T: C \rightarrow N(C)$ be a relatively nonexpansive multi-valued mapping and A be a continuous monotone mapping of C into E^{*}. Define a mapping $F_{r_{n}}: E \rightarrow C$ by

$$
F_{r_{n}} x=\left\{z \in C:\langle y-z, A z\rangle+\frac{1}{r_{n}}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}
$$

Assume that $\Theta:=F(T) \cap V I(A, C) \neq \emptyset$. For an initial point $x_{1} \in C$, define the iterative sequence $\left\{x_{n}\right\}$ in C as follows:

$$
\left\{\begin{array}{l}
u_{n}=F_{r_{n}} x_{n}, \tag{3.1}\\
x_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right)
\end{array}\right.
$$

for all $n \geq 1$, where $z_{n} \in T x_{n}$. Assume that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are the sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$. Then $\left\{\Pi_{\Theta} x_{n}\right\}$ converges strongly to a point in Θ, where Π_{Θ} is the generalized projection from E onto Θ.

Proof. Let T be a relatively nonexpansive multi-value mapping. Since Θ is closed and convex, for any $p \in \Theta$, we have

$$
\begin{aligned}
\phi\left(p, x_{n+1}\right) & =\phi\left(p, \Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right)\right) \\
& \leq \phi\left(p, J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right)\right) \\
& =\|p\|^{2}-2 \alpha_{n}\left\langle p, J x_{n}\right\rangle-2 \beta_{n}\left\langle p, J u_{n}\right\rangle-2 \gamma_{n}\left\langle p, J z_{n}\right\rangle \\
& +\left\|\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right\|^{2} \\
& \leq\|p\|^{2}-2 \alpha_{n}\left\langle p, J x_{n}\right\rangle-2 \beta_{n}\left\langle p, J u_{n}\right\rangle-2 \gamma_{n}\left\langle p, J z_{n}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& +\alpha_{n}\left\|J x_{n}\right\|^{2}+\beta_{n}\left\|J u_{n}\right\|^{2}+\gamma_{n}\left\|J z_{n}\right\|^{2} \\
& =\alpha_{n} \phi\left(p, x_{n}\right)+\beta_{n} \phi\left(p, u_{n}\right)+\gamma_{n} \phi\left(p, z_{n}\right) \\
& =\alpha_{n} \phi\left(p, x_{n}\right)+\beta_{n} \phi\left(p, F_{r_{n}} x_{n}\right)+\gamma_{n} \phi\left(p, z_{n}\right) \\
& \leq \alpha_{n} \phi\left(p, x_{n}\right)+\beta_{n} \phi\left(p, x_{n}\right)+\gamma_{n} \phi\left(p, x_{n}\right) \\
& =\phi\left(p, x_{n}\right) . \tag{3.2}
\end{align*}
$$

Hence $\lim _{n \rightarrow \infty} \phi\left(p, x_{n}\right)$ exist. Thus $\left\{\phi\left(p, x_{n}\right)\right\}$ is bounded and, further, by (1.3), $\left\{x_{n}\right\}$ is bounded and so are $\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$. Let $y_{n}=\Pi_{\Theta} x_{n}$ for all $n \geq 1$. It follows from (3.2) that

$$
\begin{equation*}
\phi\left(y_{n}, x_{n+1}\right) \leq \phi\left(y_{n}, x_{n}\right) \tag{3.3}
\end{equation*}
$$

and so, for all $m \geq 1$,

$$
\begin{equation*}
\phi\left(y_{n}, x_{n+m}\right) \leq \phi\left(y_{n}, x_{n}\right) . \tag{3.4}
\end{equation*}
$$

Thus it follows from Lemma 2.4 that

$$
\begin{align*}
\phi\left(y_{n+1}, x_{n+1}\right) & =\phi\left(\Pi_{\Theta} x_{n}, x_{n+1}\right) \\
& \leq \phi\left(y_{n}, x_{n+1}\right)-\phi\left(y_{n}, \Pi_{\Theta} x_{n+1}\right) \\
& =\phi\left(y_{n}, x_{n+1}\right)-\phi\left(y_{n}, y_{n+1}\right) \tag{3.5}\\
& \leq \phi\left(y_{n}, x_{n+1}\right) \\
& \leq \phi\left(y_{n}, x_{n}\right)
\end{align*}
$$

Therefore $\left\{\phi\left(y_{n}, x_{n}\right)\right\}$ is a convergence sequence. For all $m, n \geq 1$ with $n>m$, it follows from Lemma 2.4 that

$$
\phi\left(y_{n}, y_{n+m}\right)+\phi\left(y_{n+m}, x_{n+m}\right) \leq \phi\left(y_{n}, x_{n+m}\right)
$$

and so, from (3.5),

$$
\begin{aligned}
\phi\left(y_{n}, y_{n+m}\right) & \leq \phi\left(y_{n}, x_{n+m}\right)-\phi\left(y_{n+m}, x_{n+m}\right) \\
& \leq \phi\left(y_{n}, x_{n}\right)-\phi\left(y_{n+m}, x_{n+m}\right)
\end{aligned}
$$

Let $r=\sup _{n \in \mathbf{N}}\left\|y_{n}\right\|$. It follows from Lemma 2.6 that there exist a continuous, strictly increasing, and convex function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\begin{align*}
g\left(\left\|y_{m}-y_{n}\right\|\right) & \leq \phi\left(y_{m}, y_{n}\right) \tag{3.6}\\
& \leq \phi\left(y_{m}, x_{m}\right)-\phi\left(y_{n}, x_{n}\right) \tag{3.7}
\end{align*}
$$

Thus, from the property of g, we can show that $\left\{y_{n}\right\}$ is a Cauchy sequence for all $m, n \geq 1$. Since E is complete and $\Theta:=F(T) \cap V I(A, C)$ is closed and convex, there exist $q \in \Theta$ such that $\left\{y_{n}\right\}$ converges strongly to a point $q \in \Theta$, where $y_{n}=\Pi_{\Theta} x_{n}$. This completes the proof.

In Theorem 3.1] if $\beta_{n}=0$, then we have the following:

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T: C \rightarrow N(C)$ be a relatively nonexpansive multi-valued mapping. For an initial point $x_{1} \in C$, define the iterative sequence $\left\{x_{n}\right\}$ in C as follows:

$$
\begin{equation*}
\left\{x_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J z_{n}\right)\right. \tag{3.8}
\end{equation*}
$$

for all $n \geq 1$, where $z_{n} \in T x_{n}$. Assume that $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$. Then $\left\{\Pi_{\Theta} x_{n}\right\}$ converges strongly to some point of T. Where $\Pi_{F(T)}$ is the generalized projection from C onto $F(T)$.

Let f be a bifunction from $C \times C$ to \mathbb{R}, where \mathbb{R} denotes the set of real numbers. The equilibrium problem (for short, EP) is to find $x^{*} \in C$ such that

$$
\begin{equation*}
f\left(x^{*}, y\right) \geq 0, \quad \forall y \in C \tag{3.9}
\end{equation*}
$$

The set of solutions of (3.9) is denoted by $E P(f)$.
For solving the equilibrium problem for a bifunction $f: C \times C \rightarrow \mathbb{R}$, let us assume that f satisfies the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) f is monotone, i.e., $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for each $x, y, z \in C$,

$$
\lim _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y)
$$

(A4) for each $x \in C, y \mapsto f(x, y)$ is convex and lower semi-continuous.
Lemma 3.3 (Blum and Oettli [20]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E, let f be a bifunction from $C \times C$ to \mathbb{R} satisfying $(A 1)-(A 4)$, and let $r>0$ and $x \in E$. Then, there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \quad \forall y \in C
$$

Lemma 3.4 (Takahashi and Zembayashi 21]). Let C be a closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E and let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). For $r>0$ and $x \in E$, define a mapping $T_{r}: E \rightarrow C$ as follows:

$$
T_{r} x=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geq 0, \quad \forall y \in C\right\}
$$

for all $x \in C$. Then the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is a firmly nonexpansive-type mapping, for all $x, y \in E$,

$$
\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle \leq\left\langle T_{r} x-T_{r} y, J x-J y\right\rangle
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

Lemma 3.5 (Takahashi and Zembayashi [21]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive Banach space E, let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let $r>0$. Then, for $x \in E$ and $q \in F\left(T_{r}\right)$,

$$
\phi\left(q, T_{r} x\right)+\phi\left(T_{r} x, x\right) \leq \phi(q, x) .
$$

In Theorem 3.1 if $\langle y-z, A z\rangle=f(z, y)$, then we have the following:
Corollary 3.6. Let C be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T: C \rightarrow N(C)$ be a relatively nonexpansive multi-valued mapping and Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Define a mapping $F_{r_{n}}: E \rightarrow C$ by

$$
T_{r_{n}} x=\left\{z \in C: f(z, y)+\frac{1}{r_{n}}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}
$$

Assume that $\Theta:=F(T) \cap E P(f) \neq \emptyset$. For an initial point $x_{1} \in C$, define the iterative sequence $\left\{x_{n}\right\}$ in C as follows:

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}} x_{n}, \tag{3.10}\\
x_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right)
\end{array}\right.
$$

for all $n \geq 1$, where $z_{n} \in T x_{n}$. Assume that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are the sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=1$. Then $\left\{\Pi_{\Theta} x_{n}\right\}$ converges strongly to a point in Θ, where Π_{Θ} is the generalized projection from E onto Θ.

In the following theorem, we can show that the sequence $\left\{x_{n}\right\}$ defined in (3.1) also converges strongly to some point of Θ.

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E. Let $T: C \rightarrow N(C)$ be a relatively nonexpansive multi-valued mapping and A be a continuous monotone mapping of C into E^{*}. Define a mapping $F_{r_{n}}: E \rightarrow C$ by

$$
F_{r_{n}} x=\left\{z \in C:\langle y-z, A z\rangle+\frac{1}{r_{n}}\langle y-z, J z-J x\rangle \geq 0, \forall y \in C\right\}
$$

Assume that $\Theta:=F(T) \cap V I(A, C) \neq \emptyset$. For an initial point $x_{1} \in C$, define the iterative sequence $\left\{x_{n}\right\}$ in C as follows:

$$
\left\{\begin{array}{l}
u_{n}=F_{r_{n}} x_{n}, \tag{3.11}\\
x_{n+1}=\Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right)
\end{array}\right.
$$

for all $n \geq 1$, where $z_{n} \in T x_{n}$. Assume that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are the sequences in $[0,1]$ satisfying the conditions:
(a) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$;
(b) $\liminf _{n \rightarrow \infty} \alpha_{n} \beta_{n}>0, \liminf _{n \rightarrow \infty} \alpha_{n} \gamma_{n}>0$;
(c) $\left\{r_{n}\right\} \subset[d, \infty)$ for some $d>0$.

Then $\left\{x_{n}\right\}$ converges strongly to some point of Θ.
Proof. As in the proof of Theorem 3.1 we have $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded. So, there exists $r_{1}=\sup _{n \geq 1}\left\{\left\|x_{n}\right\|,\left\|z_{n}\right\|,\left\|u_{n}\right\|\right\}$ such that $x_{n}, z_{n} \in B_{r}(0)$ for all $n \geq 1$. Since E is a uniformly smooth Banach space, E^{*} is a uniformly convex Banach space. Since Θ is nonempty, there exist $p \in \Theta$. By Lemma 2.7, there exists a continuous, strictly increasing and convex function $h:[0, \infty) \rightarrow[0, \infty)$ with $h(0)=0$ such that

$$
\begin{align*}
\phi\left(p, x_{n+1}\right)= & \phi\left(p, \Pi_{C} J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right)\right) \\
\leq & \phi\left(p, J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right)\right) \\
= & \|p\|^{2}-2 \alpha_{n}\left\langle p, J x_{n}\right\rangle-2 \beta_{n}\left\langle p, J u_{n}\right\rangle-2 \gamma_{n}\left\langle p, J z_{n}\right\rangle \\
& +\left\|\alpha_{n} J x_{n}+\beta_{n} J u_{n}+\gamma_{n} J z_{n}\right\|^{2} \\
\leq & \|p\|^{2}-2 \alpha_{n}\left\langle p, J x_{n}\right\rangle-2 \beta_{n}\left\langle p, J u_{n}\right\rangle-2 \gamma_{n}\left\langle p, J z_{n}\right\rangle \\
& +\alpha_{n}\left\|J x_{n}\right\|^{2}+\beta_{n}\left\|J u_{n}\right\|^{2}+\gamma_{n}\left\|J z_{n}\right\|^{2}-\alpha_{n} \gamma_{n} h\left(\left\|J x_{n}-J z_{n}\right\|\right) \\
= & \alpha_{n} \phi\left(p, x_{n}\right)+\beta_{n} \phi\left(p, u_{n}\right)+\gamma_{n} \phi\left(p, z_{n}\right)-\alpha_{n} \gamma_{n} h\left(\left\|J x_{n}-J z_{n}\right\|\right) \\
\leq & \phi\left(p, x_{n}\right)-\alpha_{n} \gamma_{n} h\left(\left\|J x_{n}-J z_{n}\right\|\right) \tag{3.12}
\end{align*}
$$

and so

$$
\alpha_{n} \gamma_{n} h\left(\left\|J x_{n}-J z_{n}\right\|\right) \leq \phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)
$$

Since $\left\{\phi\left(p, x_{n}\right)\right\}$ is convergent and $\lim _{\inf }^{n \rightarrow \infty}$ $\alpha_{n} \gamma_{n}>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h\left(\left\|J x_{n}-J z_{n}\right\|\right)=0 \tag{3.13}
\end{equation*}
$$

and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J z_{n}\right\|=0 \tag{3.14}
\end{equation*}
$$

Since J^{-1} is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0 \tag{3.16}
\end{equation*}
$$

Let $p \in \Theta$ and $r>0$. Then there exists $p+r k \in \Theta$, whenever $\|k\| \leq 1$. Thus, by (1.4), for any $q \in \Theta$, we have

$$
\begin{equation*}
\phi\left(q, x_{n}\right)=\phi\left(x_{n+1}, x_{n}\right)+\phi\left(q, x_{n+1}\right)+2\left\langle x_{n+1}-q, J x_{n}-J x_{n+1}\right\rangle \tag{3.17}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{1}{2}\left(\phi\left(q, x_{n}\right)-\phi\left(q, x_{n+1}\right)\right)=\frac{1}{2} \phi\left(x_{n+1}, x_{n}\right)+\left\langle x_{n+1}-q, J x_{n}-J x_{n+1}\right\rangle \tag{3.18}
\end{equation*}
$$

Follow from (3.2), we have

$$
\begin{equation*}
0 \leq \frac{1}{2} \phi\left(x_{n+1}, x_{n}\right)+\left\langle x_{n+1}-q, J x_{n}-J x_{n+1}\right\rangle \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left\langle x_{n+1}-q, J x_{n}-J x_{n+1}\right\rangle \leq \frac{1}{2} \phi\left(x_{n+1}, x_{n}\right) \tag{3.20}
\end{equation*}
$$

Since

$$
\begin{align*}
\left\langle x_{n+1}-p, J x_{n}-J x_{n+1}\right\rangle & =\left\langle x_{n+1}-(p+r k)+r k, J x_{n}-J x_{n+1}\right\rangle \\
& =\left\langle x_{n+1}-(p+r k), J x_{n}-J x_{n+1}\right\rangle+r\left\langle k, J x_{n}-J x_{n+1}\right\rangle \tag{3.21}
\end{align*}
$$

and so
$r\left\langle k, J x_{n}-J x_{n+1}\right\rangle=\left\langle x_{n+1}-p, J x_{n}-J x_{n+1}\right\rangle-\left\langle x_{n+1}-(p+r k)+r k, J x_{n}-J x_{n+1}\right\rangle$.
Thus it follows from (3.19), we have

$$
-\left\langle x_{n+1}-(p+r k), J x_{n}-J x_{n+1}\right\rangle \leq \frac{1}{2} \phi\left(x_{n+1}, x_{n}\right)
$$

we obtain that

$$
\begin{aligned}
r\left\langle k, J x_{n}-J x_{n+1}\right\rangle & \leq\left\langle x_{n+1}-p, J x_{n}-J x_{n+1}\right\rangle+\frac{1}{2} \phi\left(x_{n+1}, x_{n}\right) \\
& =\frac{1}{2}\left(\phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)\right)
\end{aligned}
$$

and hence

$$
\left\langle k, J x_{n}-J x_{n+1}\right\rangle \leq \frac{1}{2 r}\left(\phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)\right) .
$$

On the other hand, since $p+r k \in \Theta$, it follows from Theorem 3.1 that

$$
\begin{equation*}
\phi\left(p+r k, x_{n+1}\right) \leq \phi\left(p+r k, x_{n}\right) . \tag{3.22}
\end{equation*}
$$

Since $\|k\| \leq 1$, we obtain

$$
\begin{equation*}
\left\|J x_{n}-J x_{n+1}\right\| \leq \frac{1}{2 r}\left(\phi\left(p, x_{n}\right)-\phi\left(p, x_{n+1}\right)\right) \tag{3.23}
\end{equation*}
$$

and so, for all $m, n \geq 1$ with $n>m$, we have

$$
\begin{align*}
\left\|J x_{m}-J x_{n}\right\| & \leq \sum_{i=m}^{n-1}\left\|J x_{i}-J x_{i+1}\right\| \tag{3.24}\\
& \leq \frac{1}{2 r} \sum_{i=m}^{n-1}\left(\phi\left(p, x_{i}\right)-\phi\left(p, x_{i+1}\right)\right) \\
& =\frac{1}{2 r}\left(\phi\left(p, x_{m}\right)-\phi\left(p, x_{n}\right)\right)
\end{align*}
$$

Since $\left\{\phi\left(p, x_{n}\right)\right\}$ converges, $\left\{J x_{n}\right\}$ is a Cauchy sequence. Since E is uniformly convex and uniformly smooth and E^{*} is complete, $\left\{J x_{n}\right\}$ converge strongly to
some point in E^{*}. Since E^{*} has a Fréchet differentiable norm, J^{-1} is norm-tonorm continuous on E^{*}. Hence $\left\{x_{n}\right\}$ converges strongly to some point x in C. Thus, from 3.16 and T is a relatively nonexpansive, we have $x \in F(T)$.

Also, from (3.12) and $\liminf _{n \rightarrow \infty} \alpha_{n} \beta_{n}>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h\left(\left\|J x_{n}-J u_{n}\right\|\right)=0 \tag{3.25}
\end{equation*}
$$

and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J u_{n}\right\|=0 \tag{3.26}
\end{equation*}
$$

Since J^{-1} is norm-to-norm continuous on E^{*}, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.27}
\end{equation*}
$$

Thus, from (3.26), for all $r_{n}>0$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|J x_{n}-J u_{n}\right\|}{r_{n}}=0 \tag{3.28}
\end{equation*}
$$

Thus, from $F_{r_{n}} x_{n}=u_{n} \in C$ and $u_{n} \rightarrow x$, we have

$$
\begin{equation*}
\left\langle v-u_{n}, A u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle v-u_{n}, J u_{n}-J x_{n}\right\rangle \geq 0 \tag{3.29}
\end{equation*}
$$

for all $v \in C$, that is,

$$
\left\langle v-u_{n}, A u_{n}\right\rangle+\left\langle v-u_{n}, \frac{J u_{n}-J x_{n}}{r_{n}}\right\rangle \geq 0
$$

For all $t \in(0,1)$, define $v_{t}=t v+(1-t) x$. Then $v_{t} \in C$ and it follows from (3.29) that

$$
\left\langle v_{t}-u_{n}, A u_{n}\right\rangle+\left\langle v_{t}-u_{n}, \frac{J u_{n}-J x_{n}}{r_{n}}\right\rangle \geq 0
$$

for all $v \in C$ and

$$
\begin{equation*}
\left\langle v_{t}-u_{n}, A v_{t}\right\rangle \geq\left\langle v_{t}-u_{n}, A v_{t}\right\rangle-\left\langle v_{t}-u_{n}, A u_{n}\right\rangle-\left\langle v_{t}-u_{n}, \frac{J u_{n}-J x_{n}}{r_{n}}\right\rangle \geq 0 \tag{3.30}
\end{equation*}
$$

From (3.30), we have $\frac{J u_{n}-J x_{n}}{r_{n}} \rightarrow 0$. Since A is monotone, we have

$$
\left\langle v_{t}-u_{n}, A v_{t}\right\rangle \geq\left\langle v_{t}-u_{n}, A v_{t}-A u_{n}\right\rangle \geq 0
$$

and

$$
\lim _{n \rightarrow \infty}\left\langle v_{t}-u_{n}, A v_{t}\right\rangle=\left\langle v_{t}-x, A v_{t}\right\rangle \geq 0
$$

Taking $t \rightarrow 0$, it follows that

$$
\langle v-x, A x\rangle \geq 0
$$

for all $v \in C$ and so $x \in V I(A, C)$. Therefore, $x \in F(T) \cap V I(A, C)$. This completes the proof.

Acknowledgements : This work was supported by Thaksin University Research Fund (2016).

References

[1] Y. Su, M. Shang, X. Qin, A general iterative scheme for nonexpansive mappings and inverse strongly monotone mappings, J. Appl. Math. Comput. 28 (2008) 283-294.
[2] H. Zhou, X. Gao, An iterative method of fixed points for closed and quasistrict pseudo-contractions in Banach spaces, J. Appl. Math. Comput. 33 (2010) 227-237.
[3] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
[4] W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and Its Application, Yokohama-Publishers, 2000.
[5] Y.I. Alber, S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, PanAmer. Math. J. 4 (1994) 39-54.
[6] Y.I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, 15-50.
[7] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002) 938-945.
[8] X. Qin, Y.J. Cho, S.M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009) 20-30.
[9] W. Nilsrakoo, S. Saejung, Strong convergence to common fixed points of countable relatively quasi-nonexpansive mappings, Fixed Point Theory Appl. 2008 (2008) Article ID 312454, 19 pages.
[10] Y. Su, D. Wang, M. Shang, Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed Point Theory Appl. 2008 (2008) Article ID 284613, 8 pages.
[11] H. Zegeye, N. Shahzad, Strong convergence for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009) 2707-2716.
[12] K.P.R. Sastry, G.V.R. Babu, Convergence of Ishikawa iterates for a multivalued mappings with a fixed point, Czechoslovak Math. J. 55 (2005) 817-826.
[13] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comput. Math. Appl. 54 (2007) 872-877.
[14] N. Shahzad, H. Zegeye, On Mann and Ishikawa iteration schemes for multivalued maps in Banach spaces, Nonlinear Anal. 71 (2009) 838-844.
[15] S. Homaeipour, A. Razani, Convergence of an iterative method for relatively nonexpansive multi-valued mappings and equilibrium problems in Banach spaces, Optim. Lett. 8 (1) (2014) 211-225.
[16] S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005) 257-266.
[17] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13 (2008) 938-945.
[18] Y.J. Cho, H. Zhou, G. Guo, Weak and strong convergence theorems for threestep iteration with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47 (2004) 707-717.
[19] H. Zegeye, N. Shahzad, A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems, Nonlinear Anal. 74 (2011) 263-272.
[20] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145.
[21] W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory and Appl. 2008 (2008) Article ID 528476, 11 pages.
(Received 9 July 2014)
(Accepted 29 April 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.

