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1 Introduction

Let C be a nonempty closed and convex subset of a Banach space E with dual
E*. A mapping A : C — E* is said to be:
(1) monotone if
<$—y,Al‘—Ay> >0

for all z,y € C,
(2) a-inverse-strongly monotone if there exists a constant o > 0 such that

(x —y, Az — Ay) > of|Ax — AyH2
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for all z,y € C.

If A:C — E* is a-inverse-strongly monotone, then it is Lipschitz continuous
with constant é, that is,

1
[Az — Ay|| = —|lz - y]|
(0%

for all z,y € C. Clearly, the class of monotone mappings include the class of
a-inverse-strongly monotone mappings.

The class of inverse-strongly monotone have been studied by many authors to
approximate a common fixed point (see [IL2] for more details).

The variational inequality problem for an operator A is to find 2 € C such that
(y—2,A%) >0, Vy e C. (1.1)

The set of solution of (L)) is denoted by VI(A4,C).
Let E be a Banach space with the dual space E*. The normalized duality
mapping from E to 2E” defined by

J(@) = {f* € E": (z, f*) = ||z |l f*I| = [lIl}-

If ' is a Hilbert space, then J = I, where [ is the identity mapping.
Consider the functional ¢ : F x E — R defined by

S, y) = lll* = 2(z, Jy) + [yl (1.2)

for all z,y € E, where J is the normalized duality mapping. It is obvious from
the definition of function ¢ that

Iyl = 1l < oy, ) < (Iyll + ll=[)® (1.3)

for all x,y € E and

¢($,y):¢(Z,y)+¢(I,Z)+2<Z—$,Jy—JZ> (14)

for all z,y,z € E.
If E is a Hilbert space, then ¢(y,x) = ||y — z||*.

Remark 1.1. If F is a reflexive, strictly convexr and smooth Banach space, then,
for any z,y € E, ¢(z,y) = 0 if and only if x = y. It is sufficient to show that,
if ¢(z,y) = 0, then x = y. From ([L2), we have ||z| = |ly|l. This implies that
(z,Jy) = ||z|* = ||Jy||*>. From the definition of J, one has Jx = Jy. Therefore,
we have x =y (see [3[4)] for more details).

The generalized projection Illc : E — C' is a mapping that assigns to an
arbitrary point « € E the minimum point of the functional ¢(z,y), that is, ez =
z, where Z is the solution to the minimization problem:

¢(z,x) = inf ¢(y,z). (1.5)

yeC
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The existence and uniqueness of the operator Ilx follows from the properties
of the functional ¢(y,x) and the strict monotonicity of the mapping J (see, for
example, [3H7]). If E is a Hilbert space, then Il becomes the metric projection of
E onto C. If E is a smooth, strictly convex and reflexive Banach space, then Il is
a closed relatively quasi-nonexpansive mapping from E onto C' with F(Il¢) = C

(8))-

Let C be a nonempty closed and convex subset of a real Banach space E. A
mapping T : C' — C is said to be nonexpansive if

[Te =Tyl <[l —yll

for all z,y € C. A point x € C is a fized point of T provided Tx = x. Denoted by
F(T) the set of fixed points of T, that is, F(T) = {x € C : Tx = x}. A point p in
C is called an asymptotic fized point of T [6] if C' contains a sequence {x,, } which
converges weakly to p such that lim,, ||, — Tz,|| = 0. The asymptotic fixed
point set of T is denoted by F(T).

Recall that a mapping T : C' — C' is closed if, for each {x,} in C, x,, — x and
Tz, — y imply that Tx = y.

A mapping T : C — is called relatively nonexpansive ([9HIT]) if

(R1) F(T) is nonempty;

(R2) ¢(p,Tx) < ¢(p,x) for all z € C and p € F(T);

(R3) F(T)=F(T).

Let CB(C') and N(C) denoted the family of nonempty closed bounded subsets
of C' and nonempty subsets, respectively. The Hausdorff metric on CB(C) is
defined by

H(Ay, A2) = max{ sup d(z, A1), sup d(y, A2)}
r€A2 yEA
for all Ay, As € CB(C), where d(z, A1) = inf{||z —y|;y € A1}, € C. A multi-
valued mapping T : C' — C'B(C) is said to be nonexpansive if

H(T(x), T(y)) < llz -yl

for all z,y € C. A multi-valued mapping T : C — CB(C) is said to be quasi-
nonezpansive if F(T) is nonempty and

H(T(x), T(p)) < ||z - pll

for all z € C and all p € F(T). An element p € C is called a fixed point of
T:C— N(C)if pe T(p). The set of fixed point of T is denoted by F(T).

Let C be a nonempty closed convex subset of a smooth Banach space F.
A point p € C is called an asymptotic fized point of a multi-valued mapping
T :C — N(C) if there exists a sequence {x,} in C' which converges weakly to p
and nh_>rrolo d(zy, T (zy)) = 0.

A multi-valued mapping T : C — N(C) is said to be relatively nonerpansive
if
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(Rl) F(T) is nonempty;
(R2) gé(p, z) < ¢(p,z) forall z € C, z € T(x) and, p € F(T);
(R3) F(T)=F(T).

Sastry and Babu [12] proved that the Mann and Ishikawa iteration schemes
for a multi-valued mapping 7" with a fixed point p converge to a fixed point q of T’
under certain conditions. Panyanak [I3] extended the result of Sastry and Babu
to uniformly convex Banach spaces. In 2009, Shahzad and Zegeye [14] proved
strong convergence theorems for the Ishikawa iteration scheme involving quasi-
nonexpansive multi-valued mappings in uniformly convex Banach spaces.

In 2014, Homaeipour and Razani [15] introduced an iterative sequence for
two relatively nonexpansive multi-valued mappings in Banach spaces. Further.
they proved that {z,} converges strongly to Ilpr)ngp(f)(70) under appropriate
condition.

From the recent works, in this paper, we obtain new hybrid iterative scheme
to find a common element of the fixed point set of relatively nonexpansive multi-
valued mapping and the solution set of variational inequality problem in Banach
spaces.

2 Preliminaries

Let E be a Banach space and let U = {z € E : ||z|| = 1} be the unit sphere of
E.

1. A Banach space E is said to be strictly convez if | 25| < 1 for all 2,y € E
with |Ja]] = lyll = 1 and 2 £ y.

llz+tyll =l
t

2. A Banach space F is said to be smooth if the limit tlir% exists for
—

each z,y € U.

3. The norm of E is said to be Fréchet differentiable if, for each z € U, the
limit is attained uniformly for y € U.

4. A Banach space E is said to be uniformly smooth if the limit exists uniformly
inz,yelU.

5. The modulus of convexity of E is the function ¢ : [0,2] — [0, 1] defined by

Tty
2

o) =inf {1~ | 2| 2y € Bzl = Iyl = 1 lle — yl 2 .

6. E is said to be uniformly convex if §(¢) > 0 for all € € (0, 2].

Remark 2.1. Let E be a Banach space. Then the following are well known (see [3)]
for more details):

(1) If E is an arbitrary Banach space, then J is monotone and bounded.

(2) If E is a strictly convex, then J is strictly monotone.

(3) If E is a smooth, then J is single valued and semi-continuous.
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(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E.

(5) If E is reflexive, smooth and strictly convex, then the normalized duality
mapping J is single valued, one-to-one and onto.

(6) If E is reflexive, smooth and strictly convez, then J~1 is also single valued,
one-to-one, onto and it is the duality mapping from E* into E.

(7) If E is uniformly smooth, then E is smooth and reflexive.

(8) E is uniformly smooth if and only if E* is uniformly convez.

We also need the following lemmas for the proof of our main results.

Lemma 2.2 ([I6]). Let E be a strictly convex and smooth Banach space. Then,
for all z,y € E, ¢(x,y) =0 if and only if x = y.

Lemma 2.3 ([6]). Let C be a nonempty closed convex subset of a smooth Banach
space E and x € E. Then xo = lcx if and only if

(o —y,Jo — Jxg) >0
forally e C.

Lemma 2.4 ([6]). Let E be a reflexive, strictly convex and smooth Banach space,
C be a nonempty closed conver subset of E and x € E. Then

oy, Uex) + o(ew, ) < d(y, x)
forallyeC.

Lemma 2.5 ([15]). Let E be a smooth and strictly convex Banach space and C
be a nonempty closed convex subset of E. Suppose T : C' — N(C) is a relatively
nonezpansive multi-valued mapping. Then F(T) is a closed convex subset of C.

Lemma 2.6 ([I7]). Let E be a uniformly convex and smooth Banach space and
r > 0. Then there exists a strictly increasing, continuous and convezr function
g :[0,00] = [0, 00] with g(0) =0 such that

9(lly = zI) < é(y, 2)
for all y,z € B(0) = {||z|| < r}.

Lemma 2.7 ([18]). Let E be a uniformly convexr Banach space and B,(0) be a
closed ball of E. Then there exists a strictly increasing, continuous and conver
function h : [0,00) = [0,00) with h(0) =0 such that

IAa + py + vzl < Al2ll® + pllyll® +yll2)1* = Auh(llz = yl)

for all x,y,z € B,(0) and A\, u,y € [0,1] with A+ p+~v = 1.
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Lemma 2.8 ([19]). Let C be a nonempty closed convex subset of a uniformly
smooth, strictly convexr real Banach space E and A : C — E* be a continuous
monotone mapping. For any r > 0, define a mapping F,. : E — C as follows:

1
FT:E:{zEC’:(y—z,Az}Jr;(y—z,szJx}ZO, Yy € C}

for all x € C. Then the following hold:
(1) F. is a single-valued mapping;
(2) F(F'r) = VI(Aa C);
(3) VI(A,C) is a closed and convex subset of C;
(4) ¢(q, Frx) + ¢(Frax,x) < (g, z) for all g € F(F}).

3 Main Results

In this section, we prove some new convergence theorems for finding a common
solution of the set of common fixed points of relatively nonexpansive multi-valued
mappings and the set of the variational inequality problems in a real uniformly
smooth and uniformly convex Banach space.

Theorem 3.1. Let C be a nonempty closed and conver subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C — N(C) be a relatively
nonexpansive multi-valued mapping and A be a continuous monotone mapping of
C into E*. Define a mapping F,. : E — C by

1
F.oe={z€C:{y—z,Az)+ —(y—z,Jz—Jzx) >0, Vy € C}.

Tn

Assume that © := F(T)NVI(A,C) # 0. For an initial point x1 € C, define the
iterative sequence {xy} in C as follows:

{ Up = Fp Ty,

3.1
Tn+1 :HCJ_I(aann'f'ﬁnJun'f"YnJZn) ( )

forallm > 1, where z, € Txy,. Assume that{an}, {Bn} and {vn} are the sequences
in [0,1] such that ay, + By, + v = 1. Then {lex,} converges strongly to a point
in O, where llg s the generalized projection from E onto ©.

Proof. Let T be a relatively nonexpansive multi-value mapping. Since © is closed
and convex, for any p € ©, we have
AP, Tny1) = (0, Mo d N anTzn + BnJtn + Ynd 2n))
< d(p, T HanJxn + BnJtn + Ynd2n))
= pII* = 20 (p, Jp) — 2B (p, Jun) — 270 (p, J2n)
+ lanJTn + Bndun + Ynd zal|?
< p1? = 200 (p. Jan) = 280 (p, Jun) — 270 (p, Jz0)
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+ O‘n||‘]xn||2 + ﬂn”JUn”2 + ’Yn||<]zn||2

= an@(p, Tn) + Bnd (s un) + 1 P(D; 2n)

= an@(p, Tn) + Bnd(D; Fr®n) + 10 @(D; 2n)

< nd(p,zn) + B (D, Tn) + Y@ (D, 1)

= ¢(p,zn). (3.2)

Hence li_>m o&(p, xn) exist. Thus {¢(p,z,)} is bounded and, further, by (L3),
n [ee]

{z,} is bounded and so are {z,} and {u,}. Let y, = oz, for all n > 1. Tt
follows from ([3.2)) that

(Y, Tnt1) < G(Yn, Tn) (3.3)
and so, for all m > 1,

A(Yns Tntm) < G(Yn,s Tn). (3.4)
Thus it follows from Lemma [2.4] that

SWYnt1,Tny1) = O(Ilewn, Tny1)
< Yns Tnt1) — B(Yn, ozni1)
= ¢Un, Tnt1) — A(Yns Yn+1) (3.5)
< ¢(y anrl)
< O(Yn, ).

Therefore {¢(yn,xn)} is a convergence sequence. For all m,n > 1 with n > m, it
follows from Lemma [2.4] that

¢(yna yner) + ¢(yn+ma anrm) < d)(yn, anrm)

and so, from (B.5]),

¢(yna szrm) - ¢(yn+ma anrm)
¢(yna Tp) — ¢(yn+ma xn-i—m)-

¢(yna yn+m) <
<

Let 7 = supnen||yn||- It follows from Lemma that there exist a continuous,
strictly increasing, and convex function ¢ : [0,00) — [0,00) with g(0) = 0 such
that

(Y, Yn) (3.6)
(Y Tm) — A(Yn, Tn)- (3.7)

g(”ymfynn) §
<

Thus, from the property of g, we can show that {y,} is a Cauchy sequence for all
m,n > 1. Since E is complete and © := F(T)NVI(A,C) is closed and convex,
there exist ¢ € © such that {y,} converges strongly to a point ¢ € ©, where
Yn = llgx,. This completes the proof. ([l

In Theorem B.1] if 3,, = 0, then we have the following:
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Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C — N(C) be a rela-
tively nonexpansive multi-valued mapping. For an initial point x1 € C, define the
iterative sequence {x,} in C as follows:

{ 21 =Hod Hoamdzn + (1 — an)Jzn) (3.8)

for all n > 1, where z, € Tx,. Assume that {a,} is a sequence in [0,1]. Then
{Ilez,} converges strongly to some point of T'. Where gy is the generalized
projection from C onto F(T).

Let f be a bifunction from C'x C to R, where R denotes the set of real numbers.
The equilibrium problem (for short, EP) is to find z* € C such that

f(z",y) >0, Vyel. (3.9)

The set of solutions of (3] is denoted by EP(f).
For solving the equilibrium problem for a bifunction f : C' x C' — R, let us
assume that f satisfies the following conditions:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,z) <0 for all z,y € C;
(A3) for each z,y,z € C,

1%1 fltz+ (1 —=t)z,y) < flz,y);

(A4) for each z € C, y — f(x,y) is convex and lower semi-continuous.

Lemma 3.3 (Blum and Oettli [20]). Let C be a closed convex subset of a smooth,
strictly convex and reflexive Banach space E, let f be a bifunction from C x C' to
R satisfying (A1)-(A4), and let v > 0 and x € E. Then, there exists z € C such
that

1

Lemma 3.4 (Takahashi and Zembayashi [21]). Let C be a closed convexr subset
of a uniformly smooth, strictly convexr and reflexive Banach space E and let f be
a bifunction from C x C to R satisfying (A1)-(A4). For r >0 and x € E, define
a mapping T : E — C as follows:

1

for all x € C. Then the following hold:
(1) T, is single-valued;
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(2) T, is a firmly nonexpansive-type mapping, for all x,y € E,
(Trx — Ty, JTrx — JTy) < (Trx — Try, Jx — Jy);

3) F(T;) = EP(f);
(4) EP(f) is closed and convez.

Lemma 3.5 (Takahashi and Zembayashi [21]). Let C be a closed convex subset of
a smooth, strictly convex, and reflexive Banach space E, let f be a bifunction from
C x C to R satisfying (A1)-(A4) and let r > 0. Then, for x € E and q € F(T}),

¢(Q7 Trx) + ¢(T7'$7 x) < ¢(qa T).

In Theorem 3] if (y — 2, Az) = f(z,y), then we have the following:

Corollary 3.6. Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let T : C — N(C) be a relatively
nonexpansive multi-valued mapping and Let f be a bifunction from C x C to R
satisfying (A1l)-(A4). Define a mapping F,, : E — C by

1

T..x={2€C: f(z,y) + T—(y— z,Jz—Jz) >0, Vy € C}.
n

Assume that © := F(T) N EP(f) # 0. For an initial point 1 € C, define the

iterative sequence {xy} in C as follows:

{ Up =T}, Tn,

_ 3.10
Tni1 = HoJ  HanJr, + Bndtn + Ynd 2n) ( )

forallm > 1, where z,, € Txy,. Assume that {a,}, {Bn} and {~y,} are the sequences
in [0,1] such that ayn + Bn + o = 1. Then {Ilox,} converges strongly to a point
in ©, where Ilg is the generalized projection from E onto ©.

In the following theorem, we can show that the sequence {z,,} defined in (3.1)
also converges strongly to some point of ©.

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly convex
and uniformly smooth Banach space E. Let T : C — N(C) be a relatively non-
expansive multi-valued mapping and A be a continuous monotone mapping of C
into E*. Define a mapping F,, : E — C by

1
F.oo={z€C:{y—zA2)+ —(y—z,Jz—Jz) >0, Vy € C}.

Tn

Assume that © := F(T)NVI(A,C) # 0. For an initial point 1 € C, define the
iterative sequence {xy} in C as follows:

{ Up = F7'7,,In7

3.11
Tnt1 = HoJ  HanJr, + Bndtn + Ynd 2n) ( )
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for allm > 1, where z, € Txy,. Assume that{an}, {Bn} and {yn} are the sequences
in [0, 1] satisfying the conditions:

(a) an+Bn+mm=1;

(b) liminf, oo @nBr > 0, Iiminf, oo anyn > 0;

(¢) {rn} C[d,0) for some d > 0.

Then {x,} converges strongly to some point of ©.

Proof. As in the proof of Theorem Bl we have {x,}, {u,} and {z,} are bounded.
So, there exists r1 = sup,,>1{||zull l|znll; ||un]|} such that x,,z, € B,(0) for all
n > 1. Since E is a uniformly smooth Banach space, E* is a uniformly convex
Banach space. Since © is nonempty, there exist p € ©. By Lemma 27 there
exists a continuous, strictly increasing and convex function h : [0,00) — [0, 00)
with h(0) = 0 such that

d)(paanrl) = ¢(p;HC<]_1(OénJ1'n +ﬂn<]un +7nJZn))
< ¢(p; J_l(anJIn + BnJun + ’YnJZn))
= |plI* = 2an(p, Jxn) — 280 (p, Jun) — 290 (p, T 2n)
Fllandxn + Bndtn + Ynd zn||?
§ ||p||2 - 2an<pa J:L'n> - 2ﬂn<pa Jun> - 2'7n<pa Jzn>
Fan|[Jzn|? + Ball Junl® +vall T20)l* = anynh(||J2n — Jzal|)
= an¢(pa Tn) + Bn(b(pv Un) + 'anj(pa Zn) - an'Ynh(Han - JZn”)
< ¢(pa Tp) — Oén’)/nh(Han - JZnH)
(3.12)
and so
an’)/nh(Han - JZnH) < ¢(p7 xn) - ¢(pa In-{-l)-
Since {¢(p, )} is convergent and lim inf,, o ¥y > 0, we have
Jim h(]| Tz — J2n]l) =0 (3.13)
and so
Jim [Ty — Jzn|| = 0. (3.14)

Since J~! is uniformly norm-to-norm continuous on bounded sets, we have

nh_{rgo lxn — 2zn]] = 0. (3.15)
Therefore,

lim d(xn,Tx,) = 0. (3.16)

n—oo

Let p € © and r > 0. Then there exists p + rk € ©, whenever ||k| < 1. Thus, by
(T4, for any ¢ € ©, we have

A(q, 2n) = G(Tni1,Tn) + H(q, Tni1) + 2(Tn1 — ¢ JTn — JTp1), (3.17)
which implies

1

5((;3(% I’n) - ¢(Q7xn+1)) = %(b(anrlaxn) + <xn+1 - 49, Jﬂfn — Jﬂ?n+1>. (318)
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Follow from (3.2)), we have

1
0< §¢(xn+laxn) + <:En+1 —q,JT, — an+1> (3'19)

and 1
—xpy1 — ¢, Jxp — JTpt1) < §¢(xn+1,xn). (3.20)

Since

(Tny1 — 0, JTn — JTpg1) = (X1 — (p+1k) + 1k, Jr, — Joni1)

= (Tnt1— (p+71k), Jey — Jrpi1) + 7k, Jxy — JEpi1)
(3.21)

and so
r{k,Jey, —Jtnt1) = (Tnt1— D, JTn — JTni1) — (Tnt1— (p+7rk)+rk, Jo, — Jxn41).
Thus it follows from (319), we have
1
~(@nt1 = (p+7k), Jrn — JTni1) S SH(@nt1, Tn),

we obtain that

ik, Jxy — Jxny1) < (zpi1—p,JTn — JTpi1) + %¢(zn+1, Tn)
= 5 000) — 6(p0s1))
and hence
(h Jtn = Jrar1) S 5 (0, 00) — 60, ns0)).

On the other hand, since p + rk € ©, it follows from Theorem [3.1] that
dp+rk,xni1) < Op+ 1k, 30). (3.22)

Since [|k|| < 1, we obtain

1
70 = Toai1]l < 5 (00, 20) = 60, 20s1) (3.23)
and so, for all m,n > 1 with n > m, we have

Z?:_nll | Jx; — Jziga||
=S (G a) — d(p.int)) (3.24)

Since {¢(p,xn)} converges, {Jz,} is a Cauchy sequence. Since E is uniformly
convex and uniformly smooth and E* is complete, {Jx,} converge strongly to

[ — Jn ||

[ IAIA
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some point in E*. Since E* has a Fréchet differentiable norm, J~! is norm-to-
norm continuous on E*. Hence {z,} converges strongly to some point x in C.
Thus, from and T is a relatively nonexpansive, we have z € F(T).

Also, from BI2) and liminf, o @, B, > 0, we have

nhﬂngo h(||Jzn — Jun|]) =0 (3.25)
and so
lim ||Jz, — Ju,|| = 0. (3.26)
n—o0
Since J~! is norm-to-norm continuous on E*, it follows that
nlggo [z — unll = 0. (3.27)

Thus, from 326), for all r, > 0, we obtain

. |Jzn—Jun| _
lim LI Tunll _ g (3.28)

n—oo n

Thus, from F,. z, = u, € C and u, — x, we have

(v — Up, Aup) + %(vfun,l]unf]xm >0 (3.29)
for all v € C, that is,
(U — U, Aup) + (U — U, M) > 0.
Tn

For all t € (0, 1), define vy = tv+ (1 — t)x. Then v; € C and it follows from (F29)
that
(06 = wn, Aug) + (vp = ty, 2=I22) > 0

Tn

for all v € C' and

(U — Up, Ave) > (Vp — Up, AVp) — (U — Up, Ap) — (VF — Uy, Ju”,i?”") > 0.
(3.30)

From ([B30), we have L%2=JZs (. Since A is monotone, we have
Tn

(Ve — Up, Avr) > (Vp — Uy, Avy — Auy) >0

and
lim (vy — up, Av) = (ve — x, Avg) > 0.

n—oo
Taking t — 0, it follows that
(v—=z,Ax) >0

for all v € C and so z € VI(A,C). Therefore, x € F(T)NVI(A,C). This
completes the proof. O
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