Quasinormality and Fuglede-Putnam Theorem for w-Hyponormal Operators

Mohammad H.M. Rashid
Department of Mathematics, Faculty of Science P.O.Box (7)
Mu'tah University, Jordan
e-mail: malik_okasha@yahoo.com

Abstract

We investigate several properties of Aluthge transform $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ of an operator $T=U|T|$. We prove (i) if T is a w-hyponormal operator and \widetilde{T} is quasi-normal (resp., normal), then T is quasi-normal (resp., normal), (ii) if T is a contraction with $\operatorname{ker} T=\operatorname{ker} T^{2}$ and \widetilde{T} is a partial isometry, then T is a quasinormal partial isometry, and (iii) we show that if either (a) T is a w-hyponormal operator such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and S^{*} is w-hyponormal operator such that $\operatorname{ker}\left(S^{*}\right) \subset \operatorname{ker}(S)$ or (b) T is an invertible w-hyponormal operator and S^{*} is w hyponormal operator or (c) T is a w-hyponormal such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and S^{*} is a class \mathcal{Y}, then the pair (T, S) satisfy Fuglede-Putnam property.

Keywords : w-hyponormal operators; Fuglede-Putnam theorem; quasinormal operators; partial isometry.
2010 Mathematics Subject Classification : 47B20; 47A10; 47A11.
I

1 Introduction

For complex infinite dimensional Hilbert spaces \mathscr{H} and $\mathscr{K}, \mathscr{L}(\mathscr{H}), \mathscr{L}(\mathscr{K})$ and $\mathscr{L}(\mathscr{H}, \mathscr{K})$ denote the set of bounded linear operators on \mathscr{H}, the set of bounded linear operators on \mathscr{K} and the set of bounded linear operators from \mathscr{H} to \mathscr{K}, respectively. Every operator T can be decomposed into $T=U|T|$ with a partial isometry U, where $|T|$ is the square root of $T^{*} T$. If U is determined

[^0]uniquely by the kernel condition $\operatorname{ker}(U)=\operatorname{ker}(|T|)$, then this decomposition is called the polar decomposition, which is one of the most important results in operator theory ([1] and [2]). In this paper, $T=U|T|$ denotes the polar decomposition satisfying the kernel condition $\operatorname{ker}(U)=\operatorname{ker}(|T|)$.

Recall that an operator $T \in \mathscr{L}(\mathscr{H})$ is positive, $T \geq 0$, if $\langle T x, x\rangle \geq 0$ for all $x \in \mathscr{H}$. An operator $T \in \mathscr{L}(\mathscr{H})$ is said to be hyponormal if $T^{*} T \geq T T^{*}$. Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators ([3] and [4]). An operator T is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$ for $p \in(0,1]$ and an operator T is said to be log-hyponormal if T is invertible and $\log |T| \geq \log \left|T^{*}\right|$. p-hyponormal and log-hyponormal operators are defined as extension of hyponormal operator. An operator $T \in \mathscr{L}(\mathscr{H})$ is said to be paranormal if it satisfies the following norm inequality $\left\|T^{2}\right\|\|x\| \geq\|T x\|^{2}$ for all $x \in \mathscr{H}$. Ando [5] proved that every log-hyponormal operators is paranormal. Recall [6], an operator $T \in \mathscr{L}(\mathscr{H})$ is called w-hyponormal if $|\widetilde{T}| \geq|T| \geq\left|\widetilde{T}{ }^{*}\right|$, where $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is the Aluthge transformation. The classes of log- and w-hyponormal operators were introduced, and their properties were studied in [6]. In particular, it was shown in [6] that the class of w-hyponormal operators contains both p-and loghyponormal operators.

2 Quasinormality

Let $T=U|T|$ be the polar decomposition of $T \in \mathscr{L}(\mathscr{H})$. T is said to be quasinormal if $|T| U=U|T|$, or equivalently, $T T^{*} T=T^{*} T T$. Patel [7 proved that if T is p-hyponormal and its Aluthge transform $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is normal, then T is normal and $T=\widetilde{T}$. Aluthge and Wang [6] proved that if T is w hyponormal, $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and its Aluthge transform \widetilde{T} is normal, then T is normal and $T=\widetilde{T}$. The following is a generalization of these results.

Theorem 2.1. Let T be a w-hyponormal operator with the polar decomposition $T=U|T|$. If \widetilde{T} is quasinormal, then T is also quasinormal. Hence T coincides with its Aluthge transform $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$.

Proof. Since T is a w-hyponormal operator,

$$
\begin{equation*}
|\widetilde{T}| \geq|T| \geq\left|\widetilde{T}^{*}\right| \tag{2.1}
\end{equation*}
$$

Then Douglass theorem [8] implies

$$
\overline{\Re(\widetilde{T})}=\overline{\Re\left(\widetilde{T}^{*}\right)} \subset \overline{\Re(|T|)}=\overline{\Re|\widetilde{T}|}
$$

where $\overline{\mathscr{M}}$ denotes the norm closure of \mathscr{M}. Let $\widetilde{T}=W|\widetilde{T}|$ be the polar decomposition of \widetilde{T}. Then $E:=W^{*} W=U^{*} U \geq W W^{*}=: F$. Put

$$
\left|\widetilde{T}^{*}\right|=\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right), W=\left(\begin{array}{cc}
W_{1} & W_{2} \\
0 & 0
\end{array}\right)
$$

on $\mathscr{H}=\overline{\Re(\widetilde{T})} \oplus \operatorname{ker}\left(\widetilde{T}^{*}\right)$.
Then X is injective and has a dense range. Since \widetilde{T} is quasinormal, W commutes with $|\widetilde{T}|$ and

$$
\begin{aligned}
|\widetilde{T}| & =W^{*} W|\widetilde{T}|=W^{*}|\widetilde{T}| W \\
& \geq W^{*}|T| W \geq W^{*}\left|\widetilde{T^{*}}\right| W=|\widetilde{T}| .
\end{aligned}
$$

Hence

$$
|\widetilde{T}|=W^{*}|\widetilde{T}| W=W^{*}|T| W,
$$

and

$$
\begin{align*}
\left|\widetilde{T}^{*}\right| & =W|\widetilde{T}| W^{*}=W W^{*}|\widetilde{T}| W W^{*} \tag{2.2}\\
& =W W^{*}|T| W W^{*}=\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right) . \tag{2.3}
\end{align*}
$$

Since $W W^{*}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, (2.1), (2.2) and (2.3) imply that $|\widetilde{T}|$ and $|T|$ are of the forms

$$
|\widetilde{T}|=\left(\begin{array}{cc}
X & 0 \tag{2.4}\\
0 & Y
\end{array}\right) \geq|T|=\left(\begin{array}{cc}
X & 0 \\
0 & Z
\end{array}\right),
$$

where $\overline{\Re(Y)}=\overline{\Re(Z)}=\overline{\Re(|T|)} \ominus \overline{\Re(\widetilde{T})}=\operatorname{ker}\left(\widetilde{T^{*}}\right) \ominus \operatorname{ker}(T)$.
Since W commutes with $|\widetilde{T}|$,

$$
\left(\begin{array}{ll}
W_{1} & W_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right)=\left(\begin{array}{ll}
X & 0 \\
0 & Y
\end{array}\right)\left(\begin{array}{ll}
W_{1} & W_{2} \\
0 & 0
\end{array}\right) .
$$

So $W_{1} X=X W_{1}$ and $W_{2} Y=X W_{2}$, and hence $\overline{\Re\left(W_{1}\right)}$ and $\overline{\Re\left(W_{2}\right)}$ are reducing subspaces of X. Since $W^{*} W|\widetilde{T}|=|\widetilde{T}|$, we have $W_{1}^{*} W_{1}=1$ and

$$
\begin{aligned}
X^{k} & =W_{1}^{*} W_{1} X^{k}=W_{1}^{*} X^{k} W_{1}, \\
Y^{k} & =W_{2}^{*} W_{2} Y^{k}=W_{2}^{*} X^{k} W_{2} .
\end{aligned}
$$

Put $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$. Then $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=W|\widetilde{T}|$ implies

$$
\left(\begin{array}{ll}
X^{\frac{1}{2}} & 0 \\
0 & Z^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\left(\begin{array}{ll}
X^{\frac{1}{2}} & 0 \\
0 & Z^{\frac{1}{2}}
\end{array}\right)=\left(\begin{array}{cc}
W_{1} & W_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right) .
$$

Hence

$$
\begin{aligned}
X^{\frac{1}{2}} U_{11} X^{\frac{1}{2}} & =W_{1} X=X^{\frac{1}{2}} W_{1} X^{\frac{1}{2}}, \\
X^{\frac{1}{2}} U_{12} Z^{\frac{1}{2}} & =W_{2} Y=X W_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& X^{\frac{1}{2}}\left(U_{11}-W_{1}\right) X^{\frac{1}{2}}=0 \\
& X^{\frac{1}{2}}\left(U_{12} Z^{\frac{1}{2}}-X^{\frac{1}{2}} W_{2}\right)=0
\end{aligned}
$$

Since X is injective and has a dense range, $U_{11}=W_{1}$ is isometry and $U_{12} Z^{\frac{1}{2}}=$ $X^{\frac{1}{2}} W_{2}$ Then

$$
U^{*} U=\left(\begin{array}{cc}
U_{11}^{*} U_{l 1}+U_{21}^{*} U_{21} & U_{1 l}^{*} U_{l 2}+U_{21}^{*} U_{22} \\
U_{12}^{*} U_{l l}+U_{22}^{*} U_{21} & U_{12}^{*} U_{12}+U_{22}^{*} U_{22}
\end{array}\right)
$$

on $\mathscr{H}=\overline{\Re(\widetilde{T})} \oplus \operatorname{ker}\left(\widetilde{T}^{*}\right)$ is the orthogonal projection onto $\overline{\Re(|T|)} \supset \overline{\Re(\widetilde{T})}$ and

$$
U^{*} U=\left(\begin{array}{ll}
1 & 0 \\
0 & U_{l 2}^{*} U_{12}+U_{22}^{*} U_{22}
\end{array}\right)
$$

Since $U_{12} Z^{\frac{1}{2}}=X^{\frac{1}{2}} W_{2}$, we have

$$
Z \geq Z^{\frac{1}{2}} U_{12}^{*} U_{12} Z^{\frac{1}{2}}=W_{2}^{*} X W_{2}=Y
$$

and

$$
Z \geq Z^{\frac{1}{2}} U_{12}^{*} U_{12} Z^{\frac{1}{2}}=W_{2}^{*} X W_{2}=Y \geq Z
$$

by (2.4). Hence

$$
Z^{\frac{1}{2}} U_{12}^{*} U_{12} Z^{\frac{1}{2}}=Z=Y
$$

so $Z=Y$ and $|\widetilde{T}|=|T|$. Since

$$
\begin{aligned}
Z & =Z^{\frac{1}{2}} U_{12}^{*} U_{12} Z^{\frac{1}{2}} \\
& \leq Z^{\frac{1}{2}} U_{12}^{*} U_{12} Z^{\frac{1}{2}}+Z^{\frac{1}{2}} U_{22}^{*} U_{22} Z^{\frac{1}{2}} \leq Z
\end{aligned}
$$

$Z^{\frac{1}{2}} U_{22}^{*} U_{22} Z^{\frac{1}{2}}=0$ and $U_{22} Z^{\frac{1}{2}}=0$. This implies $\Re\left(U_{22}^{*}\right) \subset \operatorname{ker}(Z)$. Since $\Re\left(U_{12}^{*} U_{12}+U_{22}^{*} U_{22}\right) \subset \overline{\Re(Z)}$ and $U_{22}^{*} U_{22} \leq U_{12}^{*} U_{12}+U_{22}^{*} U_{22}$, we have $\Re\left(U_{22}^{*}\right) \subset$
$\Re(Z)$. Hence

$$
U_{22}=0, U=\left(\begin{array}{ll}
W_{1} & U_{12} \\
0 & 0
\end{array}\right)
$$

and

$$
\Re(U) \subset \overline{\Re(\widetilde{T})} \subset \overline{\Re(|T|)}=\Re(E)
$$

Since W commutes with $|\widetilde{T}|=|T|, W$ commutes with $|T|$ and

$$
\begin{aligned}
|T|^{\frac{1}{2}}(W-U)|T|^{\frac{1}{2}} & =W|T|^{\frac{1}{2}}|T|^{\frac{1}{2}}-|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \\
& =W|\widetilde{T}|-\widetilde{T}=0 .
\end{aligned}
$$

Hence $E(W-U) E=0$ and

$$
U=U E=E U E=E W E=W E=W
$$

Thus $U=W$ commutes with $|T|$ and T is quasinormal.

Corollary 2.2. Let $T=U|T|$ be a w-hyponormal operator T. If $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is normal, then T is also normal.
Proof. Since \widetilde{T} is normal, T is quasinormal by Theorem[2.1. Hence $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ $=U|T|$ and $\widetilde{T}^{*}=|T| U^{*}$. Hence $|T|^{2}=|\widetilde{T}|^{2}=|\widetilde{T}|^{2}=\left|T^{*}\right|^{2}$. This implies $|T|=\left|T^{*}\right|$ and T is normal.

3 Partial Isometry

In this section, we deals with a partial isometry, i.e., $V V^{*} V=V$. Let V be a quasinormal partial isometry. Then $V V^{*}$ is the orthogonal projection onto $V \mathcal{H}$ and $V^{*} V$ is the orthogonal projection onto $V^{*} \mathcal{H}$. Let $V=U|V|$ be the polar decomposition of V. Since $V=U$ and $|V|=V^{*} V$, we have

$$
\widetilde{V}=|V|^{\frac{1}{2}} U|V|^{\frac{1}{2}}=V^{*} V V V^{*} V=V
$$

Hence the Aluthge transform \widetilde{V} of V is a partial isometry and coincides with V . In this section, we deal with converse situation in which either \widetilde{T} is a partial isometry or $\widetilde{T}=T$. First we consider the situation in which \widetilde{T} is a partial isometry. We start with the following lemma, which is well known.
Lemma 3.1 (9]). If $0 \leq A \leq 1$, and $\|A x\|=\|x\|$. Then $A x=x$.
Lemma 3.2. Let $T=U|T|$ be a contraction and $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ a partial isometry. Then $\widetilde{T}=\widetilde{T}(s, t)=|T|^{s} U|T|^{t}$ for all $s, t>0$. In particular, $\operatorname{ker}(\widetilde{T})=$ $\operatorname{ker}(\widetilde{T}(1,1))=\operatorname{ker}\left(T^{2}\right)$.
Proof. Since \widetilde{T} is an isometry on $\Re\left(\widetilde{T^{*}}\right),\left\||T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} x\right\|=\|x\|$ for all $x \in \Re\left(\widetilde{T}^{*}\right)$. Since T is a contraction, $|T|^{\frac{1}{2}}$ is also contractions, hence we have

$$
|T|^{\frac{1}{2}} x=x,|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} x=|T|^{\frac{1}{2}} U x=U x
$$

by Lemma 3.1. Hence $|T|^{t} x=x,|T|^{s} U x=U x$ and $|T|{ }^{s} U|T|^{t} x=|T|{ }^{s} U x=U x$ for all $s, t>0$. Hence we have $\widetilde{T}=\widetilde{T}(s, t)=U$ on $\Re\left(\widetilde{T}^{*}\right)$. To prove the rest, it suffices to show that $\operatorname{ker}(\widetilde{T})=\operatorname{ker}(\widetilde{T}(s, t))$ because $\mathscr{H}=\Re\left(\widetilde{T}^{*}\right) \oplus \operatorname{ker}(\widetilde{T})$.
Since

$$
\begin{aligned}
|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} x & =0 \Leftrightarrow U|T|^{\frac{1}{2}} x \in \operatorname{ker} T=\operatorname{ker}|T| \\
& \Leftrightarrow|T|^{s} U|T|^{\frac{1}{2}} x=0
\end{aligned}
$$

we have $\widetilde{T}=\widetilde{T}\left(s, \frac{1}{2}\right)$. By using the same argument as above, we have $\widetilde{T}^{*}=\widetilde{T}\left(\frac{1}{2}, t\right)$ for all $t>0$. Hence

$$
\begin{aligned}
\operatorname{ker}(\widetilde{T}) & =\Re\left(\widetilde{T}^{*}\right)^{\perp}=\Re\left(\widetilde{T}^{*}\left(\frac{1}{2}, t\right)\right)^{\perp} \\
& =\operatorname{ker}\left(\widetilde{T}\left(\frac{1}{2}, t\right)\right)=\operatorname{ker}(\widetilde{T}(s, t))
\end{aligned}
$$

Thus $\widetilde{T}=\widetilde{T}(s, t)$. It is clear that $\operatorname{ker}(\widetilde{T}(1,1))=\operatorname{ker}\left(T^{2}\right)$.

Theorem 3.3. Let $T=U|T|$ be a contraction such that $\operatorname{ker}(T)=\operatorname{ker}\left(T^{2}\right)$. If \widetilde{T} is a partial isometry, then $T=\widetilde{T}=U$ and T is a quasinormal partial isometry.

Proof. By Lemma 3.2,

$$
\operatorname{ker}(\widetilde{T})=\operatorname{ker}\left(T^{2}\right)=\operatorname{ker}(T)=\operatorname{ker}(U)
$$

so $\Re\left(\widetilde{T}^{*}\right)=\overline{\Re\left(T^{*}\right)}=\overline{\Re(|T|)}$. Since $\widetilde{T}=U$ on $\operatorname{ran} \widetilde{T}^{*}=\overline{\Re(|T|)}$ and $\operatorname{ker}(\widetilde{T})=$ $\operatorname{ker}(U)=\mathscr{N}(T), \widetilde{T}=U$ because $\mathscr{H}=\overline{\Re(|T|)} \oplus \operatorname{ker}(T)$. This shows

$$
\Re(U)=\Re(\widetilde{T}) \subset \overline{\Re(|T|)}=\Re\left(U^{*} U\right)
$$

Thus $U=U U^{*} U=U^{*} U U$. Let

$$
|T|=\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right), \quad U^{*} U=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { on } \mathscr{H}=\overline{\Re(|T|)} \oplus \operatorname{ker}(T) .
$$

Since T is a contraction, we have $U^{*}|T| U \leq 1$ and $0 \leq X \leq 1$. Then

$$
U^{*} U=\widetilde{T}^{*} \widetilde{T}=|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}} \leq|T| \leq U^{*} U
$$

Hence $|T|=U^{*} U$ and $T=U|T|=U U^{*} U=U=\widetilde{T}$. Thus T is a quasinormal partial isometry.

Corollary 3.4. Let $T=U|T|$ be w-hyponormal operator. If \widetilde{T} is a partial isometry, then $\widetilde{T}=T$ and T is a quasinormal partial isometry.

Proof. Since $|\widetilde{T}|$ is a contraction and $|\widetilde{T}| \geq|T|$, it follows that T is a contraction and $\operatorname{ker}(T)=\operatorname{ker}(\widetilde{T})=\operatorname{ker}\left(T^{2}\right)$ by Lemma 3.2. Now the result follows from Theorem 3.3

Theorem 3.5. Let $T=U|T|$ and $T=\widetilde{T}$. Then the following assertions hold.
(i) $\left(T^{*} T\right)^{\frac{1}{2}}\left(T T^{*}\right)^{\frac{1}{2}}=T T^{*}$, hence $T^{*} T$ commutes with $T T^{*}$.
(ii) $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$.

Proof. (i) Since $T=\widetilde{T}$,

$$
U|T| U^{*}=\widetilde{T} U^{*}=U \widetilde{T}^{*}
$$

Hence $|T|$ commute with $\left|T^{*}\right|=U|T| U^{*}$ and

$$
\begin{aligned}
T T^{*} & =U|T| U^{*} U|T| U^{*} \\
& =|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=\left(T^{*} T\right)^{\frac{1}{2}}\left(T T^{*}\right)^{\frac{1}{2}}
\end{aligned}
$$

(ii) Part(i) implies that $\left(T^{*} T\right)^{\frac{1}{2}}\left(T T^{*}\right)^{\frac{1}{2}}=T T^{*}$ and so (ii) is immediate.

4 Fuglede-Putnam Type Theorem

A pair (T, S) is said to have the Fuglede-Putnam property if $T^{*} X=X S^{*}$ whenever $T X=X S$ for every $X \in \mathscr{L}(\mathscr{K}, \mathscr{H})$. The Fuglede-Putnam theorem is well-known in the operator theory. It asserts that for any normal operators T and S, the pair (T, S) has the Fuglede-Putnam property. There exist many generalization of this theorem which most of them go into relaxing the normality of T and S, see [9, 10, 11, 12, 13, 14, 15, and some references therein. The next lemma is concerned with the Fuglede-Putnam theorem and we need it in the future.

Lemma 4.1. (15]) Let $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K})$. Then the following assertions equivalent.
(i) The pair (T, S) has the Fuglede-Putnam property.
(ii) If $T X=S X$, then $\overline{\Re(X)}$ reduces $T, \operatorname{ker}(X)^{\perp}$ reduces S, and $\left.T\right|^{\Re(X)}$, $\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are unitarily equivalent normal operators.

Lemma 4.2. ([16]) Let A, B and C be positive operators, $0<p$ and $0<r \leq 1$. If $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq B^{r}$ and $B \geq C$, then $\left(C^{\frac{r}{2}} A^{p} C^{\frac{r}{2}}\right)^{\frac{r}{p+r}} \geq C^{r}$.

Lemma 4.3. Let T be a w-hyponormal operator and \mathscr{M} an invariant subspace of T. Then the restriction $\left.T\right|_{\mathscr{M}}$ is also w-hyponormal operator.
Proof. Let $T=\left(\begin{array}{ll}T_{1} & S \\ 0 & T_{2}\end{array}\right)$ on $\mathscr{H}=\mathscr{M} \oplus \mathscr{M}^{\perp}$ and P the orthogonal projection onto \mathscr{M}. Let $T_{0}=T P=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & 0\end{array}\right)$. Then $\left|T_{0}\right|=\left(P|T|^{2} P\right)^{\frac{1}{2}} \geq P|T| P$ by Hansens inequality, and $\left|T^{*}\right|^{2}=T T^{*} \geq T P T^{*}=\left|T_{0}^{*}\right|^{2}$. Hence, T is w hyponormal operator

$$
\begin{aligned}
& \Leftrightarrow\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\left|T^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \geq\left|T^{*}\right| \\
& \Rightarrow\left(\left|T_{0}^{*}\right|^{\frac{1}{2}}|T|\left|T_{0}^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \geq\left|T_{0}^{*}\right| \quad \text { (by Lemma 4.2) } \\
& \left.\Rightarrow\left(\left|T_{0}^{*}\right|^{\frac{1}{2}}\left|T_{0}\right|\left|T_{0}^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \geq\left|T_{0}^{*}\right| \quad \text { (since }\left|T_{0}^{*}\right|^{\frac{1}{2}}=\left|T_{0}^{*}\right|^{\frac{1}{2}} P=P\left|T_{0}^{*}\right|^{\frac{1}{2}}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
\left|T_{0}\right| & \geq\left(\left|T_{0}\right|^{\frac{1}{2}}\left|T^{*}\right|\left|T_{0}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \\
& \geq\left(\left|T_{0}\right|^{\frac{1}{2}}\left|T_{0}^{*}\right|\left|T_{0}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Therefore, $\left.T\right|_{\mathscr{M}}$ is w-hyponormal operator.
Lemma 4.4. Let $T \in \mathscr{L}(\mathscr{H})$ be a w-hyponormal operator with $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. Then $T=T_{1} \oplus T_{2}$ on $\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2}$ where T_{1} is normal, $\operatorname{ker}\left(T_{2}\right)=\{0\}$ and T_{2} is pure w-hyponormal i.e., T_{2} has no non-zero invariant subspace \mathscr{M} such that $\left.T_{2}\right|_{\mathscr{M}}$ is normal.

Lemma 4.5. Let $T=U|T| \in \mathscr{L}(\mathscr{H})$ be a w-hyponormal operator and $\operatorname{ker}(T) \subset$ $\operatorname{ker}\left(T^{*}\right)$. Suppose $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ be of the form $N \oplus T^{\prime}$ on $\mathscr{H}=\mathscr{M} \oplus \mathscr{M}^{\perp}$, where N is a normal operator on \mathscr{M}. Then $T=N \oplus T_{1}$ and $U=U_{11} \oplus U_{22}$ where T_{1} is w-hyponormal operator with $\operatorname{ker}\left(T_{1}\right) \subset \operatorname{ker}\left(T_{1}^{*}\right)$ and $N=U_{11}|N|$ is the polar decomposition of N

Proof. Since

$$
|\widetilde{T}| \geq|T| \geq\left|\widetilde{T}^{*}\right|
$$

we have

$$
|N| \oplus\left|T^{\prime}\right| \geq|T| \geq|N| \oplus\left|T^{\prime *}\right|
$$

by assumption. This implies that $|T|$ is of the form $|N| \oplus L$ for some positive operator L. Let $U=\left(\begin{array}{ll}U_{11} & U_{l 2} \\ U_{21} & U_{22}\end{array}\right)$ be 2×2 matrix representation of U with respect to the decomposition $\mathscr{H}=\mathscr{M} \oplus \mathscr{M}^{\perp}$. Then the definition \widetilde{T} means

$$
\left(\begin{array}{cc}
N & 0 \\
0 & T^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
|N|^{\frac{1}{2}} & 0 \\
0 & L^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{l 2} \\
U_{21} & U_{22}
\end{array}\right)\left(\begin{array}{cc}
|N|^{\frac{1}{2}} & 0 \\
0 & L^{\frac{1}{2}}
\end{array}\right)
$$

Hence, we have

$$
N=|N|^{\frac{1}{2}} U_{11}|N|^{\frac{1}{2}}, \quad|N|^{\frac{1}{2}} U_{12} L^{\frac{1}{2}}=0, \quad L^{\frac{1}{2}} U_{21}|N|^{\frac{1}{2}}=0
$$

Since $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$,

$$
\overline{\Re(U)}=\overline{\Re(T)}=\operatorname{ker}\left(T^{*}\right)^{\perp} \subset \operatorname{ker}(T)^{\perp}=\overline{\Re(|T|)} .
$$

Let $N x=0$ for $x \in \mathscr{M}$. Then $x \in \operatorname{ker}(|T|)=\operatorname{ker}(U)$, and

$$
U x=\left(\begin{array}{cc}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\binom{x}{0}=\binom{U_{11} x}{U_{21} x}=0
$$

Hence

$$
\operatorname{ker}(N) \subset \operatorname{ker}\left(U_{11}\right) \cap \operatorname{ker}\left(U_{21}\right)
$$

Let $x \in \mathscr{M}$. Then

$$
U\binom{x}{0}=\binom{U_{11} x}{U_{21} x} \in \overline{\Re(|T|)}=\overline{\Re(|N| \oplus L)}
$$

Hence

$$
\Re\left(U_{11}\right) \subset \Re(|N|), \Re\left(U_{21}\right) \subset \overline{\Re(L)}
$$

Similarly

$$
\Re\left(U_{12}\right) \subset \Re(|N|), \Re\left(U_{22}\right) \subset \overline{\Re(L)}
$$

Let $L x=0$ for $x \in \mathscr{M}^{\perp}$. Then $x \in \operatorname{ker}(|T|)=\operatorname{ker}(U)$ and

$$
U\binom{0}{x}=\binom{U_{12} x}{U_{22} x}=0
$$

Hence

$$
\operatorname{ker}(L) \subset \operatorname{ker}\left(U_{12}\right) \cap \operatorname{ker}\left(U_{22}\right)
$$

Let $N=V|N|$ be the polar decomposition of N. Then

$$
\left(V|N|^{\frac{1}{2}}-|N|^{\frac{1}{2}} U_{11}\right)|N|^{\frac{1}{2}}=0
$$

Hence $V|N|^{\frac{1}{2}}-|N|^{\frac{1}{2}} U_{11}=0$ on $\overline{\Re(|N|)}$. Since $\operatorname{ker}(N) \subset \operatorname{ker}\left(U_{11}\right)$, this implies $0=$ $V|N|^{\frac{1}{2}}-|N|^{\frac{1}{2}} U_{11}=|N|^{\frac{1}{2}}\left(V-U_{11}\right)$. Hence

$$
\Re\left(V-U_{11}\right) \subset \operatorname{ker}(|N|) \cap \overline{\Re(|N|)}=\{0\}
$$

Hence $V=U_{11}$ and $N=U_{11}|N|$ is the polar decomposition of N. Since $|N|^{\frac{1}{2}} U_{12} L^{\frac{1}{2}}=$ 0 ,

$$
\Re\left(U_{11} L^{\frac{1}{2}}\right) \subset \operatorname{ker}(|N|) \cap \overline{\Re(|N|)}=\{0\} .
$$

Hence $U_{12} L^{\frac{1}{2}}=0$ and $U_{12}=0$. Similarly we have $U_{21}=0$ by $L^{\frac{1}{2}} U_{21}|N|^{\frac{1}{2}}=0$. Hence $U=U_{11} \oplus U_{22}$. So we obtain

$$
T=U|T|=U_{11}|N| \oplus U_{22} L=N \oplus T_{1}
$$

where $T_{1}=U_{22} L$.
Lemma 4.6. Let $T \in \mathscr{L}(\mathscr{H})$ be w-hyponormal operator and $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. If L is self-adjoint and $T L=L T^{*}$, then $T^{*} L=L T$.
Proof. Since $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and $T L=L T^{*}, \operatorname{ker}(T)$ reduces T and L. Hence

$$
T=T_{1} \oplus 0, \quad L=L_{1} \oplus L_{2} \quad \text { on } \mathscr{H}=\overline{\Re\left(T^{*}\right)} \oplus k e r T
$$

$T_{1} L_{1}=L_{1} T_{1}^{*}$ and $\{0\}=\operatorname{ker}\left(T_{1}\right) \subset \operatorname{ker}\left(T_{1}^{*}\right)$. Since $\overline{\Re\left(L_{1}\right)}$ is invariant under T_{1} and reduces L_{1},

$$
T_{1}=\left(\begin{array}{ll}
T_{11} & S \\
0 & T_{22}
\end{array}\right), \quad L_{1}=L_{11} \oplus 0 \text { on } \overline{\Re\left(T^{*}\right)}=\overline{\Re\left(L_{1}\right)} \oplus \operatorname{ker}\left(L_{1}\right)
$$

T_{11} is an injective w-hyponormal operator by Lemma 4.4 and L_{11} is an injective self-adjoint operator (hence it has dense range) such that $T_{11} L_{11}=L_{11} T_{11}^{*}$. Let $T_{11}=V_{11}\left|T_{11}\right|$ be the polar decomposition of T_{11} and $\widetilde{T}_{11}=\left|T_{11}\right|^{\frac{1}{2}} V_{11}\left|T_{11}\right|^{\frac{1}{2}}, W=$ $\left|T_{11}\right|^{\frac{1}{2}} L_{11}\left|T_{11}\right|^{\frac{1}{2}}$. Then

$$
\begin{aligned}
\widetilde{T}_{11} W & =\left|T_{11}\right|^{\frac{1}{2}} V_{11}\left|T_{11}\right| L_{11}\left|T_{11}\right|^{\frac{1}{2}} \\
& =\left|T_{11}\right|^{\frac{1}{2}} T_{11} L_{11}\left|T_{11}\right|^{\frac{1}{2}}=\left|T_{11}\right|^{\frac{1}{2}} L_{11} T_{11}^{*}\left|T_{11}\right|^{\frac{1}{2}} \\
& =\left|T_{11}\right|^{\frac{1}{2}} L_{11}\left|T_{11}\right|^{\frac{1}{2}}\left|T_{11}\right|^{\frac{1}{2}} V_{11}^{*}\left|T_{11}\right|^{\frac{1}{2}} \\
& =W \widetilde{T}_{11}^{*} .
\end{aligned}
$$

Since \widetilde{T}_{11} is semi-hyponormal and $\Re(W)$ is dense (because $\operatorname{ker}(W)=\{0\}$), \widetilde{T} is normal by [14, Theorem 2.6]. Hence T_{11} is normal and $T_{11}=\widetilde{T}_{11}$ by Corollary
2.2. Then $\overline{\Re\left(L_{1}\right)}$ reduces T_{1} by Lemma 4.4 and $T_{11}^{*} L_{11}=L_{11} T_{11}$ by Lemma 4.1 . Hence

$$
\begin{aligned}
& T=T_{11} \oplus T_{22} \oplus 0 \\
& L=L_{11} \oplus 0 \oplus L_{2}
\end{aligned}
$$

and

$$
T^{*} L=T_{11}^{*} L_{11} \oplus 0 \oplus 0=L_{11} T_{11} \oplus 0 \oplus 0=L T
$$

Corollary 4.7. Let $T \in \mathscr{L}(\mathscr{H})$ be w-hyponormal operator and $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$. If $T X=X T^{*}$ for some $X \in \mathscr{L}(\mathscr{H})$ then $T^{*} X=X T$.

Proof. Let $X=L+i J$ be the Cartesian decomposition of X. Then we have $T L=L T^{*}$ and $T J=J T^{*}$ by the assumption. By Lemma 4.6, we have $T^{*} L=L T$ and $T^{*} J=J T$. This implies that $T^{*} X=X T$.
Corollary 4.8. Let $T \in \mathscr{L}(\mathscr{H}), S^{*} \in \mathscr{L}(\mathscr{H})$ be w-hyponormal operators and $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right), \operatorname{ker}\left(S^{*}\right) \subset \operatorname{ker}(S)$. If $S X=X T$ for some $X \in \mathscr{L}(\mathscr{K}, \mathscr{H})$, then $T^{*} X=X S^{*}$. Moreover, Then $\overline{\Re(X)}$ reduces $T, \operatorname{ker}(X)^{\perp}$ reduces S and $\left.T\right|_{\overline{\Re(X)}}$, $\left.S\right|_{\operatorname{ker}(X) \perp}$ are unitarily equivalent normal operators.
Proof. Put $A=\left(\begin{array}{ll}S^{*} & 0 \\ 0 & T\end{array}\right)$ and $Y=\left(\begin{array}{ll}0 & 0 \\ X & 0\end{array}\right)$ on $\mathscr{H} \oplus \mathscr{K}$. Then A is w hyponormal operator with $\operatorname{ker}(A) \subset \operatorname{ker}\left(A^{*}\right)$, which satisfies $A Y=Y A^{*}$. Hence we have $A^{*} Y=Y A$ by Corollary 4.7 and hence $T^{*} X=X S^{*}$.

Now since $T^{*} X=X S^{*}$, then $T^{*} T X=X S^{*} S$ and so $|T| X=X|S|$. Let $T=U|T|, S=V|S|$ be polar decomposition. Then $U X|S|=U|T| X=T X=$ $X S=X V|S|$. Let $x \in \operatorname{ker}(|S|)$. Then $V x=0$ and $T X x=X S x=0$. Hence $X x \in \operatorname{ker}(T)=\operatorname{ker}(U)$ and $U X x=0$. Hence $U X=X V$. Since $\operatorname{ker}(U)=\operatorname{ker}(T) \subset$ $\operatorname{ker}\left(T^{*}\right)=\operatorname{ker}\left(U^{*}\right), U U^{*} \leq U^{*} U$. Hence $U^{*} U U=U^{*} U U U^{*} U=U U^{*} U=U$. This implies U and V^{*} are quasinormal. Hence $U^{*} X=X V^{*}, \overline{\Re(X)}$ reduces $U,|T|, \operatorname{ker}(X)^{\perp}$ reduces $V,|S|$. Since S, T^{*} are class w-hyponormal operators with reducing kernels. Let $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}, \widetilde{S}=\left.|S|^{\frac{1}{2}} V\right|^{\frac{1}{2}}$. Then $\widetilde{T}, \widetilde{S}^{*}=$ $\left|S^{*}\right|^{\frac{1}{2}} V^{*}\left|S^{*}\right|^{\frac{1}{2}}=V \widetilde{S}^{*} V^{*}$ are semi-hyponormal. Also, since $\left|(\widetilde{S})^{*}\right|-|\widetilde{S}|=V^{*}\left(\left|\widetilde{S}{ }^{*}\right|-\right.$ $\left.\left|\left(\widetilde{S}^{*}\right)^{*}\right|\right) V \geq 0, \widetilde{S}^{*}$ is semi-hyponormal, too. Then

$$
\begin{aligned}
\widetilde{T} X & =|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} X=|T|^{\frac{1}{2}} U X|S|^{\frac{1}{2}} \\
& =|T|^{\frac{1}{2}} X V|S|^{\frac{1}{2}}=X \widetilde{S},
\end{aligned}
$$

hence $\widetilde{T}^{*} X=X \widetilde{S}^{*}, \overline{\Re(X)}$ reduces $\widetilde{T}, \operatorname{ker}(X)^{\perp}$ reduces \widetilde{S} and $\left.\widetilde{T}\right|_{\overparen{\Re(X)}},\left.\widetilde{S}\right|_{\operatorname{ker}(X)^{\perp}}$ are unitarily equivalent normal operators. Hence $\left.T\right|_{\overline{\Re(X)}},\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are normal operators by Corollary [2.2, and that they are unitarily equivalent follows from the fact that if $N=U|N|$ are $M=W|M|$ are normal operators, then for a unitary operator $V, N=V^{*} M V$ if and only if $U=V^{*} W V$ and $|N|^{\frac{1}{2}}=V^{*}|M|^{\frac{1}{2}} V$.

Theorem 4.9. Let $T=U|T| \in \mathscr{L}(\mathscr{H})$ be a w-hyponormal operator and N a normal operator. Let TX=XN. Then the following assertions hold.
(i) If the range $\Re(X)$ is dense, then T is normal.
(ii) If $\operatorname{ker}\left(X^{*}\right) \subset \operatorname{ker}\left(T^{*}\right)$, then T is quasinormal.

Proof. Let $Z=|T|^{\frac{1}{2}} X$. Then

$$
\begin{aligned}
\widetilde{T} Z & =|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}|T|^{\frac{1}{2}} X=|T|^{\frac{1}{2}} T X \\
& =|T|^{\frac{1}{2}} X N=Z N
\end{aligned}
$$

Since \widetilde{T} is semi-hyponormal, we have

$$
\widetilde{T}^{*} Z=Z N^{*}
$$

by (14. Hence

$$
\begin{aligned}
& \left(\widetilde{T}^{*} \widetilde{T}-\widetilde{T} \widetilde{T}^{*}\right)|T|^{\frac{1}{2}} X \\
& =\widetilde{T}^{*} \widetilde{T} Z-\widetilde{T} T^{*} Z \\
& =\widetilde{T}^{*} Z N-\widetilde{T} Z N^{*}=Z N^{*} N-Z N N^{*}=0
\end{aligned}
$$

(i) If $\Re(X)$ is dense, then

$$
\left(\widetilde{T}^{*} \widetilde{T}-\widetilde{T} \widetilde{T}^{*}\right)|T|^{\frac{1}{2}}=0
$$

Since

$$
\operatorname{ker}\left(|T|^{\frac{1}{2}}\right) \subset \operatorname{ker}(\widetilde{T}) \cap \operatorname{ker}\left(\widetilde{T}^{*}\right)
$$

this implies \widetilde{T} is normal. Hence T is normal by Corollary 2.2,
(ii) Let $X^{*}|T|^{\frac{1}{2}} x=0$. Then $|T|^{\frac{1}{2}} x \in \operatorname{ker}\left(X^{*}\right) \subset \operatorname{ker}\left(T^{*}\right)=\operatorname{ker}\left(U^{*}\right)$ and $\widetilde{T}^{*} x=$ $|T|^{\frac{1}{2}} U^{*}|T|^{\frac{1}{2}} x=0$. Hence $\operatorname{ker}\left(X^{*}|T|^{\frac{1}{2}}\right) \subset \widetilde{T}^{*}$ and $\overline{\Re(\widetilde{T})} \subset \overline{\Re\left(|T|^{\frac{1}{2}} X\right)}$. Hence

$$
\left(\widetilde{T}^{*} \widetilde{T}-\widetilde{T} \widetilde{T}^{*}\right) \widetilde{T}=0
$$

by (i). This implies \widetilde{T} is quasinormal, and T is quasinormal by Theorem 2.1,
Following [17], an operator $T \in \mathscr{L}(\mathscr{H})$ is said to be a class \mathcal{Y}_{α} operator for $\alpha \geq 0$ if there exists a positive number k_{α} such that

$$
\left|T T^{*}-T^{*} T\right|^{\alpha} \leq k_{\alpha}^{2}(T-\lambda)^{*}(T-\lambda) \text { for all } \lambda \in \mathbb{C} .
$$

It is known that $\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\beta}$ if $1 \leq \alpha \leq \beta$. Let $\mathcal{Y}=\bigcup_{\alpha \geq 1} \mathcal{Y}_{\alpha}$. We remark that a class \mathcal{Y}_{1} operator T is M-hyponormal and M-hyponormal operators are class \mathcal{Y}_{2} operators.

Lemma 4.10. ([17]) Let $T \in \mathscr{L}(\mathscr{H})$ be a class \mathcal{Y} and $\mathscr{M} \subset \mathscr{H}$ invariant under T. If $\left.T\right|_{\mathscr{M}}$ is normal, then \mathscr{M} reduces T.

Lemma 4.11. ([17) If $T \in \mathcal{Y}_{\alpha}$ for some $\alpha \geq 1$ and if, for a closed set $S \subseteq \mathbb{C}$, there exists a bounded function $f(z): \mathbb{C} \backslash S \longrightarrow \mathscr{H}$ and a non-zero $x \in \mathscr{H}$ such that $(T-z) f(z) \equiv x$, then $g(z)=(I-E(\{0\})) f(z)$ is analytic on $\mathbb{C} \backslash S$ where $E($. denotes the spectral measure of $\left|T T^{*}-T^{*} T\right|^{\frac{\alpha}{2}}$. Moreover, if $0 \notin \sigma_{p}\left(T T^{*}-T^{*} T\right)$, then $f(z)$ is analytic on $\mathbb{C} \backslash S$.

Theorem 4.12. Let $T \in \mathscr{L}(\mathscr{H})$ be an invertible w-hyponormal operator and $S^{*} \in \mathscr{L}(\mathscr{K})$ be class \mathcal{Y}. If $T X=X S$ for some $X \in \mathscr{L}(\mathscr{K}, \mathscr{H})$, then $T^{*} X=$ $X S^{*}$. Moreover, $\overline{\Re(X)}$ reduces T, $\operatorname{ker}(X)^{\perp}$ reduces S, and $\left.T\right|_{\Re(X)},\left.S\right|_{\operatorname{ker}(X) \perp}$ are unitarily equivalent normal operators.

Proof. Since S^{*} is class \mathcal{Y}, then there exist positive numbers α and k_{α} such that

$$
\left|S S^{*}-S^{*} S\right|^{\alpha} \leq k_{\alpha}^{2}(S-\lambda)(S-\lambda)^{*}, \text { for all } \lambda \in \mathbb{C}
$$

Hence for $x \in\left|S S^{*}-S^{*} S\right|^{\frac{\alpha}{2}} \mathscr{K}$ there exists a bounded function $f: \mathbb{C} \longrightarrow \mathscr{K}$ such that

$$
(S-\lambda) f(\lambda)=x, \text { for all } \lambda \in \mathbb{C}
$$

by [8]. Let $T=U|T|$ be the polar decomposition of T, then the Aluthge transform $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is semi-hyponormal by [6]. Then

$$
\begin{aligned}
(\widetilde{T}-\lambda)|T|^{\frac{1}{2}} X f(\lambda) & =|T|^{\frac{1}{2}}(T-\lambda) X f(\lambda) \\
& =|T|^{\frac{1}{2}} X(S-\lambda) f(\lambda), \text { for all } \lambda \in \mathbb{C}
\end{aligned}
$$

We claim that $|T|^{\frac{1}{2}} X x=0$. Because if $|T|^{\frac{1}{2}} X x \neq 0$, there exists a bounded entire analytic function $g: \mathbb{C} \longrightarrow \mathscr{H}$ such that $(\widetilde{T}(s, t)-\lambda) g(\lambda)=|T|^{s} X x$ by Lemma 4.11. Since

$$
g(\lambda)=(\widetilde{T}-\lambda)^{-1}|T|^{\frac{1}{2}} X x \longrightarrow 0 \text { as } \lambda \longrightarrow \infty
$$

we have $g(\lambda)=0$ by Liouville's theorem, and hence $|\widetilde{T}|^{\frac{1}{2}} X x=0$. This is a contradiction. Thus

$$
|T|^{\frac{1}{2}} X\left|S S^{*}-S^{*} S\right|^{2 n-1} \mathscr{K}=\{0\}
$$

Since $\operatorname{ker}(T)=\operatorname{ker}(|T|)=\{0\}$, we have

$$
X\left(S S^{*}-S^{*} S\right)=0
$$

Since $\overline{\Re(X)}$ is invariant under T and $\operatorname{ker}(X)^{\perp}$ is invariant under S^{*}. We consider the following decompositions

$$
\mathscr{H}=\overline{\Re(X)} \oplus \overline{\Re(X)}^{\perp}, \mathscr{K}=\operatorname{ker}(X)^{\perp} \oplus \operatorname{ker}(X)
$$

then we have

$$
T=\left(\begin{array}{cc}
T_{1} & A \\
0 & T_{2}
\end{array}\right), \quad S=\left(\begin{array}{cc}
S_{1} & 0 \\
B & S_{2}
\end{array}\right)
$$

and

$$
X=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right): \operatorname{ker}(X)^{\perp} \oplus \operatorname{ker}(X) \longrightarrow \overline{\Re(X)} \oplus \overline{\Re(X)}{ }^{\perp}
$$

Then

$$
\begin{aligned}
0 & =X\left(S S^{*}-S^{*} S\right) \\
& =\left(\begin{array}{cc}
X_{1}\left(S_{1} S_{1}^{*}-S_{1}^{*} S_{1}-B^{*} B\right) & X_{1}\left(S_{1} B^{*}-B^{*} S_{2}\right) \\
0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
X_{1}\left(S_{1} S_{1}^{*}-S_{1}^{*} S_{1}-B^{*} B\right)=0
$$

Since X_{1} is injective with dense range, we have

$$
S_{1} S_{1}^{*}-S_{1}^{*} S_{1}-B^{*} B=0
$$

and

$$
S_{1} S_{1}^{*}=S_{1}^{*} S_{1}+B^{*} B \geq S_{1}^{*} S_{1}
$$

This implies that B_{1}^{*} is hyponormal. Since $T X=X S$, we have

$$
T_{1} X_{1}=X_{1} S_{1}
$$

where T_{1} is w-hyponormal by Lemma 4.3. Hence T_{1}, S_{1} are normal and

$$
T_{1}^{*} X_{1}=X_{1} S_{1}^{*}
$$

by 4.1. Then $A=0$ by Lemma 4.4 and $B=0$ by Lemma 4.10. Hence

$$
T^{*} X=\left(\begin{array}{cc}
T_{1}^{*} X_{1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
X_{1} S_{1}^{*} & 0 \\
0 & 0
\end{array}\right)=X S^{*}
$$

Hence $\left.T\right|_{(\Re(X))},\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are normal by Lemma 4.1.
Theorem 4.13. Let $T \in \mathscr{L}(\mathscr{H})$ and $S^{*} \in \mathscr{L}(\mathscr{K})$. If either (i) T is a whyponormal operator such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and S^{*} is a class \mathcal{Y} operator or (ii) T is a class \mathcal{Y} operator and S^{*} is a w-hyponormal operator such that $\operatorname{ker}\left(S^{*}\right) \subset \operatorname{ker}(S)$, if $T X=X S$ for some operator $X \in \mathscr{L}(\mathscr{K}, \mathscr{H})$, then $T^{*} X=$ $X S^{*}$. Moreover, $\Re(X)$ reduces T, $\operatorname{ker}(X)^{\perp}$ reduces S, and $\left.T\right|_{(\Re(X))},\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are unitarily equivalent normal operators.

Proof. (i) Decompose T and S^{*} into their normal and pure parts as in Lemma 4.4 and [17. Then we have

$$
\begin{aligned}
T & =N \oplus A \quad \text { on } \quad \mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2} \\
S^{*} & =M^{*} \oplus B^{*} \quad \text { on } \quad \mathscr{K}=\mathscr{K}_{1} \oplus \mathscr{K}_{2}
\end{aligned}
$$

and

$$
X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right): \mathscr{K}=\mathscr{K}_{1} \oplus \mathscr{K}_{2} \longrightarrow \mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2}
$$

where N, M are normal, A is a w-hyponormal and B^{*} is class \mathcal{Y}. Then $T X=X S$ implies that

$$
\left(\begin{array}{ll}
N X_{11} & N X_{12} \\
A X_{21} & A X_{22}
\end{array}\right)=\left(\begin{array}{ll}
X_{11} M & X_{12} B \\
X_{21} M & X_{22} B
\end{array}\right)
$$

Let $A=U_{2}|A|$ be the polar decomposition of A and $\widetilde{A}=|A|^{\frac{1}{2}} U_{2}|A|^{\frac{1}{2}}, W=$ $|A|^{\frac{1}{2}} X_{22}$. Then

$$
\begin{aligned}
\widetilde{A} W & =|A|^{\frac{1}{2}} U_{2}|A|^{\frac{1}{2}}|A|^{\frac{1}{2}} X_{22} \\
& =|A|^{\frac{1}{2}} U_{2}|A| X_{22} \\
& =|A|^{\frac{1}{2}} X_{22}\left(B^{*}\right)^{*}=W\left(B^{*}\right)^{*}
\end{aligned}
$$

Since A is a w-hyponormal operator, then \widetilde{A} is semi-hyponormal operator, B^{*} is a class \mathcal{Y}. Hence it follows from [18, Theorem 7] that $\overparen{\Re(W)}$ reduces $\widetilde{A}, \operatorname{ker}(W)^{\perp}$ reduces B^{*} and $\left.\widetilde{A}\right|_{\Re(W)},\left.B^{*}\right|_{\operatorname{ker}(W) \perp}$ are unitarily equivalent normal operators. Since A and B^{*} are pure, we have $W=0$ by Lemma 4.4 and Lemma 4.10 Then $X_{22}=0$ as A, B^{*} are injective. Since $A X_{21}=X_{21} M$ and $N X_{12}=X_{12} B$ we have $X_{21} M=0$ and $N X_{12}=0$ by similar arguments. Then $T X=X S$ implies

$$
\left(\begin{array}{cc}
N X_{11} & 0 \\
A X_{21} & 0
\end{array}\right)=\left(\begin{array}{cc}
X_{11} M & X_{12} B \\
0 & 0
\end{array}\right)
$$

and $X_{12}=X_{21}=0$. Hence $X=\left(\begin{array}{cc}X_{11} & 0 \\ 0 & 0\end{array}\right)$ and

$$
\Re(X)=\Re\left(X_{11}\right) \oplus\{0\}, \operatorname{ker}(X)^{\perp}=\operatorname{ker}\left(X_{11}\right)^{\perp} \oplus\{0\}
$$

Since $N X_{11}=X_{11} M$, we have $N^{*} X_{11}=X_{11} M^{*}, \overline{\Re\left(X_{11}\right)}$ reduces N, $\operatorname{ker}\left(X_{11}\right)^{\perp}$ reduces $M,\left.N\right|^{\Re\left(X_{11}\right)},\left.M\right|_{\operatorname{ker}\left(X_{11}\right)^{\perp}}$ are unitarily equivalent normal operators. Then $\left.\left.N\right|_{\overline{\Re(X)}} \cong N\right|_{\overline{\Re\left(X_{11}\right)}},\left.\left.M\right|_{\operatorname{ker}(X)^{\perp}} \cong M\right|_{\operatorname{ker}\left(X_{11}\right)^{\perp}}$ imply that $T^{*} X=X S^{*}, \overline{\Re(X)}$ reduces $T, \operatorname{ker}(X)^{\perp}$ reduces $S,\left.T\right|_{\Re(X)},\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are unitarily equivalent normal operators.
(ii) Since $T X=X S$, we have $S^{*} X^{*}=X^{*} T^{*}$. Hence $S X^{*}=S^{* *} X^{*}=X^{*} T^{* *}$ by part (i) and $T^{*} X=X S^{*}$. The rest of the proof follows from Lemma 4.1

Corollary 4.14. Let $T \in \mathscr{L}(\mathscr{H})$. Then T is normal if and only if either (i) T is a w-hyponormal operator such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and T^{*} is a class \mathcal{Y} operator or (ii) T is a class \mathcal{Y} operator and T^{*} is a w-hyponormal operator such that $\operatorname{ker}\left(S^{*}\right) \subset \operatorname{ker}(S)$.

Corollary 4.15. Let $T \in \mathscr{L}(\mathscr{H})$ and $S^{*} \in \mathscr{L}(\mathscr{K})$ be such that $T X=X S$. If either T is pure w-hyponormal such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and S^{*} is class \mathcal{Y} or T is w-hyponormal such that $\operatorname{ker}(T) \subset \operatorname{ker}\left(T^{*}\right)$ and S^{*} is pure class \mathcal{Y}, then $X=0$.

Proof. The hypotheses imply that $T X=X S$ and $T^{*} X=X S^{*}$ simultaneously by Theorem 4.13. Therefore $\left.T\right|_{\overline{\Re(X)}}$ and $\left.S\right|_{\operatorname{ker}(X)^{\perp}}$ are unitarily equivalent normal operators, which contradicts the hypotheses that T or S^{*} is pure. Hence we must have $X=0$.

References

[1] A. Aluthge, On p-hyponormat operators for $0<p<1$, Integral Equation Operater Theory 13 (1990) 307-315.
[2] M. Fujii, S. Izumino, R. Nakamoto, classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J. 5 (1994) 61-67.
[3] T. Furuta, M. Ito, T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes. Sci. math. 1 (1998) 389403.
[4] I. H. Jeon, J.I. Lee, A. Uchiyama, On p-quasihyponormal operators and quasisimilarity. Math. Ineq. App. 6 (2) (2003) 309-315.
[5] T. Ando, Operators with norm condition, Acta. Sci. Math. 33 (4) (1972) 359-365.
[6] A. Aluthge, D. Wang, w-Hyponormal operators. Integral Equation Operator Theory 36 (2000) 1-10.
[7] S. M. Patel, A note on p-hyponormal operators for $0<p<1$, Integral Equations and Operator Theory 21 (1995) 498-503.
[8] R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-415.
[9] S.M. Patel, K. Tanahashi, A. Uchiyama, M. Yanagida, Quasinormality and Fuglede-Putnam theorem for class $A(s, t)$ operators, Nihonkai Math. J 17 (2006) 49-67.
[10] M. Radjabalipour, An extension of Putnam-Fuglede theorem for hyponormal operators, Math. Z. 194 (1987) 117120.
[11] M.H.M. Rashid, Class $w A(s, t)$ operators and quasisimilarity, Portugaliae Math. 69 (4) (2012) 305-320, DOI: 10.4171/PM/1919.
[12] M.H.M. Rashid, An Extension of Fuglede-Putnam Theorem for wHyponormal Operators, Afr. Diaspora J. Math. 14 (1) (2012) 106-118.
[13] M.H.M. Rashid, Fuglede-Putnam type theorems via the generalized Aluthge transform, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 108 (2) (2014) 1021-1034.
[14] A. Uchiyama, K. Tanahashi, Fuglede-Putnam theorem for p-hyponormal or log-hyponormal operators, Glassgow Math. Jour. 44 (2002) 397-410.
[15] K. Takahashi, On the converse of Putnam-Fuglede theorem, Acta Sci. Math.(Szeged) 43 (1981) 123-125.
[16] M. Yanagida, Powers of class $w A(s, t)$ operators with generalized Aluthge transformation, J. Inequal. Appl. 7 (2002) 143-168.
[17] A. Uchiyama, T. Yochino, On the class \mathcal{Y} operators, Nihonkai. Math. J. 8 (1997) 174-179.
[18] S. Mecheri, K. Tanahashi, A. Uchiyama, Fuglede-Putnam theorem for phyponormal or class \mathcal{Y} operators, Bull. Korean. Math. Soc. 43 (2006) 747-753.
(Received 26 October 2012) (Accepted 11 May 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

