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Abstract : We investigate several properties of Aluthge transform T’ = |T|2U|T|2

of an operator T' = U|T| . We prove (i) if T is a w-hyponormal operator and T
is quasi-normal (resp., normal), then T is quasi-normal (resp., normal), (ii) if 7" is
a contraction with ker 7' = ker 72 and T is a partial isometry, then T is a quasi-
normal partial isometry, and (iii) we show that if either (a) T is a w-hyponormal
operator such that ker(7T') C ker(7T*) and S* is w-hyponormal operator such that
ker(S*) C ker(S) or (b) T is an invertible w-hyponormal operator and S* is w-
hyponormal operator or (¢) T is a w-hyponormal such that ker(7") C ker(7T*) and
S* is a class Y, then the pair (7', 5) satisfy Fuglede-Putnam property.
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1 Introduction

For complex infinite dimensional Hilbert spaces 5 and %, L (), L (X)
and Z(A, #) denote the set of bounded linear operators on J#, the set of
bounded linear operators on % and the set of bounded linear operators from
A to K, respectively. Every operator T' can be decomposed into T' = U|T'| with
a partial isometry U, where |T'| is the square root of T*T. If U is determined
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uniquely by the kernel condition ker(U) = ker(|T]), then this decomposition is
called the polar decomposition, which is one of the most important results in oper-
ator theory ( [I] and [2]). In this paper, T'= U|T| denotes the polar decomposition
satisfying the kernel condition ker(U) = ker(|T|).

Recall that an operator T € Z() is positive, T > 0, if (Tx,x) > 0 for
all x € #. An operator T € £() is said to be hyponormal if T*T > TT*.
Hyponormal operators have been studied by many authors and it is known that hy-
ponormal operators have many interesting properties similar to those of normal op-
erators ( [3] and [4] ). An operator T is said to be p-hyponormal if(T*T)P > (TT*)?
for p € (0,1] and an operator T is said to be log-hyponormal if T is invertible and
log |T'| > log |T*|. p-hyponormal and log-hyponormal operators are defined as ex-
tension of hyponormal operator. An operator T' € Z(4¢) is said to be paranormal
if it satisfies the following norm inequality HTQH |z|| > ||Tx|? for all 2 € 2#. Ando
[5] proved that every log-hyponormal operators is paranormal. Recall [6], an oper-
ator T € () is called w-hyponormal if |T| > |T| > |T*|, where T = |T|2U|T|2
is the Aluthge transformation. The classes of log- and w-hyponormal operators
were introduced, and their properties were studied in [6]. In particular, it was
shown in [6] that the class of w-hyponormal operators contains both p-and log-
hyponormal operators.

2 Quasinormality

Let T = U|T| be the polar decomposition of T' € £ () . T is said to be
quasinormal if |[T|U = U|T| , or equivalently, TT*T = T*TT. Patel [7] proved
that if 7" is p-hyponormal and its Aluthge transform T = |T|%U |T|% is normal,
then 7 is normal and 7 = T. Aluthge and Wang [6] proved that if T is w-
hyponormal, ker(T') C ker(7T™*) and its Aluthge transform T is normal, then T is
normal and T = 7. The following is a generalization of these results.

Theorem 2.1. Let T' be a w-hyponormal operator with the polar decomposition
T =U|T|. If T is quasinormal, then T is also quasinormal. Hence T coincides
with, its Aluthge transform T = |T|2U|T)z.

Proof. Since T is a w-hyponormal operator,
T| = |T| = |T7 (2.1)

Then Douglass theorem [§] implies

R(T) = R(T*) C R(T]) = RIT|

where . denotes the norm closure of .# . Let T = W|7~“| be the polar decompo-
sition of T. Then E := W*W =U*U > WW* =: F. Put

. (X 0 (W W
mi=(a )= ( )
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on A = R(T) & ker(T™).
Then X is injective and has a dense range. Since 1" is quasinormal, W commutes
with |T'| and
IT| = W*W|T| = W*|T|W
> WHT|W > WH*T*|W = |T.

Hence N N
T =WHT|W = W*|T|W,
and
|T*| = W|T|W* = WW*|T|WW* (2.2)
— WWHTIWW = < ~ ) . (2.3)

Since WIW* = ( (1) 8 > , (@I, @2) and ([Z3) imply that |T| and |T| are of the

forms
~ X 0 X 0
A=(o % )zm=(o %) 24)

where R(Y) = R(Z) = R(T) & R(T) = ker(T™*) & kex(T).
Since W commutes with |T| ,

Wy, Wh X 0 (X 0 Wy Wh

0 0 0 Y ) {0 Y 0 0 '
So W1 X = XW; and WoY = XW, , and hence R(W7) and R(W3) are reducing
subspaces of X . Since W*W|T'| = |T| , we have W;W; =1 and

Xk =wrw xP =wyxtw,,
YF = WyWoY* = Wy XFWs.

Put U = U Uiy . Then T = |T|2U|T|z = W|T| implies
Uz Us2
Xz 0 U U Xz 0 \ (W W, X 0
0 Z: U Uz o zz) \0 0 0o Y )
Hence

XU X2 =WiX =X2W, Xz,
X2U ;527 = WoY = XWs
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and

=

X
X

(U1 — W1)X% =0,
(U227 — X7 W3) =0

=

ol
I

Since X is injective and has a dense range, Uy; = Wi is isometry and U372
1
X2Ws Then

Ul — U Un + Us1Ua1 UfUi + U3y Uss
ULbUy +Us5U1 UfZUiz + UsyUsa

on S = R(T) & ker(T*) is the orthogonal projection onto R(|T]) D R(T) and
1 0
UU = .
( 0 Ul*QUlg + U52U22 )
Since Ung% = X%WQ , we have

Z > Z3UU1aZ% = WiXW,y =Y,

and ) )
Z > 7307501222 = W5 XWo =Y > Z

by (Z4]). Hence
Z3UU 27 = Z =,

so Z =Y and |T| = |T| . Since
7 =2:UUn 22
< Z3UUZ7% + Z3ULU»nZ? < Z
Z1U5UsZ2 = 0 and UpyZz = 0 . This implies R(U3,) C ker(Z). Since

RULHU2 + UsyUzz) € R(Z) and UsyUso < UtyUig 4 UsyUsz, we have R(Usy) C
(Z) . Hence

3

_ (W1 Ur2
oo (1 0)

and

R(U) € R(T) c R(T]) = R(E).

Since W commutes with || = |T'|, W commutes with |T'| and

T2 (W = U)|T|2 = W|T|?|T|> — |T|>U|T|>
=W|T|-T =0.
Hence E(W — U)E =0 and
U=UF=FUE=FEWE=WE=W.

Thus U = W commutes with |T| and T is quasinormal. O
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Corollary 2.2. Let T = U|T| be a w-hyponormal operator T. If T = |T|2U|T)z
is normal, then T is also normal.

Proof. Since T is normal, T is quasinormal by TheoremPZIl Hence T = |T|2U|T|z
= U|T| and T* = |T|U*. Hence |T|? = |T|? = |T*|> = |T*|%. This implies
|T'| = |T*| and T is normal. O

3 Partial Isometry

In this section, we deals with a partial isometry, i.e., VV*V = V. Let V be
a quasinormal partial isometry. Then V'V* is the orthogonal projection onto VH
and V*V is the orthogonal projection onto V*H. Let V' = U|V| be the polar
decomposition of V. Since V = U and |V| = V*V, we have

V=|VEU|V]Z =V VVV'V =V.

Hence the Aluthge transform V of V is a partial isometry and coincides with V. In
this section, we deal with converse situation in which either Tisa partial isometry
or T = T. First we consider the situation in which T is a partial isometry. We
start with the following lemma, which is well known.

Lemma 3.1 ([9]). If0< A <1, and ||Az|| = ||z||. Then Az = x.

Lemma 3.2. Let T = U|T| be a contraction and T = |T|2U|T|z a partial isom-
etry. Then T = T(s,t) = |T|*U|T|* for all s,t > 0. In particular, ker(T) =
ker(T'(1,1)) = ker(T?).
Proof. Since T is an isometry on R(T*), |||T|2U|T|2z|| = ||z|| for all z € R(T*).
Since 7' is a contraction, |T|% is also contractions, hence we have
|T|22 ==, |T|?U|T|?z = |T|?Uz = Uz
by Lemma Bl Hence |T|'z = =, |T|*Uz = Uz and |T|*U[T|'z = |T|*Uz = Ux
for all s, t > 0. Hence we have T = T(s,t) = U on R(T*). To prove the rest, it
suffices to show that ker(7T") = ker(T'(s,t)) because 7 = R(T™*) & ker(T).
Since
IT|ZU|T|?2 =0 < U|T|?z € kerT = ker|T|
& |TI'U|T P2 =0,

we have T' = f(s, %) By using the same argument as above, we have T = f(%, t)
for all t > 0. Hence

~ ~ ~. 1

ker(T) = R(T*)* = R (5, 1)*
~ 1
= ker(T(2 t)) = ker(T (s, t)).

Thus T = f(s, t). Tt is clear that ker(f(l, 1)) = ker(T?). O
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Theorem 3.3. Let T = U|T)| be a contraction such that ker(T) = ker(T?2). If T
is a partial isometry, then T'=T = U and T is a quasinormal partial isometry.

Proof. By Lemma [B.2]

ker(T') = ker(T?) = ker(T) = ker(U),

so R(T*) = R(T*) = R(T]). Since T = U on ran T* = R(|T]) and ker(T) =
U

ker(U) = A (T), T because # = R(|T'|) @ ker(T). This shows

R(U) = R(T) c R(T]) = RU*D).

Thus U =UU*U = U*UU. Let

|T|<g( 8) U*U<(1) 8) on A = R(T]) @ kex(T).

Since T is a contraction, we have U*|T|U <1 and 0 < X < 1. Then
U*U = T*T = |T|?U*|T|U|T|? < |T| < U*U.

Hence |T| = U*U and T = U|T| = UU*U = U = T. Thus T is a quasinormal
partial isometry. O

Corollary 3.4. Let T = U|T| be w-hyponormal operator. Iff is a partial isom-
etry, then T =T and T is a quasinormal partial isometry.

Proof. Since |T| is a contraction and |T| > |T , it follows that T is a contraction
and ker(T) = ker(T) = ker(T?) by Lemma Now the result follows from
Theorem O

Theorem 3.5. Let T =U|T| and T = T. Then the following assertions hold.

(i) (T*T)2(TT*)2 = TT*, hence T*T commutes with TT*.

(i) ker(T) C ker(T*).
Proof. (i) Since T =T,

UIT|U* =TU* = UT*.
Hence |T'| commute with |T*| = U|T|U* and
TT* =U|T|{U*U|T|U*
= [TJ3T7 3| T3 77| = (T°T)* (TT")%.

(i) Part(i) implies that (7*7)z (TT*)2 = TT* and so (i) is immediate. O
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4 Fuglede-Putnam Type Theorem

A pair (T,95) is said to have the Fuglede-Putnam property if T*X = XS*
whenever TX = XS for every X € Z(#,5). The Fuglede-Putnam theorem
is well-known in the operator theory. It asserts that for any normal operators
T and S, the pair (7,5) has the Fuglede-Putnam property. There exist many
generalization of this theorem which most of them go into relaxing the normality
of T and S, see [9 [0, I1} M2, 13| 14, 15] and some references therein. The
next lemma is concerned with the Fuglede-Putnam theorem and we need it in the
future.

Lemma 4.1. ([I5]) Let T € £ () and S € £ (). Then the following asser-
tions equivalent.
(i) The pair (7, 5) has the Fuglede-Putnam property.

(ii) If TX = SX, then R(X) reduces T, ker(X)* reduces S, and T|m7

S |ker( x)+ are unitarily equivalent normal operators.

Lemma 4.2. ([I6]) Let A, B and C be positive operators, 0 < p and 0 < r < 1.
If (B2 APB%)7# > B” and B > C, then (C2APCz)77 > C".

Lemma 4.3. Let T be a w-hyponormal operator and A an invariant subspace of
T. Then the restriction T| 4 is also w-hyponormal operator.

S

Proof. Let T = ( 0 T

> on S = .M & .M+ and P the orthogonal projection

onto A . LetTO:TP:(gl 8

by Hansens inequality, and [T*|*> = TT* > TPT* = |T;|*> . Hence, T is w-
hyponormal operator

1

) . Then |Ty| = (P|T|2P): > P|T|P

& (T3 |T)|T*(2)% > |17
= (ITS‘I%ITIITS‘I%) > |T§| (by Lemma 4.2)
= (|Tg|2|Tol| Ty |2)% > |Tg| (since |Tg|? = |T5|2 P = P|T3]%).

Nl

Also
1 1.1
Tol = (|To|2 [T*||To|2)>
> (|To|* |5 |1 7o 2) .
Therefore, T'| 4 is w-hyponormal operator. O

Lemma 4.4. Let T € () be a w-hyponormal operator with ker(T') C ker(T™).
Then T =Ty ® Ty on I = 4 @ 5 where Ty is normal, ker(Ty) = {0} and T5 is
pure w-hyponormal i.e., Ty has no non-zero invariant subspace M such that Tz| 4
is normal.
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Lemma 4.5. Let T = U|T| € £() be a w-hyponormal operator and ker(T) C
ker(T*). Suppose T = |T|2U|T|2 be of the form N &T' on A = M & .M+, where
N is a normal operator on M. Then T = N & Ty and U = Uy & Uss where Ty
is w-hyponormal operator with ker(Th) C ker(T}) and N = Uy1|N| is the polar
decomposition of N

Proof. Since _ _
T = [T = |77,

we have
INl&|T'| > |T| > [N| & |T"]
by assumption. This implies that |T'| is of the form |[N| @ L for some positive
Unn Up
operator L. Let U =
P ( Un  Un
respect to the decomposition 7 = .# @& .#~+. Then the definition 7 means

N 0 _ N[z 0 Ui U IN[Z 0
o 7 ) 0 L Ua1 U 0 L

Hence, we have

) be 2 x 2 matrix representation of U with

NI
NI

N =|N2Un|N|*, |N|2UiL? =0, L3Un|N|? =0.
Since ker(T') C ker(T™),
R(U) = R(T) = ker(T*)* C ker(T)* = R(|T)).

Let Nz =0 for « € 4. Then x € ker(|T|) = ker(U), and
_( U U2 r\ _( Unz\ _
U:E<U21 U22><0)<U2130>0'

ker(N) C ker(U1) Nker(Usy).

Hence

Let x € 4. Then

U( i ) _ < gﬁ > e R(T]) = RINT& L).

Hence

%(Ull) C %(|N|),§R(Ugl) C %(L)
Similarly

%(Ulg) C %(|N|),§R(U22) - %(L)
Let Lz =0 for x € .#*. Then x € ker(|T]) = ker(U) and

0 o Umx o
o(2)= ()=
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Hence
ker(L) C ker(Ui2) N ker(Usgz).

Let N = V|N| be the polar decomposition of N. Then
(VIN|? = [N|2Un)IN|2 = 0.

Hence V|N|2 —|N|2Uy; = 0 on R(|N]). Since ker(N) C ker(Uy;), this implies 0 =
V|N|% - |N|%U11 = |N|%(V — Uy1). Hence

R(V — Uny) C ker(|N]) nR(IN]) = {0}.

Hence V = Uy; and N = Uq1|N| is the polar decomposition of N. Since |N|%U12L% =
0,
R(U11L?) C ker(|N|) N R(|N|) = {0}.

Hence ULz = 0 and Uy = 0. Similarly we have U, = 0 by L2Usy|N|z = 0.
Hence U = U1 @ Uss. So we obtain

T =U|T| = Uy |N| @ UpL =N & Ty,
where T1 = U22L. O

Lemma 4.6. Let T € L () be w-hyponormal operator and ker(T) C ker(T™).
If L is self-adjoint and TL = LT*, then T*L = LT.

Proof. Since ker(T') C ker(T™*) and T'L = LT*, ker(T) reduces T and L. Hence

T:Tl@o, L:Ll@[/g OH%Z%(T*)@ICBTT,

TyLy = LTy and {0} = ker(T1) C ker(7}) . Since R(Lq) is invariant under T
and reduces L1,

T1 = ( gll ?_‘22 ) s Ll = L11 @0 on %(T*) = %(Ll) P ker(Ll),

T11 is an injective w-hyponormal operator by Lemma [ and L1; is an injective
self-adjoint operator (hence it has dense range) such that Th1 L1y = L1177, Let
Ty1 = V11|T11| be the polar decomposition of T1; and T = |T11|%V11|T11|%, W =
|T11|%L11|T11|%. Then
~ 1 1
TuW =T |2 Vii | T | L [T | 2
1 1 1 1
= |T11|2 T L1a|Tia|? = |Tha|? L1511 ?
1 1 1, 1
= [T11|2 Loa [T [ 2 [T |2 Vi [T | 2
=WTy,.

Since T1; is semi-hyponormal and R(W) is dense (because ker(W) = {0} ), T is

normal by [I4, Theorem 2.6]. Hence Ti; is normal and Ty; = Ty; by Corollary
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Then R(L;) reduces T1 by Lemma 4 and T} L1; = L1711 by Lemma [Tl
Hence

T="T11 @TQQ@O,

L=L11908 Ly

and
T'L = T1*1L11 e040=L1T119080=LT.

O

Corollary 4.7. Let T € .£() be w-hyponormal operator and ker(T') C ker(T™).
IfTX = XT* for some X € L () then T*X = XT.

Proof. Let X = L + iJ be the Cartesian decomposition of X. Then we have
TL = LT* and TJ = JT* by the assumption. By Lemma 6 we have T*L = LT
and T*J = JT. This implies that 7" X = XT. O

Corollary 4.8. Let T € L (), S* € L () be w-hyponormal operators and
ker(T') C ker(T™), ker(S*) C ker(S). If SX = XT for some X € L (A, ), then
T*X = XS*. Moreover, Then R(X) reduces T, ker(X)* reduces S and T|W

X)’
Slker(x)L are unitarily equivalent normal operators.
S* 0 0 0 .
Proof. Put A = 0 T and Y = x o ) oo @& . Then A is w-

hyponormal operator with ker(A) C ker(A*), which satisfies AY = Y A*. Hence
we have A*Y = Y A by Corollary [£7 and hence T*X = X S*.

Now since T"X = XS*, then T*TX = XS5*S and so [T|X = X|S|. Let
T = U|T|, S = V|S] be polar decomposition. Then UX|S| = U|T|X = TX =
XS = XV|S|. Let z € ker(]S]). Then Ve = 0 and TXz = XSz = 0. Hence
Xz € ker(T) = ker(U) and UXx = 0. Hence UX = XV. Since ker(U) = ker(T) C
ker(T*) = ker(U*), UU* < U*U. Hence U*UU = U*UUU*U = UU*U = U.
This implies U and V* are quasinormal. Hence U*X = XV* R(X) reduces
U, |T|, ker(X)* reduces V, |S|. Since S,T* are class w-hyponormal operators
with reducing kernels. Let T = |T|%U|T|%7 S = |S|%V|S|%. Then T, S* =
|5*|2V*|S*|2 = V.S*V* are semi-hyponormal. Also, since |(S)*|—|S| = V*(|S*| —
|(5*)*|)V >0, §* is semi-hyponormal, too. Then

TX =|T|2U|T|?X = |T|2UX|S|?
= |T|ZXV|S|? = X8,

hence T*X = X5*, R(X) reduces T, ker(X)* reduces S and f|m, §|ker(X)L
are unitarily equivalent normal operators. Hence T|W, S|ker(x)L are normal
operators by Corollary 22| and that they are unitarily equivalent follows from
the fact that if N = U|N| are M = W|M| are normal operators, then for a unitary
operator V, N = V*MYV if and only if U = V*WV and |[N|2 = V*|M|zV. O
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Theorem 4.9. Let T = U|T| € L(H) be a w-hyponormal operator and N a
normal operator. Let TX = X N. Then the following assertions hold.

(i) If the range R(X) is dense, then T is normal.
(i1) If ker(X™*) C ker(T™), then T is quasinormal.

Proof. Let Z = |T|2X. Then
TZ = |T|?U|T|?|T|? X = |T|>*TX
= |T|?XN = ZN.
Since T is semi-hyponormal, we have
T*Z = ZN*

by [14]. Hence

(T*T — TT*)|T|2 X

=T*TZ -TT*Z

=T*ZN —TZN* = ZN*N — ZNN* =
(1) If R(X) is dense, then

(T*T — TT*)|T|? = 0.

Since ) B B
ker(|T|2) C ker(T) Nker(T™),

this implies T is normal. Hence T is normal by Corollary 22

(i) Let X*|T|22 = 0. Then |T|2z € ker(X*) C ker(T*) = ker(U*) and T*z =
IT|2U*|T|22 = 0. Hence ker(X*|T|2) € T* and R(T) € R(|T|2 X). Hence

(T*T —TT*)T =0
by (i). This implies T is quasinormal, and T is quasinormal by Theorem [Z1 O

Following [I7], an operator T' € £ () is said to be a class ), operator for
a > 0 if there exists a positive number k, such that

|TT* — T*T|* < k2(T — \)*(T — \) for all A € C.

It is known that Vo, C Vg if 1 < o < f. Let Y = Ua>1 Y.,. We remark that a
class ) operator T is M-hyponormal and M-hyponormal operators are class Vs
operators.
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Lemma 4.10. ([I7]) Let T € £ () be a class Y and .# C 5 invariant under
T. If T| 4 is normal, then .# reduces T.

Lemma 4.11. ([I']) If T € ), for some a > 1 and if, for a closed set S C C,
there exists a bounded function f(z): C\ S — S and a non-zero x € % such
that (T'—z) f(z) = z, then g(z) = (I — E({0}))f(2) is analytic on C\ S where E(.)
denotes the spectral measure of |[T'T* — T*T|2. Moreover, if 0 ¢ o,(TT* — T*T),
then f(z) is analytic on C\ S.

Theorem 4.12. Let T € L(3) be an invertible w-hyponormal operator and
S* e LX) be class Y. If TX = XS for some X € L(H, ), then T*X =
X S*. Moreover, R(X) reduces T, ker(X)* reduces S, and T|m, S|ker(x)L are
unitarily equivalent normal operators.

Proof. Since S* is class ), then there exist positive numbers « and k, such that
|SS* — S*S|* < k2(S — A\)(S — \)*, for all A € C.

Hence for x € |SS* — S*S|% % there exists a bounded function f : C — .# such
that
(S=ANf(A\) =z, forall A e C

by [8]. Let T'= U|T| be the polar decomposition of T', then the Aluthge transform
T = |T|2U|T|z is semi-hyponormal by [6]. Then

(T = NITFXFO) = [TI*(T = )X F()
= |T|2X (S~ \)f()), for all A € C.

We claim that |T'|2 Xz = 0. Because if |T|2 Xz # 0, there exists a bounded entire
analytic function g : C — . such that (T'(s,t) — A)g(A) = |T|° Xz by Lemma
1Tl Since

g(\) = (T — )\)_1|T|%Xx — 0 as A — oo,

we have g(\) = 0 by Liouville’s theorem, and hence |T'|2 Xz = 0. This is a contra-
diction. Thus )
IT|2X|SS* — S*S|*" ' = {0}.

Since ker(T") = ker(|T'|) = {0}, we have
X(S5*—5*S)=0.

Since R(X) is invariant under T and ker(X)* is invariant under S*. We consider
the following decompositions

H=R( )@WL, H =ker(X)t @ ker(X),

(T A g_ (S 0
“Lo 1w ) “\B S

then we have

N
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and
X = ( )gl 8 ) :ker(X)L@ker(X) — R( )@%(X)l.
Then
0=X(SS"—5%9)
( Xy(S157 =875, —B*B) X1(S1B* — B*S3)
o 0 0
and

X1(8157 —S7S1 —B*B) =0.
Since X is injective with dense range, we have
5157 =575 —B*B=0

and
5157 = S7S1+ B*B > S75;.

This implies that Bj is hyponormal. Since TX = X .S, we have
X1 =X15

where T} is w-hyponormal by Lemma Hence T3, S; are normal and

T: X, = X187

by Bl Then A =0 by Lemma [£4 and B = 0 by Lemma Hence

v (TiX: 0\ [ XiSf 0\ e
rae (HEC0) (NS 0) s

Hence T|(%(X)), S|ker(x)+ are normal by Lemma ETl
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Theorem 4.13. Let T € L() and S* € L(X). If either (i) T is a w-
hyponormal operator such that ker(T) C ker(T*) and S* is a class Y operator
or (ii) T is a class Y operator and S* is a w-hyponormal operator such that
ker(S*) C ker(S), if TX = XS for some operator X € L(# , ), then T*X =

XS*. Moreover, R(X) reduces T, ker(X)* reduces S, and T|@?(X))’ Sker(x)L are

unitarily equivalent normal operators.

Proof. (i) Decompose T and S* into their normal and pure parts as in Lemma

Ed and [I7]. Then we have

T=N®A on =405
S*=M*@®B* on K4 =&

and

Xo1 Xoo

X<X11 X12>:%%@%—>%%@%7
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where N, M are normal, A is a w-hyponormal and B* is class ). Then TX = X S
implies that

NXy1 NXip \ ([ XuM Xi2B
AXo1 AXoy ) \ XoaiM X99B )

Let A = Us|A| be the polar decomposition of A and A = |A[2Us|Al2, W =
|A|% X55. Then

AW = |A|3Us| A7 |A|2 X2
= |A[* U] A| X2
= |A|2 Xp2(B*)* = W(B*)".
Since A is a w-hyponormal operator, then Ais semi-hyponormal operator, B* is
a class ). Hence it follows from [I8, Theorem 7] that (W) reduces A, ker(W )+
reduces B* and A|W’ B*|er(w)+ are unitarily equivalent normal operators.
Since A and B* are pure, we have W = 0 by Lemma 4] and Lemma Then

X5 =0 as A, B* are injective. Since AX9; = Xo1 M and N X195 = X12B we have
Xo1M =0 and NXi5 = 0 by similar arguments. Then T X = XS implies

NXy 0\ [ XuM Xp;,B
AXyy 0 ) 0 0

and X195 = X971 = 0. Hence X = ( XOH 8 ) and

R(X) = R(X11) @ {0}, ker(X)+ = ker(X11)t @ {0}.

Since NX1; = X1 M, we have N*X1; = X1, M*, R(X11) reduces N, ker(X1;)+
reduces M, N |m, M |yer(x,,)+ are unitarily equivalent normal operators. Then
NIMX) = NI?R(XH)’ Mlyer(xyr = Mlyer(x,,)+ imply that T°X = X%, R(X)
reduces T, ker(X)* reduces S, T|m, S|ker(x)+ are unitarily equivalent normal
operators.

(ii) Since TX = XS, we have S*X* = X*T*. Hence SX* = S*™X* = X*T**
by part (i) and T*X = X S*. The rest of the proof follows from Lemma [£I1 O

Corollary 4.14. Let T € Z(). Then T is normal if and only if either (i)
T is a w-hyponormal operator such that ker(T) C ker(T*) and T* is a class Y
operator or (i) T is a class YV operator and T™* is a w-hyponormal operator such
that ker(S*) C ker(SS).

Corollary 4.15. Let T € L(J€) and S* € ZL(X') be such that TX = XS. If
either T is pure w-hyponormal such that ker(T') C ker(T*) and S* is class Y or T
is w-hyponormal such that ker(T) C ker(T™*) and S* is pure class Y, then X = 0.
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Proof. The hypotheses imply that TX = XS and T X = XS* simultaneously by
Theorem Therefore T|m and S|yer(x)+ are unitarily equivalent normal
operators, which contradicts the hypotheses that T or S* is pure. Hence we must

have X = 0. O
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