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Abstract : We investigate several properties of Aluthge transform T̃ = |T |
1
2U |T |

1
2

of an operator T = U |T | . We prove (i) if T is a w-hyponormal operator and T̃
is quasi-normal (resp., normal), then T is quasi-normal (resp., normal), (ii) if T is

a contraction with ker T = ker T 2 and T̃ is a partial isometry, then T is a quasi-
normal partial isometry, and (iii) we show that if either (a) T is a w-hyponormal
operator such that ker(T ) ⊂ ker(T ∗) and S∗ is w-hyponormal operator such that
ker(S∗) ⊂ ker(S) or (b) T is an invertible w-hyponormal operator and S∗ is w-
hyponormal operator or (c) T is a w-hyponormal such that ker(T ) ⊂ ker(T ∗) and
S∗ is a class Y, then the pair (T, S) satisfy Fuglede-Putnam property.

Keywords : w-hyponormal operators; Fuglede-Putnam theorem; quasinormal
operators; partial isometry.
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1 Introduction

For complex infinite dimensional Hilbert spaces H and K , L (H ), L (K )
and L (H ,K ) denote the set of bounded linear operators on H , the set of
bounded linear operators on K and the set of bounded linear operators from
H to K , respectively. Every operator T can be decomposed into T = U |T | with
a partial isometry U , where |T | is the square root of T ∗T . If U is determined
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uniquely by the kernel condition ker(U) = ker(|T |), then this decomposition is
called the polar decomposition, which is one of the most important results in oper-
ator theory ( [1] and [2]). In this paper, T = U |T | denotes the polar decomposition
satisfying the kernel condition ker(U) = ker(|T |).

Recall that an operator T ∈ L (H ) is positive, T ≥ 0, if 〈Tx, x〉 ≥ 0 for
all x ∈ H . An operator T ∈ L (H ) is said to be hyponormal if T ∗T ≥ TT ∗.
Hyponormal operators have been studied by many authors and it is known that hy-
ponormal operators have many interesting properties similar to those of normal op-
erators ( [3] and [4] ). An operator T is said to be p-hyponormal if(T ∗T )p ≥ (TT ∗)p

for p ∈ (0, 1] and an operator T is said to be log-hyponormal if T is invertible and
log |T | ≥ log |T ∗|. p-hyponormal and log-hyponormal operators are defined as ex-
tension of hyponormal operator. An operator T ∈ L (H ) is said to be paranormal

if it satisfies the following norm inequality
∥∥T 2

∥∥ ‖x‖ ≥ ‖Tx‖2 for all x ∈ H . Ando
[5] proved that every log-hyponormal operators is paranormal. Recall [6], an oper-

ator T ∈ L (H ) is called w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|, where T̃ = |T |
1
2U |T |

1
2

is the Aluthge transformation. The classes of log- and w-hyponormal operators
were introduced, and their properties were studied in [6]. In particular, it was
shown in [6] that the class of w-hyponormal operators contains both p-and log-
hyponormal operators.

2 Quasinormality

Let T = U |T | be the polar decomposition of T ∈ L (H ) . T is said to be
quasinormal if |T |U = U |T | , or equivalently, TT ∗T = T ∗TT . Patel [7] proved

that if T is p-hyponormal and its Aluthge transform T̃ = |T |
1
2U |T |

1
2 is normal,

then T is normal and T = T̃ . Aluthge and Wang [6] proved that if T is w-

hyponormal, ker(T ) ⊂ ker(T ∗) and its Aluthge transform T̃ is normal, then T is

normal and T = T̃ . The following is a generalization of these results.

Theorem 2.1. Let T be a w-hyponormal operator with the polar decomposition
T = U |T |. If T̃ is quasinormal, then T is also quasinormal. Hence T coincides

with its Aluthge transform T̃ = |T |
1
2U |T |

1
2 .

Proof. Since T is a w-hyponormal operator,

|T̃ | ≥ |T | ≥ |T̃ ∗|. (2.1)

Then Douglass theorem [8] implies

ℜ(T̃ ) = ℜ(T̃ ∗) ⊂ ℜ(|T |) = ℜ|T̃ |

where M denotes the norm closure of M . Let T̃ = W |T̃ | be the polar decompo-

sition of T̃ . Then E := W ∗W = U∗U ≥ WW ∗ =: F . Put

|T̃ ∗| =

(
X 0
0 0

)
,W =

(
W1 W2

0 0

)
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on H = ℜ(T̃ )⊕ ker(T̃ ∗).

Then X is injective and has a dense range. Since T̃ is quasinormal, W commutes
with |T̃ | and

|T̃ | = W ∗W |T̃ | = W ∗|T̃ |W

≥ W ∗|T |W ≥ W ∗|T̃ ∗|W = |T̃ |.

Hence

|T̃ | = W ∗|T̃ |W = W ∗|T |W,

and

|T̃ ∗| = W |T̃ |W ∗ = WW ∗|T̃ |WW ∗ (2.2)

= WW ∗|T |WW ∗ =

(
X 0
0 0

)
. (2.3)

Since WW ∗ =

(
1 0
0 0

)
, (2.1), (2.2) and (2.3) imply that |T̃ | and |T | are of the

forms

|T̃ | =

(
X 0
0 Y

)
≥ |T | =

(
X 0
0 Z

)
, (2.4)

where ℜ(Y ) = ℜ(Z) = ℜ(|T |)⊖ℜ(T̃ ) = ker(T̃ ∗)⊖ ker(T ).

Since W commutes with |T̃ | ,

(
W1 W2

0 0

)(
X 0
0 Y

)
=

(
X 0
0 Y

)(
W1 W2

0 0

)
.

So W1X = XW1 and W2Y = XW2 , and hence ℜ(W1) and ℜ(W2) are reducing

subspaces of X . Since W ∗W |T̃ | = |T̃ | , we have W ∗
1W1 = 1 and

Xk = W ∗
1W1X

k = W ∗
1X

kW1,

Y k = W ∗
2W2Y

k = W ∗
2X

kW2.

Put U =

(
U11 U12

U21 U22

)
. Then T̃ = |T |

1
2U |T |

1
2 = W |T̃ | implies

(
X

1
2 0

0 Z
1
2

)(
U11 U12

U21 U22

)(
X

1
2 0

0 Z
1
2

)
=

(
W1 W2

0 0

)(
X 0
0 Y

)
.

Hence

X
1
2U11X

1
2 = W1X = X

1
2W1X

1
2 ,

X
1
2U12Z

1
2 = W2Y = XW2
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and

X
1
2 (U11 −W1)X

1
2 = 0,

X
1
2 (U12Z

1
2 −X

1
2W2) = 0

Since X is injective and has a dense range, U11 = W1 is isometry and U12Z
1
2 =

X
1
2W2 Then

U∗U =

(
U∗
11Ul1 + U∗

21U21 U∗
1lUl2 + U∗

21U22

U∗
12Ull + U∗

22U21 U∗
12U12 + U∗

22U22

)

on H = ℜ(T̃ )⊕ ker(T̃ ∗) is the orthogonal projection onto ℜ(|T |) ⊃ ℜ(T̃ ) and

U∗U =

(
1 0
0 U∗

l2U12 + U∗
22U22

)
.

Since U12Z
1
2 = X

1
2W2 , we have

Z ≥ Z
1
2U∗

12U12Z
1
2 = W ∗

2XW2 = Y,

and
Z ≥ Z

1
2U∗

12U12Z
1
2 = W ∗

2XW2 = Y ≥ Z

by (2.4). Hence

Z
1
2U∗

12U12Z
1
2 = Z = Y,

so Z = Y and |T̃ | = |T | . Since

Z = Z
1
2U∗

12U12Z
1
2

≤ Z
1
2U∗

12U12Z
1
2 + Z

1
2U∗

22U22Z
1
2 ≤ Z

Z
1
2U∗

22U22Z
1
2 = 0 and U22Z

1
2 = 0 . This implies ℜ(U∗

22) ⊂ ker(Z). Since
ℜ(U∗

12U12 + U∗
22U22) ⊂ ℜ(Z) and U∗

22U22 ≤ U∗
12U12 + U∗

22U22, we have ℜ(U∗
22) ⊂

ℜ(Z) . Hence

U22 = 0, U =

(
W1 U12

0 0

)

and
ℜ(U) ⊂ ℜ(T̃ ) ⊂ ℜ(|T |) = ℜ(E).

Since W commutes with |T̃ | = |T |, W commutes with |T | and

|T |
1
2 (W − U)|T |

1
2 = W |T |

1
2 |T |

1
2 − |T |

1
2U |T |

1
2

= W |T̃ | − T̃ = 0.

Hence E(W − U)E = 0 and

U = UE = EUE = EWE = WE = W.

Thus U = W commutes with |T | and T is quasinormal.
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Corollary 2.2. Let T = U |T | be a w-hyponormal operator T. If T̃ = |T |
1
2U |T |

1
2

is normal, then T is also normal.

Proof. Since T̃ is normal, T is quasinormal by Theorem 2.1. Hence T̃ = |T |
1
2U |T |

1
2

= U |T | and T̃ ∗ = |T |U∗. Hence |T |2 = |T̃ |2 = |T̃ ∗|2 = |T ∗|2. This implies
|T | = |T ∗| and T is normal.

3 Partial Isometry

In this section, we deals with a partial isometry, i.e., V V ∗V = V . Let V be
a quasinormal partial isometry. Then V V ∗ is the orthogonal projection onto VH
and V ∗V is the orthogonal projection onto V ∗H. Let V = U |V | be the polar
decomposition of V . Since V = U and |V | = V ∗V , we have

Ṽ = |V |
1
2U |V |

1
2 = V ∗V V V ∗V = V.

Hence the Aluthge transform Ṽ of V is a partial isometry and coincides with V. In
this section, we deal with converse situation in which either T̃ is a partial isometry
or T̃ = T . First we consider the situation in which T̃ is a partial isometry. We
start with the following lemma, which is well known.

Lemma 3.1 ([9]). If 0 ≤ A ≤ 1, and ‖Ax‖ = ‖x‖. Then Ax = x.

Lemma 3.2. Let T = U |T | be a contraction and T̃ = |T |
1
2U |T |

1
2 a partial isom-

etry. Then T̃ = T̃ (s, t) = |T |sU |T |t for all s, t > 0. In particular, ker(T̃ ) =

ker(T̃ (1, 1)) = ker(T 2).

Proof. Since T̃ is an isometry on ℜ(T̃ ∗), ‖|T |
1
2U |T |

1
2x‖ = ‖x‖ for all x ∈ ℜ(T̃ ∗).

Since T is a contraction, |T |
1
2 is also contractions, hence we have

|T |
1
2x = x, |T |

1
2U |T |

1
2x = |T |

1
2Ux = Ux

by Lemma 3.1. Hence |T |tx = x, |T |sUx = Ux and |T |sU |T |tx = |T |sUx = Ux

for all s, t > 0. Hence we have T̃ = T̃ (s, t) = U on ℜ(T̃ ∗). To prove the rest, it

suffices to show that ker(T̃ ) = ker(T̃ (s, t)) because H = ℜ(T̃ ∗)⊕ ker(T̃ ).
Since

|T |
1
2U |T |

1
2 x = 0 ⇔ U |T |

1
2 x ∈ kerT = ker|T |

⇔ |T |sU |T |
1
2x = 0,

we have T̃ = T̃ (s, 1
2 ). By using the same argument as above, we have T̃ ∗ = T̃ (12 , t)

for all t > 0. Hence

ker(T̃ ) = ℜ(T̃ ∗)⊥ = ℜ(T̃ ∗(
1

2
, t))⊥

= ker(T̃ (
1

2
, t)) = ker(T̃ (s, t)).

Thus T̃ = T̃ (s, t). It is clear that ker(T̃ (1, 1)) = ker(T 2).
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Theorem 3.3. Let T = U |T | be a contraction such that ker(T ) = ker(T 2). If T̃

is a partial isometry, then T = T̃ = U and T is a quasinormal partial isometry.

Proof. By Lemma 3.2,

ker(T̃ ) = ker(T 2) = ker(T ) = ker(U),

so ℜ(T̃ ∗) = ℜ(T ∗) = ℜ(|T |). Since T̃ = U on ran T̃ ∗ = ℜ(|T |) and ker(T̃ ) =

ker(U) = N (T ), T̃ = U because H = ℜ(|T |)⊕ ker(T ). This shows

ℜ(U) = ℜ(T̃ ) ⊂ ℜ(|T |) = ℜ(U∗U).

Thus U = UU∗U = U∗UU . Let

|T | =

(
X 0
0 0

)
, U∗U =

(
1 0
0 0

)
on H = ℜ(|T |)⊕ ker(T ).

Since T is a contraction, we have U∗|T |U ≤ 1 and 0 ≤ X ≤ 1 . Then

U∗U = T̃ ∗T̃ = |T |
1
2U∗|T |U |T |

1
2 ≤ |T | ≤ U∗U.

Hence |T | = U∗U and T = U |T | = UU∗U = U = T̃ . Thus T is a quasinormal
partial isometry.

Corollary 3.4. Let T = U |T | be w-hyponormal operator. If T̃ is a partial isom-

etry, then T̃ = T and T is a quasinormal partial isometry.

Proof. Since |T̃ | is a contraction and |T̃ | ≥ |T | , it follows that T is a contraction

and ker(T ) = ker(T̃ ) = ker(T 2) by Lemma 3.2. Now the result follows from
Theorem 3.3.

Theorem 3.5. Let T = U |T | and T = T̃ . Then the following assertions hold.

(i) (T ∗T )
1
2 (TT ∗)

1
2 = TT ∗, hence T ∗T commutes with TT ∗.

(ii) ker(T ) ⊂ ker(T ∗).

Proof. (i) Since T = T̃ ,

U |T |U∗ = T̃U∗ = UT̃ ∗.

Hence |T | commute with |T ∗| = U |T |U∗ and

TT ∗ = U |T |U∗U |T |U∗

= |T |
1
2 |T ∗|

1
2 |T |

1
2 |T ∗|

1
2 = (T ∗T )

1
2 (TT ∗)

1
2 .

(ii) Part(i) implies that (T ∗T )
1
2 (TT ∗)

1
2 = TT ∗ and so (ii) is immediate.
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4 Fuglede-Putnam Type Theorem

A pair (T, S) is said to have the Fuglede-Putnam property if T ∗X = XS∗

whenever TX = XS for every X ∈ L (K ,H ). The Fuglede-Putnam theorem
is well-known in the operator theory. It asserts that for any normal operators
T and S, the pair (T, S) has the Fuglede-Putnam property. There exist many
generalization of this theorem which most of them go into relaxing the normality
of T and S, see [9, 10, 11, 12, 13, 14, 15] and some references therein. The
next lemma is concerned with the Fuglede-Putnam theorem and we need it in the
future.

Lemma 4.1. ([15]) Let T ∈ L (H ) and S ∈ L (K ). Then the following asser-
tions equivalent.

(i) The pair (T, S) has the Fuglede-Putnam property.

(ii) If TX = SX, then ℜ(X) reduces T , ker(X)⊥ reduces S, and T |
ℜ(X),

S|ker(X)⊥ are unitarily equivalent normal operators.

Lemma 4.2. ([16]) Let A, B and C be positive operators, 0 < p and 0 < r ≤ 1.
If (B

r

2ApB
r

2 )
r

p+r ≥ Br and B ≥ C, then (C
r

2ApC
r

2 )
r

p+r ≥ Cr.

Lemma 4.3. Let T be a w-hyponormal operator and M an invariant subspace of
T . Then the restriction T |M is also w-hyponormal operator.

Proof. Let T =

(
T1 S
0 T2

)
on H = M ⊕M⊥ and P the orthogonal projection

onto M . Let T0 = TP =

(
T1 0
0 0

)
. Then |T0| = (P |T |2P )

1
2 ≥ P |T |P

by Hansens inequality, and |T ∗|2 = TT ∗ ≥ TPT ∗ = |T ∗
0 |

2 . Hence, T is w-
hyponormal operator

⇔ (|T ∗|
1
2 |T ||T ∗|

1
2 )

1
2 ≥ |T ∗|

⇒ (|T ∗
0 |

1
2 |T ||T ∗

0 |
1
2 )

1
2 ≥ |T ∗

0 | (by Lemma 4.2)

⇒ (|T ∗
0 |

1
2 |T0||T

∗
0 |

1
2 )

1
2 ≥ |T ∗

0 | (since |T ∗
0 |

1
2 = |T ∗

0 |
1
2P = P |T ∗

0 |
1
2 ).

Also

|T0| ≥ (|T0|
1
2 |T ∗||T0|

1
2 )

1
2

≥ (|T0|
1
2 |T ∗

0 ||T0|
1
2 )

1
2 .

Therefore, T |M is w-hyponormal operator.

Lemma 4.4. Let T ∈ L (H ) be a w-hyponormal operator with ker(T ) ⊂ ker(T ∗).
Then T = T1⊕T2 on H = H1⊕H2 where T1 is normal, ker(T2) = {0} and T2 is
pure w-hyponormal i.e., T2 has no non-zero invariant subspace M such that T2|M
is normal.
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Lemma 4.5. Let T = U |T | ∈ L (H ) be a w-hyponormal operator and ker(T ) ⊂

ker(T ∗). Suppose T̃ = |T |
1
2U |T |

1
2 be of the form N⊕T ′ on H = M ⊕M⊥, where

N is a normal operator on M . Then T = N ⊕ T1 and U = U11 ⊕ U22 where T1

is w-hyponormal operator with ker(T1) ⊂ ker(T ∗
1 ) and N = U11|N | is the polar

decomposition of N

Proof. Since
|T̃ | ≥ |T | ≥ |T̃ ∗|,

we have
|N | ⊕ |T ′| ≥ |T | ≥ |N | ⊕ |T ′∗|

by assumption. This implies that |T | is of the form |N | ⊕ L for some positive

operator L. Let U =

(
U11 Ul2

U21 U22

)
be 2 × 2 matrix representation of U with

respect to the decomposition H = M ⊕ M⊥. Then the definition T̃ means

(
N 0
0 T ′

)
=

(
|N |

1
2 0

0 L
1
2

)(
U11 Ul2

U21 U22

)(
|N |

1
2 0

0 L
1
2

)

Hence, we have

N = |N |
1
2U11|N |

1
2 , |N |

1
2U12L

1
2 = 0, L

1
2U21|N |

1
2 = 0.

Since ker(T ) ⊂ ker(T ∗),

ℜ(U) = ℜ(T ) = ker(T ∗)⊥ ⊂ ker(T )⊥ = ℜ(|T |).

Let Nx = 0 for x ∈ M . Then x ∈ ker(|T |) = ker(U), and

Ux =

(
U11 U12

U21 U22

)(
x
0

)
=

(
U11x
U21x

)
= 0.

Hence
ker(N) ⊂ ker(U11) ∩ ker(U21).

Let x ∈ M . Then

U

(
x
0

)
=

(
U11x
U21x

)
∈ ℜ(|T |) = ℜ(|N | ⊕ L).

Hence
ℜ(U11) ⊂ ℜ(|N |),ℜ(U21) ⊂ ℜ(L).

Similarly
ℜ(U12) ⊂ ℜ(|N |),ℜ(U22) ⊂ ℜ(L).

Let Lx = 0 for x ∈ M⊥. Then x ∈ ker(|T |) = ker(U) and

U

(
0
x

)
=

(
U12x
U22x

)
= 0.
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Hence
ker(L) ⊂ ker(U12) ∩ ker(U22).

Let N = V |N | be the polar decomposition of N . Then

(V |N |
1
2 − |N |

1
2U11)|N |

1
2 = 0.

Hence V |N |
1
2 −|N |

1
2U11 = 0 on ℜ(|N |). Since ker(N) ⊂ ker(U11), this implies 0 =

V |N |
1
2 − |N |

1
2U11 = |N |

1
2 (V − U11). Hence

ℜ(V − U11) ⊂ ker(|N |) ∩ ℜ(|N |) = {0}.

Hence V = U11 andN = U11|N | is the polar decomposition ofN . Since |N |
1
2U12L

1
2 =

0,
ℜ(U11L

1
2 ) ⊂ ker(|N |) ∩ ℜ(|N |) = {0}.

Hence U12L
1
2 = 0 and U12 = 0. Similarly we have U21 = 0 by L

1
2U21|N |

1
2 = 0.

Hence U = U11 ⊕ U22. So we obtain

T = U |T | = U11|N | ⊕ U22L = N ⊕ T1,

where T1 = U22L.

Lemma 4.6. Let T ∈ L (H ) be w-hyponormal operator and ker(T ) ⊂ ker(T ∗).
If L is self-adjoint and TL = LT ∗, then T ∗L = LT .

Proof. Since ker(T ) ⊂ ker(T ∗) and TL = LT ∗, ker(T ) reduces T and L. Hence

T = T1 ⊕ 0, L = L1 ⊕ L2 on H = ℜ(T ∗)⊕ kerT,

T1L1 = L1T
∗
1 and {0} = ker(T1) ⊂ ker(T ∗

1 ) . Since ℜ(L1) is invariant under T1

and reduces L1,

T1 =

(
T11 S
0 T22

)
, L1 = L11 ⊕ 0 on ℜ(T ∗) = ℜ(L1)⊕ ker(L1).

T11 is an injective w-hyponormal operator by Lemma 4.4 and L11 is an injective
self-adjoint operator (hence it has dense range) such that T11L11 = L11T

∗
11. Let

T11 = V11|T11| be the polar decomposition of T11 and T̃11 = |T11|
1
2V11|T11|

1
2 , W =

|T11|
1
2L11|T11|

1
2 . Then

T̃11W = |T11|
1
2 V11|T11|L11|T11|

1
2

= |T11|
1
2 T11L11|T11|

1
2 = |T11|

1
2L11T

∗
11|T11|

1
2

= |T11|
1
2L11|T11|

1
2 |T11|

1
2V ∗

11|T11|
1
2

= WT̃ ∗
11.

Since T̃11 is semi-hyponormal and ℜ(W ) is dense (because ker(W ) = {0} ), T̃ is

normal by [14, Theorem 2.6]. Hence T11 is normal and T11 = T̃11 by Corollary
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2.2. Then ℜ(L1) reduces T1 by Lemma 4.4 and T ∗
11L11 = L11T11 by Lemma 4.1.

Hence

T = T11 ⊕ T22 ⊕ 0,

L = L11 ⊕ 0⊕ L2

and
T ∗L = T ∗

11L11 ⊕ 0⊕ 0 = L11T11 ⊕ 0⊕ 0 = LT.

Corollary 4.7. Let T ∈ L (H ) be w-hyponormal operator and ker(T ) ⊂ ker(T ∗).
If TX = XT ∗ for some X ∈ L (H ) then T ∗X = XT .

Proof. Let X = L + iJ be the Cartesian decomposition of X . Then we have
TL = LT ∗ and TJ = JT ∗ by the assumption. By Lemma 4.6, we have T ∗L = LT
and T ∗J = JT . This implies that T ∗X = XT .

Corollary 4.8. Let T ∈ L (H ), S∗ ∈ L (H ) be w-hyponormal operators and
ker(T ) ⊂ ker(T ∗), ker(S∗) ⊂ ker(S). If SX = XT for some X ∈ L (K ,H ), then
T ∗X = XS∗. Moreover, Then ℜ(X) reduces T, ker(X)⊥ reduces S and T |

ℜ(X),

S|ker(X)⊥ are unitarily equivalent normal operators.

Proof. Put A =

(
S∗ 0
0 T

)
and Y =

(
0 0
X 0

)
on H ⊕ K . Then A is w-

hyponormal operator with ker(A) ⊂ ker(A∗), which satisfies AY = Y A∗. Hence
we have A∗Y = Y A by Corollary 4.7, and hence T ∗X = XS∗.

Now since T ∗X = XS∗, then T ∗TX = XS∗S and so |T |X = X |S|. Let
T = U |T |, S = V |S| be polar decomposition. Then UX |S| = U |T |X = TX =
XS = XV |S|. Let x ∈ ker(|S|). Then V x = 0 and TXx = XSx = 0. Hence
Xx ∈ ker(T ) = ker(U) and UXx = 0. Hence UX = XV . Since ker(U) = ker(T ) ⊂
ker(T ∗) = ker(U∗), UU∗ ≤ U∗U . Hence U∗UU = U∗UUU∗U = UU∗U = U .
This implies U and V ∗ are quasinormal. Hence U∗X = XV ∗, ℜ(X) reduces
U, |T |, ker(X)⊥ reduces V, |S|. Since S, T ∗ are class w-hyponormal operators

with reducing kernels. Let T̃ = |T |
1
2U |T |

1
2 , S̃ = |S|

1
2 V |S|

1
2 . Then T̃ , S̃∗ =

|S∗|
1
2 V ∗|S∗|

1
2 = V S̃∗V ∗ are semi-hyponormal. Also, since |(S̃)∗|−|S̃| = V ∗(|S̃∗|−

|(S̃∗)∗|)V ≥ 0, S̃∗ is semi-hyponormal, too. Then

T̃X = |T |
1
2U |T |

1
2X = |T |

1
2UX |S|

1
2

= |T |
1
2XV |S|

1
2 = XS̃,

hence T̃ ∗X = XS̃∗, ℜ(X) reduces T̃ , ker(X)⊥ reduces S̃ and T̃ |
ℜ(X)

, S̃|ker(X)⊥

are unitarily equivalent normal operators. Hence T |
ℜ(X), S|ker(X)⊥ are normal

operators by Corollary 2.2, and that they are unitarily equivalent follows from
the fact that if N = U |N | are M = W |M | are normal operators, then for a unitary

operator V , N = V ∗MV if and only if U = V ∗WV and |N |
1
2 = V ∗|M |

1
2 V .
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Theorem 4.9. Let T = U |T | ∈ L (H ) be a w-hyponormal operator and N a
normal operator. Let TX = XN . Then the following assertions hold.

(i) If the range ℜ(X) is dense, then T is normal.

(ii) If ker(X∗) ⊂ ker(T ∗), then T is quasinormal.

Proof. Let Z = |T |
1
2X . Then

T̃Z = |T |
1
2U |T |

1
2 |T |

1
2X = |T |

1
2TX

= |T |
1
2XN = ZN.

Since T̃ is semi-hyponormal, we have

T̃ ∗Z = ZN∗

by [14]. Hence

(T̃ ∗T̃ − T̃ T̃ ∗)|T |
1
2X

= T̃ ∗T̃Z − T̃ T ∗Z

= T̃ ∗ZN − T̃ZN∗ = ZN∗N − ZNN∗ = 0.

(i) If ℜ(X) is dense, then

(T̃ ∗T̃ − T̃ T̃ ∗)|T |
1
2 = 0.

Since
ker(|T |

1
2 ) ⊂ ker(T̃ ) ∩ ker(T̃ ∗),

this implies T̃ is normal. Hence T is normal by Corollary 2.2.

(ii) Let X∗|T |
1
2 x = 0. Then |T |

1
2x ∈ ker(X∗) ⊂ ker(T ∗) = ker(U∗) and T̃ ∗x =

|T |
1
2U∗|T |

1
2 x = 0. Hence ker(X∗|T |

1
2 ) ⊂ T̃ ∗ and ℜ(T̃ ) ⊂ ℜ(|T |

1
2X). Hence

(T̃ ∗T̃ − T̃ T̃ ∗)T̃ = 0

by (i). This implies T̃ is quasinormal, and T is quasinormal by Theorem 2.1.

Following [17], an operator T ∈ L (H ) is said to be a class Yα operator for
α ≥ 0 if there exists a positive number kα such that

|TT ∗ − T ∗T |α ≤ k2α(T − λ)∗(T − λ) for all λ ∈ C.

It is known that Yα ⊂ Yβ if 1 ≤ α ≤ β. Let Y =
⋃

α≥1 Yα. We remark that a
class Y1 operator T is M -hyponormal and M -hyponormal operators are class Y2

operators.
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Lemma 4.10. ([17]) Let T ∈ L (H ) be a class Y and M ⊂ H invariant under
T . If T |M is normal, then M reduces T .

Lemma 4.11. ([17]) If T ∈ Yα for some α ≥ 1 and if, for a closed set S ⊆ C,
there exists a bounded function f(z) : C \ S −→ H and a non-zero x ∈ H such
that (T −z)f(z) ≡ x, then g(z) = (I−E({0}))f(z) is analytic on C\S where E(.)
denotes the spectral measure of |TT ∗ − T ∗T |

α

2 . Moreover, if 0 /∈ σp(TT
∗ − T ∗T ),

then f(z) is analytic on C \ S.

Theorem 4.12. Let T ∈ L (H ) be an invertible w-hyponormal operator and
S∗ ∈ L (K ) be class Y. If TX = XS for some X ∈ L (K ,H ), then T ∗X =
XS∗. Moreover, ℜ(X) reduces T , ker(X)⊥ reduces S, and T |

ℜ(X), S|ker(X)⊥ are

unitarily equivalent normal operators.

Proof. Since S∗ is class Y, then there exist positive numbers α and kα such that

|SS∗ − S∗S|α ≤ k2α(S − λ)(S − λ)∗, for all λ ∈ C.

Hence for x ∈ |SS∗ −S∗S|
α

2 K there exists a bounded function f : C −→ K such
that

(S − λ)f(λ) = x, for all λ ∈ C

by [8]. Let T = U |T | be the polar decomposition of T , then the Aluthge transform

T̃ = |T |
1
2U |T |

1
2 is semi-hyponormal by [6]. Then

(T̃ − λ)|T |
1
2Xf(λ) = |T |

1
2 (T − λ)Xf(λ)

= |T |
1
2X(S − λ)f(λ), for all λ ∈ C.

We claim that |T |
1
2Xx = 0. Because if |T |

1
2Xx 6= 0, there exists a bounded entire

analytic function g : C −→ H such that (T̃ (s, t) − λ)g(λ) = |T |sXx by Lemma
4.11. Since

g(λ) = (T̃ − λ)−1|T |
1
2Xx −→ 0 as λ −→ ∞,

we have g(λ) = 0 by Liouville’s theorem, and hence |T̃ |
1
2Xx = 0. This is a contra-

diction. Thus
|T |

1
2X |SS∗ − S∗S|2n−1

K = {0} .

Since ker(T ) = ker(|T |) = {0} , we have

X(SS∗ − S∗S) = 0.

Since ℜ(X) is invariant under T and ker(X)⊥ is invariant under S∗. We consider
the following decompositions

H = ℜ(X)⊕ℜ(X)
⊥
, K = ker(X)⊥ ⊕ ker(X),

then we have

T =

(
T1 A
0 T2

)
, S =

(
S1 0
B S2

)
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and

X =

(
X1 0
0 0

)
: ker(X)⊥ ⊕ ker(X) −→ ℜ(X)⊕ℜ(X)

⊥
.

Then

0 = X(SS∗ − S∗S)

=

(
X1(S1S

∗
1 − S∗

1S1 −B∗B) X1(S1B
∗ −B∗S2)

0 0

)

and
X1(S1S

∗
1 − S∗

1S1 −B∗B) = 0.

Since X1 is injective with dense range, we have

S1S
∗
1 − S∗

1S1 −B∗B = 0

and
S1S

∗
1 = S∗

1S1 +B∗B ≥ S∗
1S1.

This implies that B∗
1 is hyponormal. Since TX = XS, we have

T1X1 = X1S1

where T1 is w-hyponormal by Lemma 4.3. Hence T1, S1 are normal and

T ∗
1X1 = X1S

∗
1

by 4.1. Then A = 0 by Lemma 4.4 and B = 0 by Lemma 4.10. Hence

T ∗X =

(
T ∗
1X1 0
0 0

)
=

(
X1S

∗
1 0

0 0

)
= XS∗.

Hence T |(ℜ(X)), S|ker(X)⊥ are normal by Lemma 4.1.

Theorem 4.13. Let T ∈ L (H ) and S∗ ∈ L (K ). If either (i) T is a w-
hyponormal operator such that ker(T ) ⊂ ker(T ∗) and S∗ is a class Y operator
or (ii) T is a class Y operator and S∗ is a w-hyponormal operator such that
ker(S∗) ⊂ ker(S), if TX = XS for some operator X ∈ L (K ,H ), then T ∗X =
XS∗. Moreover, ℜ(X) reduces T , ker(X)⊥ reduces S, and T |(ℜ(X)), S|ker(X)⊥ are

unitarily equivalent normal operators.

Proof. (i) Decompose T and S∗ into their normal and pure parts as in Lemma
4.4 and [17]. Then we have

T = N ⊕A on H = H1 ⊕ H2

S∗ = M∗ ⊕B∗ on K = K1 ⊕ K2

and

X =

(
X11 X12

X21 X22

)
: K = K1 ⊕ K2 −→ H = H1 ⊕ H2,
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where N,M are normal, A is a w-hyponormal and B∗ is class Y. Then TX = XS
implies that (

NX11 NX12

AX21 AX22

)
=

(
X11M X12B
X21M X22B

)
.

Let A = U2|A| be the polar decomposition of A and Ã = |A|
1
2U2|A|

1
2 ,W =

|A|
1
2X22. Then

ÃW = |A|
1
2U2|A|

1
2 |A|

1
2X22

= |A|
1
2U2|A|X22

= |A|
1
2X22(B

∗)∗ = W (B∗)∗.

Since A is a w-hyponormal operator, then Ã is semi-hyponormal operator, B∗ is
a class Y. Hence it follows from [18, Theorem 7] that ℜ(W ) reduces Ã, ker(W )⊥

reduces B∗ and Ã|
ℜ(W ), B∗|ker(W )⊥ are unitarily equivalent normal operators.

Since A and B∗ are pure, we have W = 0 by Lemma 4.4 and Lemma 4.10. Then
X22 = 0 as A, B∗ are injective. Since AX21 = X21M and NX12 = X12B we have
X21M = 0 and NX12 = 0 by similar arguments. Then TX = XS implies

(
NX11 0
AX21 0

)
=

(
X11M X12B

0 0

)

and X12 = X21 = 0. Hence X =

(
X11 0
0 0

)
and

ℜ(X) = ℜ(X11)⊕ {0} , ker(X)⊥ = ker(X11)
⊥ ⊕ {0} .

Since NX11 = X11M, we have N∗X11 = X11M
∗, ℜ(X11) reduces N , ker(X11)

⊥

reduces M , N |
ℜ(X11)

,M |ker(X11)⊥ are unitarily equivalent normal operators. Then

N |
ℜ(X)

∼= N |
ℜ(X11)

, M |ker(X)⊥
∼= M |ker(X11)⊥ imply that T ∗X = XS∗, ℜ(X)

reduces T , ker(X)⊥ reduces S, T |
ℜ(X), S|ker(X)⊥ are unitarily equivalent normal

operators.

(ii) Since TX = XS, we have S∗X∗ = X∗T ∗. Hence SX∗ = S∗∗X∗ = X∗T ∗∗

by part (i) and T ∗X = XS∗. The rest of the proof follows from Lemma 4.1.

Corollary 4.14. Let T ∈ L (H ). Then T is normal if and only if either (i)
T is a w-hyponormal operator such that ker(T ) ⊂ ker(T ∗) and T ∗ is a class Y
operator or (ii) T is a class Y operator and T ∗ is a w-hyponormal operator such
that ker(S∗) ⊂ ker(S).

Corollary 4.15. Let T ∈ L (H ) and S∗ ∈ L (K ) be such that TX = XS. If
either T is pure w-hyponormal such that ker(T ) ⊂ ker(T ∗) and S∗ is class Y or T
is w-hyponormal such that ker(T ) ⊂ ker(T ∗) and S∗ is pure class Y, then X = 0.
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Proof. The hypotheses imply that TX = XS and T ∗X = XS∗ simultaneously by
Theorem 4.13. Therefore T |

ℜ(X) and S|ker(X)⊥ are unitarily equivalent normal

operators, which contradicts the hypotheses that T or S∗ is pure. Hence we must
have X = 0.
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