Thai Journal of Mathematics Volume 15 (2017) Number 1 : 167–182



http://thaijmath.in.cmu.ac.th ISSN 1686-0209

# Quasinormality and Fuglede-Putnam Theorem for *w*-Hyponormal Operators

Mohammad H.M. Rashid

Department of Mathematics, Faculty of Science P.O.Box (7) Mu'tah University, Jordan e-mail : malik\_okasha@yahoo.com

Abstract : We investigate several properties of Aluthge transform  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ of an operator T = U|T|. We prove (i) if T is a *w*-hyponormal operator and  $\widetilde{T}$ is quasi-normal (resp., normal), then T is quasi-normal (resp., normal), (ii) if T is a contraction with ker  $T = \ker T^2$  and  $\widetilde{T}$  is a partial isometry, then T is a quasinormal partial isometry, and (iii) we show that if either (a) T is a *w*-hyponormal operator such that ker $(T) \subset \ker(T^*)$  and  $S^*$  is *w*-hyponormal operator such that ker $(S^*) \subset \ker(S)$  or (b) T is an invertible *w*-hyponormal operator and  $S^*$  is *w*hyponormal operator or (c) T is a *w*-hyponormal such that ker $(T) \subset \ker(T^*)$  and  $S^*$  is a class  $\mathcal{Y}$ , then the pair (T, S) satisfy Fuglede-Putnam property.

 ${\bf Keywords}: w-{\rm hyponormal}$  operators; Fuglede-Putnam theorem; quasinormal operators; partial isometry.

2010 Mathematics Subject Classification : 47B20; 47A10; 47A11.

## 1 Introduction

For complex infinite dimensional Hilbert spaces  $\mathscr{H}$  and  $\mathscr{K}$ ,  $\mathscr{L}(\mathscr{H})$ ,  $\mathscr{L}(\mathscr{K})$ and  $\mathscr{L}(\mathscr{H}, \mathscr{K})$  denote the set of bounded linear operators on  $\mathscr{H}$ , the set of bounded linear operators on  $\mathscr{K}$  and the set of bounded linear operators from  $\mathscr{H}$  to  $\mathscr{K}$ , respectively. Every operator T can be decomposed into T = U|T| with a partial isometry U, where |T| is the square root of  $T^*T$ . If U is determined

Copyright  $\odot\,$  2017 by the Mathematical Association of Thailand. All rights reserved.

uniquely by the kernel condition  $\ker(U) = \ker(|T|)$ , then this decomposition is called the *polar decomposition*, which is one of the most important results in operator theory ([1] and [2]). In this paper, T = U|T| denotes the polar decomposition satisfying the kernel condition  $\ker(U) = \ker(|T|)$ .

Recall that an operator  $T \in \mathscr{L}(\mathscr{H})$  is positive,  $T \geq 0$ , if  $\langle Tx, x \rangle \geq 0$  for all  $x \in \mathscr{H}$ . An operator  $T \in \mathscr{L}(\mathscr{H})$  is said to be hyponormal if  $T^*T \geq TT^*$ . Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators ([3] and [4]). An operator T is said to be *p*-hyponormal if  $(T^*T)^p \geq (TT^*)^p$ for  $p \in (0, 1]$  and an operator T is said to be log-hyponormal if T is invertible and  $\log |T| \geq \log |T^*|$ . *p*-hyponormal and log-hyponormal operators are defined as extension of hyponormal operator. An operator  $T \in \mathscr{L}(\mathscr{H})$  is said to be paranormal if it satisfies the following norm inequality  $||T^2|| ||x|| \geq ||Tx||^2$  for all  $x \in \mathscr{H}$ . Ando [5] proved that every log-hyponormal operators is paranormal. Recall [6], an operator  $T \in \mathscr{L}(\mathscr{H})$  is called *w*-hyponormal if  $|\widetilde{T}| \geq |T| \geq |\widetilde{T}^*|$ , where  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ is the Aluthge transformation. The classes of log- and *w*-hyponormal operators were introduced, and their properties were studied in [6]. In particular, it was shown in [6] that the class of *w*-hyponormal operators contains both *p*-and loghyponormal operators.

## 2 Quasinormality

Let T = U|T| be the polar decomposition of  $T \in \mathscr{L}(\mathscr{H})$ . T is said to be quasinormal if |T|U = U|T|, or equivalently,  $TT^*T = T^*TT$ . Patel [7] proved that if T is p-hyponormal and its Aluthge transform  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$  is normal, then T is normal and  $T = \widetilde{T}$ . Aluthge and Wang [6] proved that if T is whyponormal,  $\ker(T) \subset \ker(T^*)$  and its Aluthge transform  $\widetilde{T}$  is normal, then T is normal and  $T = \widetilde{T}$ . The following is a generalization of these results.

**Theorem 2.1.** Let T be a w-hyponormal operator with the polar decomposition T = U|T|. If  $\widetilde{T}$  is quasinormal, then T is also quasinormal. Hence T coincides with its Aluthge transform  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ .

*Proof.* Since T is a w-hyponormal operator,

$$|\widetilde{T}| \ge |T| \ge |\widetilde{T}^*|. \tag{2.1}$$

Then Douglass theorem [8] implies

$$\overline{\Re(\widetilde{T})} = \overline{\Re(\widetilde{T}^*)} \subset \overline{\Re(|T|)} = \overline{\Re|\widetilde{T}|}$$

where  $\overline{\mathscr{M}}$  denotes the norm closure of  $\mathscr{M}$ . Let  $\widetilde{T} = W|\widetilde{T}|$  be the polar decomposition of  $\widetilde{T}$ . Then  $E := W^*W = U^*U \ge WW^* =: F$ . Put

$$|\widetilde{T}^*| = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}, W = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix}$$

on  $\mathscr{H} = \Re(\widetilde{T}) \oplus \ker(\widetilde{T}^*)$ . Then X is injective and has a dense range. Since  $\widetilde{T}$  is quasinormal, W commutes with  $|\widetilde{T}|$  and

$$\begin{split} \widetilde{T}| &= W^*W|\widetilde{T}| = W^*|\widetilde{T}|W\\ &\geq W^*|T|W \geq W^*|\widetilde{T}^*|W = |\widetilde{T}|. \end{split}$$

Hence

$$|\widetilde{T}| = W^* |\widetilde{T}| W = W^* |T| W,$$

and

$$|\widetilde{T}^*| = W|\widetilde{T}|W^* = WW^*|\widetilde{T}|WW^*$$
(2.2)

$$= WW^*|T|WW^* = \begin{pmatrix} X & 0\\ 0 & 0 \end{pmatrix}.$$
 (2.3)

Since  $WW^* = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ , (2.1), (2.2) and (2.3) imply that  $|\widetilde{T}|$  and |T| are of the forms

$$|\widetilde{T}| = \begin{pmatrix} X & 0\\ 0 & Y \end{pmatrix} \ge |T| = \begin{pmatrix} X & 0\\ 0 & Z \end{pmatrix},$$
(2.4)

where  $\overline{\Re(Y)} = \overline{\Re(Z)} = \overline{\Re(|T|)} \ominus \overline{\Re(\widetilde{T})} = \ker(\widetilde{T}^*) \ominus \ker(T)$ . Since W commutes with  $|\widetilde{T}|$ ,

$$\left(\begin{array}{cc} W_1 & W_2 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} X & 0 \\ 0 & Y \end{array}\right) = \left(\begin{array}{cc} X & 0 \\ 0 & Y \end{array}\right) \left(\begin{array}{cc} W_1 & W_2 \\ 0 & 0 \end{array}\right).$$

So  $W_1X = XW_1$  and  $W_2Y = XW_2$ , and hence  $\overline{\Re(W_1)}$  and  $\overline{\Re(W_2)}$  are reducing subspaces of X. Since  $W^*W|\widetilde{T}| = |\widetilde{T}|$ , we have  $W_1^*W_1 = 1$  and

$$\begin{aligned} X^k &= W_1^* W_1 X^k = W_1^* X^k W_1, \\ Y^k &= W_2^* W_2 Y^k = W_2^* X^k W_2. \end{aligned}$$

Put  $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ . Then  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}} = W|\widetilde{T}|$  implies  $\begin{pmatrix} X^{\frac{1}{2}} & 0 \\ 0 & Z^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} X^{\frac{1}{2}} & 0 \\ 0 & Z^{\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix}.$ 

Hence

$$\begin{aligned} X^{\frac{1}{2}}U_{11}X^{\frac{1}{2}} &= W_1X = X^{\frac{1}{2}}W_1X^{\frac{1}{2}}, \\ X^{\frac{1}{2}}U_{12}Z^{\frac{1}{2}} &= W_2Y = XW_2 \end{aligned}$$

and

$$X^{\frac{1}{2}}(U_{11} - W_1)X^{\frac{1}{2}} = 0,$$
  
$$X^{\frac{1}{2}}(U_{12}Z^{\frac{1}{2}} - X^{\frac{1}{2}}W_2) = 0$$

Since X is injective and has a dense range,  $U_{11} = W_1$  is isometry and  $U_{12}Z^{\frac{1}{2}} = X^{\frac{1}{2}}W_2$  Then

$$U^*U = \begin{pmatrix} U_{11}^*U_{l1} + U_{21}^*U_{21} & U_{1l}^*U_{l2} + U_{21}^*U_{22} \\ U_{12}^*U_{ll} + U_{22}^*U_{21} & U_{12}^*U_{12} + U_{22}^*U_{22} \end{pmatrix}$$

on  $\mathscr{H} = \overline{\Re(\widetilde{T})} \oplus \ker(\widetilde{T}^*)$  is the orthogonal projection onto  $\overline{\Re(|T|)} \supset \overline{\Re(\widetilde{T})}$  and

$$U^*U = \left(\begin{array}{cc} 1 & 0\\ 0 & U_{l2}^*U_{12} + U_{22}^*U_{22} \end{array}\right).$$

Since  $U_{12}Z^{\frac{1}{2}} = X^{\frac{1}{2}}W_2$ , we have

$$Z \ge Z^{\frac{1}{2}} U_{12}^* U_{12} Z^{\frac{1}{2}} = W_2^* X W_2 = Y,$$

and

$$Z \ge Z^{\frac{1}{2}} U_{12}^* U_{12} Z^{\frac{1}{2}} = W_2^* X W_2 = Y \ge Z$$

by (2.4). Hence

$$Z^{\frac{1}{2}}U_{12}^*U_{12}Z^{\frac{1}{2}} = Z = Y,$$

so Z = Y and  $|\widetilde{T}| = |T|$ . Since

$$Z = Z^{\frac{1}{2}} U_{12}^* U_{12} Z^{\frac{1}{2}}$$
  
$$\leq Z^{\frac{1}{2}} U_{12}^* U_{12} Z^{\frac{1}{2}} + Z^{\frac{1}{2}} U_{22}^* U_{22} Z^{\frac{1}{2}} \leq Z$$

 $Z^{\frac{1}{2}}U_{22}^{*}U_{22}Z^{\frac{1}{2}} = 0$  and  $U_{22}Z^{\frac{1}{2}} = 0$ . This implies  $\Re(U_{22}^{*}) \subset \ker(Z)$ . Since  $\underline{\Re(U_{12}^{*}U_{12} + U_{22}^{*}U_{22})} \subset \overline{\Re(Z)}$  and  $U_{22}^{*}U_{22} \leq U_{12}^{*}U_{12} + U_{22}^{*}U_{22}$ , we have  $\Re(U_{22}^{*}) \subset \overline{\Re(Z)}$ . Hence

$$U_{22} = 0, U = \left(\begin{array}{cc} W_1 & U_{12} \\ 0 & 0 \end{array}\right)$$

and

$$\Re(U) \subset \overline{\Re(\widetilde{T})} \subset \overline{\Re(|T|)} = \Re(E).$$

Since W commutes with  $|\widetilde{T}| = |T|$ , W commutes with |T| and

$$\begin{split} |T|^{\frac{1}{2}}(W-U)|T|^{\frac{1}{2}} &= W|T|^{\frac{1}{2}}|T|^{\frac{1}{2}} - |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}} \\ &= W|\widetilde{T}| - \widetilde{T} = 0. \end{split}$$

Hence E(W - U)E = 0 and

$$U = UE = EUE = EWE = WE = W.$$

Thus U = W commutes with |T| and T is quasinormal.

**Corollary 2.2.** Let T = U|T| be a w-hyponormal operator T. If  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$  is normal, then T is also normal.

*Proof.* Since  $\widetilde{T}$  is normal, T is quasinormal by Theorem 2.1. Hence  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ = U|T| and  $\widetilde{T}^* = |T|U^*$ . Hence  $|T|^2 = |\widetilde{T}|^2 = |\widetilde{T}^*|^2 = |T^*|^2$ . This implies  $|T| = |T^*|$  and T is normal.

## **3** Partial Isometry

In this section, we deals with a partial isometry, i.e.,  $VV^*V = V$ . Let V be a quasinormal partial isometry. Then  $VV^*$  is the orthogonal projection onto  $V\mathcal{H}$ and  $V^*V$  is the orthogonal projection onto  $V^*\mathcal{H}$ . Let V = U|V| be the polar decomposition of V. Since V = U and  $|V| = V^*V$ , we have

$$\widetilde{V} = |V|^{\frac{1}{2}} U|V|^{\frac{1}{2}} = V^* V V V^* V = V.$$

Hence the Aluthge transform  $\tilde{V}$  of V is a partial isometry and coincides with V. In this section, we deal with converse situation in which either  $\tilde{T}$  is a partial isometry or  $\tilde{T} = T$ . First we consider the situation in which  $\tilde{T}$  is a partial isometry. We start with the following lemma, which is well known.

**Lemma 3.1** ([9]). If  $0 \le A \le 1$ , and ||Ax|| = ||x||. Then Ax = x.

**Lemma 3.2.** Let T = U|T| be a contraction and  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$  a partial isometry. Then  $\widetilde{T} = \widetilde{T}(s,t) = |T|^{s}U|T|^{t}$  for all s,t > 0. In particular,  $\ker(\widetilde{T}) = \ker(\widetilde{T}(1,1)) = \ker(T^{2})$ .

*Proof.* Since  $\widetilde{T}$  is an isometry on  $\Re(\widetilde{T}^*)$ ,  $|||T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}x|| = ||x||$  for all  $x \in \Re(\widetilde{T}^*)$ . Since T is a contraction,  $|T|^{\frac{1}{2}}$  is also contractions, hence we have

$$|T|^{\frac{1}{2}}x = x, |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}x = |T|^{\frac{1}{2}}Ux = Ux$$

by Lemma 3.1. Hence  $|T|^t x = x$ ,  $|T|^s U x = U x$  and  $|T|^s U|T|^t x = |T|^s U x = U x$ for all s, t > 0. Hence we have  $\widetilde{T} = \widetilde{T}(s,t) = U$  on  $\Re(\widetilde{T}^*)$ . To prove the rest, it suffices to show that  $\ker(\widetilde{T}) = \ker(\widetilde{T}(s,t))$  because  $\mathscr{H} = \Re(\widetilde{T}^*) \oplus \ker(\widetilde{T})$ . Since

$$|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}x = 0 \Leftrightarrow U|T|^{\frac{1}{2}}x \in kerT = ker|T|$$
$$\Leftrightarrow |T|^{s}U|T|^{\frac{1}{2}}x = 0,$$

we have  $\widetilde{T} = \widetilde{T}(s, \frac{1}{2})$ . By using the same argument as above, we have  $\widetilde{T}^* = \widetilde{T}(\frac{1}{2}, t)$  for all t > 0. Hence

$$\ker(\widetilde{T}) = \Re(\widetilde{T}^*)^{\perp} = \Re(\widetilde{T}^*(\frac{1}{2}, t))^{\perp}$$
$$= \ker(\widetilde{T}(\frac{1}{2}, t)) = \ker(\widetilde{T}(s, t)).$$

Thus  $\widetilde{T} = \widetilde{T}(s,t)$ . It is clear that  $\ker(\widetilde{T}(1,1)) = \ker(T^2)$ .

**Theorem 3.3.** Let T = U|T| be a contraction such that  $\ker(T) = \ker(T^2)$ . If  $\widetilde{T}$  is a partial isometry, then  $T = \widetilde{T} = U$  and T is a quasinormal partial isometry.

Proof. By Lemma 3.2,

$$\ker(\widetilde{T}) = \ker(T^2) = \ker(T) = \ker(U),$$

so  $\Re(\widetilde{T}^*) = \overline{\Re(T^*)} = \overline{\Re(|T|)}$ . Since  $\widetilde{T} = U$  on ran  $\widetilde{T}^* = \overline{\Re(|T|)}$  and  $\ker(\widetilde{T}) = \ker(U) = \mathscr{N}(T)$ ,  $\widetilde{T} = U$  because  $\mathscr{H} = \overline{\Re(|T|)} \oplus \ker(T)$ . This shows

$$\Re(U) = \Re(\widetilde{T}) \subset \overline{\Re(|T|)} = \Re(U^*U).$$

Thus  $U = UU^*U = U^*UU$ . Let

$$|T| = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}, \ U^*U = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ on } \mathscr{H} = \overline{\Re(|T|)} \oplus \ker(T).$$

Since T is a contraction, we have  $U^*|T|U \leq 1$  and  $0 \leq X \leq 1$  . Then

$$U^*U = \widetilde{T}^*\widetilde{T} = |T|^{\frac{1}{2}}U^*|T|U|T|^{\frac{1}{2}} \le |T| \le U^*U.$$

Hence  $|T| = U^*U$  and  $T = U|T| = UU^*U = U = \widetilde{T}$ . Thus T is a quasinormal partial isometry.

**Corollary 3.4.** Let T = U|T| be w-hyponormal operator. If  $\widetilde{T}$  is a partial isometry, then  $\widetilde{T} = T$  and T is a quasinormal partial isometry.

*Proof.* Since  $|\widetilde{T}|$  is a contraction and  $|\widetilde{T}| \ge |T|$ , it follows that T is a contraction and  $\ker(T) = \ker(\widetilde{T}) = \ker(T^2)$  by Lemma 3.2. Now the result follows from Theorem 3.3.

**Theorem 3.5.** Let T = U|T| and  $T = \tilde{T}$ . Then the following assertions hold.

- (i)  $(T^*T)^{\frac{1}{2}}(TT^*)^{\frac{1}{2}} = TT^*$ , hence  $T^*T$  commutes with  $TT^*$ .
- (*ii*)  $\ker(T) \subset \ker(T^*)$ .

*Proof.* (i) Since  $T = \tilde{T}$ ,

$$U|T|U^* = \widetilde{T}U^* = U\widetilde{T}^*.$$

Hence |T| commute with  $|T^*| = U|T|U^*$  and

$$TT^* = U|T|U^*U|T|U^*$$
  
=  $|T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}}|T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}} = (T^*T)^{\frac{1}{2}}(TT^*)^{\frac{1}{2}}.$ 

(ii) Part(i) implies that  $(T^*T)^{\frac{1}{2}}(TT^*)^{\frac{1}{2}} = TT^*$  and so (ii) is immediate.

# 4 Fuglede-Putnam Type Theorem

A pair (T, S) is said to have the Fuglede-Putnam property if  $T^*X = XS^*$ whenever TX = XS for every  $X \in \mathscr{L}(\mathscr{K}, \mathscr{H})$ . The Fuglede-Putnam theorem is well-known in the operator theory. It asserts that for any normal operators T and S, the pair (T, S) has the Fuglede-Putnam property. There exist many generalization of this theorem which most of them go into relaxing the normality of T and S, see [9, 10, 11, 12, 13, 14, 15] and some references therein. The next lemma is concerned with the Fuglede-Putnam theorem and we need it in the future.

**Lemma 4.1.** ([15]) Let  $T \in \mathscr{L}(\mathscr{H})$  and  $S \in \mathscr{L}(\mathscr{H})$ . Then the following assertions equivalent.

- (i) The pair (T, S) has the Fuglede-Putnam property.
- (ii) If TX = SX, then  $\overline{\Re(X)}$  reduces T,  $\ker(X)^{\perp}$  reduces S, and  $T|_{\overline{\Re(X)}}$ ,  $S|_{\ker(X)^{\perp}}$  are unitarily equivalent normal operators.

**Lemma 4.2.** ([16]) Let A, B and C be positive operators, 0 < p and  $0 < r \le 1$ . If  $(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^r$  and  $B \ge C$ , then  $(C^{\frac{r}{2}}A^pC^{\frac{r}{2}})^{\frac{r}{p+r}} \ge C^r$ .

**Lemma 4.3.** Let T be a w-hyponormal operator and  $\mathscr{M}$  an invariant subspace of T. Then the restriction  $T|_{\mathscr{M}}$  is also w-hyponormal operator.

*Proof.* Let  $T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix}$  on  $\mathscr{H} = \mathscr{M} \oplus \mathscr{M}^{\perp}$  and P the orthogonal projection onto  $\mathscr{M}$ . Let  $T_0 = TP = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$ . Then  $|T_0| = (P|T|^2P)^{\frac{1}{2}} \ge P|T|P$  by Hansens inequality, and  $|T^*|^2 = TT^* \ge TPT^* = |T_0^*|^2$ . Hence, T is whyponormal operator

$$\Leftrightarrow (|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{1}{2}} \ge |T^*|$$

$$\Rightarrow (|T_0^*|^{\frac{1}{2}}|T||T_0^*|^{\frac{1}{2}})^{\frac{1}{2}} \ge |T_0^*| \quad \text{(by Lemma 4.2)}$$

$$\Rightarrow (|T_0^*|^{\frac{1}{2}}|T_0||T_0^*|^{\frac{1}{2}})^{\frac{1}{2}} \ge |T_0^*| \quad \text{(since } |T_0^*|^{\frac{1}{2}} = |T_0^*|^{\frac{1}{2}}P = P|T_0^*|^{\frac{1}{2}}).$$

Also

$$\begin{aligned} |T_0| &\geq \left( |T_0|^{\frac{1}{2}} |T^*| |T_0|^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ &\geq \left( |T_0|^{\frac{1}{2}} |T_0^*| |T_0|^{\frac{1}{2}} \right)^{\frac{1}{2}}. \end{aligned}$$

Therefore,  $T|_{\mathcal{M}}$  is w-hyponormal operator.

**Lemma 4.4.** Let  $T \in \mathscr{L}(\mathscr{H})$  be a w-hyponormal operator with  $\ker(T) \subset \ker(T^*)$ . Then  $T = T_1 \oplus T_2$  on  $\mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$  where  $T_1$  is normal,  $\ker(T_2) = \{0\}$  and  $T_2$  is pure w-hyponormal i.e.,  $T_2$  has no non-zero invariant subspace  $\mathscr{M}$  such that  $T_2|_{\mathscr{M}}$  is normal.

**Lemma 4.5.** Let  $T = U|T| \in \mathscr{L}(\mathscr{H})$  be a w-hyponormal operator and ker $(T) \subset$  ker $(T^*)$ . Suppose  $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$  be of the form  $N \oplus T'$  on  $\mathscr{H} = \mathscr{M} \oplus \mathscr{M}^{\perp}$ , where N is a normal operator on  $\mathscr{M}$ . Then  $T = N \oplus T_1$  and  $U = U_{11} \oplus U_{22}$  where  $T_1$  is w-hyponormal operator with ker $(T_1) \subset \text{ker}(T_1^*)$  and  $N = U_{11}|N|$  is the polar decomposition of N

Proof. Since

$$|\widetilde{T}| \ge |T| \ge |\widetilde{T}^*|,$$

we have

$$|N| \oplus |T'| \ge |T| \ge |N| \oplus |T'^*|$$

by assumption. This implies that |T| is of the form  $|N| \oplus L$  for some positive operator L. Let  $U = \begin{pmatrix} U_{11} & U_{l2} \\ U_{21} & U_{22} \end{pmatrix}$  be  $2 \times 2$  matrix representation of U with respect to the decomposition  $\mathscr{H} = \mathscr{M} \oplus \mathscr{M}^{\perp}$ . Then the definition  $\widetilde{T}$  means

$$\begin{pmatrix} N & 0 \\ 0 & T' \end{pmatrix} = \begin{pmatrix} |N|^{\frac{1}{2}} & 0 \\ 0 & L^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} U_{11} & U_{l2} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} |N|^{\frac{1}{2}} & 0 \\ 0 & L^{\frac{1}{2}} \end{pmatrix}$$

Hence, we have

$$N = |N|^{\frac{1}{2}} U_{11} |N|^{\frac{1}{2}}, \quad |N|^{\frac{1}{2}} U_{12} L^{\frac{1}{2}} = 0, \quad L^{\frac{1}{2}} U_{21} |N|^{\frac{1}{2}} = 0.$$

Since  $\ker(T) \subset \ker(T^*)$ ,

$$\overline{\Re(U)} = \overline{\Re(T)} = \ker(T^*)^{\perp} \subset \ker(T)^{\perp} = \overline{\Re(|T|)}.$$

Let Nx = 0 for  $x \in \mathcal{M}$ . Then  $x \in \ker(|T|) = \ker(U)$ , and

$$Ux = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} U_{11}x \\ U_{21}x \end{pmatrix} = 0.$$

Hence

$$\ker(N) \subset \ker(U_{11}) \cap \ker(U_{21}).$$

Let  $x \in \mathcal{M}$ . Then

$$U\left(\begin{array}{c}x\\0\end{array}\right) = \left(\begin{array}{c}U_{11}x\\U_{21}x\end{array}\right) \in \overline{\Re(|T|)} = \overline{\Re(|N| \oplus L)}.$$

Hence

$$\Re(U_{11}) \subset \Re(|N|), \Re(U_{21}) \subset \overline{\Re(L)}.$$

Similarly

$$\Re(U_{12}) \subset \Re(|N|), \Re(U_{22}) \subset \overline{\Re(L)}$$

Let Lx = 0 for  $x \in \mathscr{M}^{\perp}$ . Then  $x \in \ker(|T|) = \ker(U)$  and

$$U\left(\begin{array}{c}0\\x\end{array}\right) = \left(\begin{array}{c}U_{12}x\\U_{22}x\end{array}\right) = 0.$$

Hence

$$\ker(L) \subset \ker(U_{12}) \cap \ker(U_{22}).$$

Let N = V|N| be the polar decomposition of N. Then

$$(V|N|^{\frac{1}{2}} - |N|^{\frac{1}{2}}U_{11})|N|^{\frac{1}{2}} = 0.$$

Hence  $V|N|^{\frac{1}{2}} - |N|^{\frac{1}{2}}U_{11} = 0$  on  $\overline{\Re(|N|)}$ . Since ker $(N) \subset \ker(U_{11})$ , this implies  $0 = V|N|^{\frac{1}{2}} - |N|^{\frac{1}{2}}U_{11} = |N|^{\frac{1}{2}}(V - U_{11})$ . Hence

$$\Re(V - U_{11}) \subset \ker(|N|) \cap \overline{\Re(|N|)} = \{0\}$$

Hence  $V = U_{11}$  and  $N = U_{11}|N|$  is the polar decomposition of N. Since  $|N|^{\frac{1}{2}}U_{12}L^{\frac{1}{2}} = 0$ ,

$$\Re(U_{11}L^{\frac{1}{2}}) \subset \ker(|N|) \cap \Re(|N|) = \{0\}$$

Hence  $U_{12}L^{\frac{1}{2}} = 0$  and  $U_{12} = 0$ . Similarly we have  $U_{21} = 0$  by  $L^{\frac{1}{2}}U_{21}|N|^{\frac{1}{2}} = 0$ . Hence  $U = U_{11} \oplus U_{22}$ . So we obtain

$$T = U|T| = U_{11}|N| \oplus U_{22}L = N \oplus T_1,$$

where  $T_1 = U_{22}L$ .

**Lemma 4.6.** Let  $T \in \mathscr{L}(\mathscr{H})$  be w-hyponormal operator and  $\ker(T) \subset \ker(T^*)$ . If L is self-adjoint and  $TL = LT^*$ , then  $T^*L = LT$ .

*Proof.* Since  $\ker(T) \subset \ker(T^*)$  and  $TL = LT^*$ ,  $\ker(T)$  reduces T and L. Hence

$$T = T_1 \oplus 0, \quad L = L_1 \oplus L_2 \quad \text{on } \mathscr{H} = \overline{\Re(T^*)} \oplus kerT,$$

 $T_1L_1 = L_1T_1^*$  and  $\{0\} = \ker(T_1) \subset \ker(T_1^*)$ . Since  $\overline{\Re(L_1)}$  is invariant under  $T_1$  and reduces  $L_1$ ,

$$T_1 = \begin{pmatrix} T_{11} & S \\ 0 & T_{22} \end{pmatrix}, \quad L_1 = L_{11} \oplus 0 \text{ on } \overline{\Re(T^*)} = \overline{\Re(L_1)} \oplus \ker(L_1).$$

 $T_{11}$  is an injective *w*-hyponormal operator by Lemma 4.4 and  $L_{11}$  is an injective self-adjoint operator (hence it has dense range) such that  $T_{11}L_{11} = L_{11}T_{11}^*$ . Let  $T_{11} = V_{11}|T_{11}|$  be the polar decomposition of  $T_{11}$  and  $\widetilde{T}_{11} = |T_{11}|^{\frac{1}{2}}V_{11}|T_{11}|^{\frac{1}{2}}$ ,  $W = |T_{11}|^{\frac{1}{2}}L_{11}|T_{11}|^{\frac{1}{2}}$ . Then

$$\begin{split} \widetilde{T}_{11}W &= |T_{11}|^{\frac{1}{2}}V_{11}|T_{11}|L_{11}|T_{11}|^{\frac{1}{2}} \\ &= |T_{11}|^{\frac{1}{2}}T_{11}L_{11}|T_{11}|^{\frac{1}{2}} = |T_{11}|^{\frac{1}{2}}L_{11}T_{11}^{*}|T_{11}|^{\frac{1}{2}} \\ &= |T_{11}|^{\frac{1}{2}}L_{11}|T_{11}|^{\frac{1}{2}}|T_{11}|^{\frac{1}{2}}V_{11}^{*}|T_{11}|^{\frac{1}{2}} \\ &= W\widetilde{T}_{11}^{*}. \end{split}$$

Since  $\widetilde{T}_{11}$  is semi-hyponormal and  $\Re(W)$  is dense (because ker $(W) = \{0\}$ ),  $\widetilde{T}$  is normal by [14, Theorem 2.6]. Hence  $T_{11}$  is normal and  $T_{11} = \widetilde{T}_{11}$  by Corollary

175

2.2. Then  $\overline{\Re(L_1)}$  reduces  $T_1$  by Lemma 4.4 and  $T_{11}^*L_{11} = L_{11}T_{11}$  by Lemma 4.1. Hence

$$T = T_{11} \oplus T_{22} \oplus 0,$$
$$L = L_{11} \oplus 0 \oplus L_2$$

and

$$T^*L = T^*_{11}L_{11} \oplus 0 \oplus 0 = L_{11}T_{11} \oplus 0 \oplus 0 = LT.$$

**Corollary 4.7.** Let  $T \in \mathscr{L}(\mathscr{H})$  be w-hyponormal operator and  $\ker(T) \subset \ker(T^*)$ . If  $TX = XT^*$  for some  $X \in \mathscr{L}(\mathscr{H})$  then  $T^*X = XT$ .

*Proof.* Let X = L + iJ be the Cartesian decomposition of X. Then we have  $TL = LT^*$  and  $TJ = JT^*$  by the assumption. By Lemma 4.6, we have  $T^*L = LT$  and  $T^*J = JT$ . This implies that  $T^*X = XT$ .

**Corollary 4.8.** Let  $T \in \mathscr{L}(\mathscr{H})$ ,  $S^* \in \mathscr{L}(\mathscr{H})$  be w-hyponormal operators and  $\ker(T) \subset \ker(T^*)$ ,  $\ker(S^*) \subset \ker(\underline{S})$ . If SX = XT for some  $X \in \mathscr{L}(\mathscr{H}, \mathscr{H})$ , then  $T^*X = XS^*$ . Moreover, Then  $\Re(X)$  reduces T,  $\ker(X)^{\perp}$  reduces S and  $T|_{\Re(X)}$ ,  $S|_{\ker(X)^{\perp}}$  are unitarily equivalent normal operators.

*Proof.* Put  $A = \begin{pmatrix} S^* & 0 \\ 0 & T \end{pmatrix}$  and  $Y = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix}$  on  $\mathscr{H} \oplus \mathscr{H}$ . Then A is w-hyponormal operator with  $\ker(A) \subset \ker(A^*)$ , which satisfies  $AY = YA^*$ . Hence we have  $A^*Y = YA$  by Corollary 4.7, and hence  $T^*X = XS^*$ .

Now since  $T^*X = XS^*$ , then  $T^*TX = XS^*S$  and so |T|X = X|S|. Let T = U|T|, S = V|S| be polar decomposition. Then UX|S| = U|T|X = TX = XS = XV|S|. Let  $x \in \ker(|S|)$ . Then Vx = 0 and TXx = XSx = 0. Hence  $Xx \in \ker(T) = \ker(U)$  and UXx = 0. Hence UX = XV. Since  $\ker(U) = \ker(T) \subset \ker(T^*) = \ker(U^*), UU^* \leq U^*U$ . Hence  $U^*UU = U^*UUU^*U = UU^*U = U$ . This implies U and  $V^*$  are quasinormal. Hence  $U^*X = XV^*, \ \widehat{\Re}(X)$  reduces  $U, |T|, \ker(X)^{\perp}$  reduces V, |S|. Since  $S, T^*$  are class w-hyponormal operators with reducing kernels. Let  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}, \ \widetilde{S} = |S|^{\frac{1}{2}}V|S|^{\frac{1}{2}}$ . Then  $\widetilde{T}, \ \widetilde{S}^* = |S^*|^{\frac{1}{2}}V^*|S^*|^{\frac{1}{2}} = V\widetilde{S}^*V^*$  are semi-hyponormal. Also, since  $|(\widetilde{S})^*| - |\widetilde{S}| = V^*(|\widetilde{S}^*| - |(\widetilde{S}^*)^*|)V \geq 0, \ \widetilde{S}^*$  is semi-hyponormal, too. Then

$$\begin{split} \widetilde{T}X &= |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}X = |T|^{\frac{1}{2}}UX|S|^{\frac{1}{2}} \\ &= |T|^{\frac{1}{2}}XV|S|^{\frac{1}{2}} = X\widetilde{S}, \end{split}$$

hence  $\widetilde{T}^*X = X\widetilde{S}^*$ ,  $\overline{\Re(X)}$  reduces  $\widetilde{T}$ ,  $\ker(X)^{\perp}$  reduces  $\widetilde{S}$  and  $\widetilde{T}|_{\overline{\Re(X)}}$ ,  $\widetilde{S}|_{\ker(X)^{\perp}}$  are unitarily equivalent normal operators. Hence  $T|_{\overline{\Re(X)}}$ ,  $S|_{\ker(X)^{\perp}}$  are normal operators by Corollary 2.2, and that they are unitarily equivalent follows from the fact that if N = U|N| are M = W|M| are normal operators, then for a unitary operator V,  $N = V^*MV$  if and only if  $U = V^*WV$  and  $|N|^{\frac{1}{2}} = V^*|M|^{\frac{1}{2}}V$ .  $\Box$ 

176

**Theorem 4.9.** Let  $T = U|T| \in \mathscr{L}(\mathscr{H})$  be a w-hyponormal operator and N a normal operator. Let TX = XN. Then the following assertions hold.

- (i) If the range  $\Re(X)$  is dense, then T is normal.
- (ii) If  $\ker(X^*) \subset \ker(T^*)$ , then T is quasinormal.

*Proof.* Let  $Z = |T|^{\frac{1}{2}}X$ . Then

$$\widetilde{T}Z = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}|T|^{\frac{1}{2}}X = |T|^{\frac{1}{2}}TX$$
$$= |T|^{\frac{1}{2}}XN = ZN.$$

Since  $\widetilde{T}$  is semi-hyponormal, we have

$$\widetilde{T}^*Z = ZN^*$$

by [14]. Hence

$$\begin{split} & (\widetilde{T}^*\widetilde{T} - \widetilde{T}\widetilde{T}^*)|T|^{\frac{1}{2}}X \\ & = \widetilde{T}^*\widetilde{T}Z - \widetilde{T}T^*Z \\ & = \widetilde{T}^*ZN - \widetilde{T}ZN^* = ZN^*N - ZNN^* = 0. \end{split}$$

(i) If  $\Re(X)$  is dense, then

$$(\widetilde{T}^*\widetilde{T} - \widetilde{T}\widetilde{T}^*)|T|^{\frac{1}{2}} = 0.$$

Since

$$\ker(|T|^{\frac{1}{2}}) \subset \ker(\widetilde{T}) \cap \ker(\widetilde{T}^*),$$

this implies  $\widetilde{T}$  is normal. Hence T is normal by Corollary 2.2.

(ii) Let  $X^*|T|^{\frac{1}{2}}x = 0$ . Then  $|T|^{\frac{1}{2}}x \in \ker(X^*) \subset \ker(T^*) = \ker(U^*)$  and  $\widetilde{T}^*x = |T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}}x = 0$ . Hence  $\ker(X^*|T|^{\frac{1}{2}}) \subset \widetilde{T}^*$  and  $\overline{\Re(\widetilde{T})} \subset \overline{\Re(|T|^{\frac{1}{2}}X)}$ . Hence

$$(\widetilde{T}^*\widetilde{T} - \widetilde{T}\widetilde{T}^*)\widetilde{T} = 0$$

by (i). This implies  $\widetilde{T}$  is quasinormal, and T is quasinormal by Theorem 2.1.

Following [17], an operator  $T \in \mathscr{L}(\mathscr{H})$  is said to be a class  $\mathcal{Y}_{\alpha}$  operator for  $\alpha \geq 0$  if there exists a positive number  $k_{\alpha}$  such that

$$|TT^* - T^*T|^{\alpha} \le k_{\alpha}^2 (T - \lambda)^* (T - \lambda)$$
 for all  $\lambda \in \mathbb{C}$ .

It is known that  $\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\beta}$  if  $1 \leq \alpha \leq \beta$ . Let  $\mathcal{Y} = \bigcup_{\alpha \geq 1} \mathcal{Y}_{\alpha}$ . We remark that a class  $\mathcal{Y}_1$  operator T is M-hyponormal and M-hyponormal operators are class  $\mathcal{Y}_2$  operators.

**Lemma 4.10.** ([17]) Let  $T \in \mathscr{L}(\mathscr{H})$  be a class  $\mathscr{Y}$  and  $\mathscr{M} \subset \mathscr{H}$  invariant under T. If  $T|_{\mathscr{M}}$  is normal, then  $\mathscr{M}$  reduces T.

**Lemma 4.11.** ([17]) If  $T \in \mathcal{Y}_{\alpha}$  for some  $\alpha \geq 1$  and if, for a closed set  $S \subseteq \mathbb{C}$ , there exists a bounded function  $f(z) : \mathbb{C} \setminus S \longrightarrow \mathscr{H}$  and a non-zero  $x \in \mathscr{H}$  such that  $(T-z)f(z) \equiv x$ , then  $g(z) = (I - E(\{0\}))f(z)$  is analytic on  $\mathbb{C} \setminus S$  where E(.)denotes the spectral measure of  $|TT^* - T^*T|^{\frac{\alpha}{2}}$ . Moreover, if  $0 \notin \sigma_p(TT^* - T^*T)$ , then f(z) is analytic on  $\mathbb{C} \setminus S$ .

**Theorem 4.12.** Let  $T \in \mathscr{L}(\mathscr{H})$  be an invertible w-hyponormal operator and  $S^* \in \mathscr{L}(\mathscr{H})$  be class  $\mathcal{Y}$ . If TX = XS for some  $X \in \mathscr{L}(\mathscr{H}, \mathscr{H})$ , then  $T^*X = XS^*$ . Moreover,  $\overline{\Re(X)}$  reduces T, ker $(X)^{\perp}$  reduces S, and  $T|_{\overline{\Re(X)}}$ ,  $S|_{\ker(X)^{\perp}}$  are unitarily equivalent normal operators.

*Proof.* Since  $S^*$  is class  $\mathcal{Y}$ , then there exist positive numbers  $\alpha$  and  $k_{\alpha}$  such that

$$|SS^* - S^*S|^{\alpha} \le k_{\alpha}^2 (S - \lambda)(S - \lambda)^*$$
, for all  $\lambda \in \mathbb{C}$ .

Hence for  $x \in |SS^* - S^*S|^{\frac{\alpha}{2}} \mathscr{K}$  there exists a bounded function  $f : \mathbb{C} \longrightarrow \mathscr{K}$  such that

$$(S-\lambda)f(\lambda) = x$$
, for all  $\lambda \in \mathbb{C}$ 

by [8]. Let T = U|T| be the polar decomposition of T, then the Aluthge transform  $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$  is semi-hyponormal by [6]. Then

$$\begin{split} (\widetilde{T}-\lambda)|T|^{\frac{1}{2}}Xf(\lambda) &= |T|^{\frac{1}{2}}(T-\lambda)Xf(\lambda) \\ &= |T|^{\frac{1}{2}}X(S-\lambda)f(\lambda), \text{ for all } \lambda \in \mathbb{C}. \end{split}$$

We claim that  $|T|^{\frac{1}{2}}Xx = 0$ . Because if  $|T|^{\frac{1}{2}}Xx \neq 0$ , there exists a bounded entire analytic function  $g: \mathbb{C} \longrightarrow \mathscr{H}$  such that  $(\widetilde{T}(s,t) - \lambda)g(\lambda) = |T|^s Xx$  by Lemma 4.11. Since

$$g(\lambda) = (\widetilde{T} - \lambda)^{-1} |T|^{\frac{1}{2}} X x \longrightarrow 0 \text{ as } \lambda \longrightarrow \infty,$$

we have  $g(\lambda) = 0$  by Liouville's theorem, and hence  $|\tilde{T}|^{\frac{1}{2}}Xx = 0$ . This is a contradiction. Thus

$$|T|^{\frac{1}{2}}X|SS^* - S^*S|^{2n-1}\mathscr{K} = \{0\}.$$

Since  $\ker(T) = \ker(|T|) = \{0\}$ , we have

$$X(SS^* - S^*S) = 0.$$

Since  $\overline{\Re(X)}$  is invariant under T and ker $(X)^{\perp}$  is invariant under S<sup>\*</sup>. We consider the following decompositions

$$\mathscr{H} = \overline{\Re(X)} \oplus \overline{\Re(X)}^{\perp}, \ \mathscr{H} = \ker(X)^{\perp} \oplus \ker(X),$$

then we have

$$T = \left(\begin{array}{cc} T_1 & A \\ 0 & T_2 \end{array}\right), \qquad S = \left(\begin{array}{cc} S_1 & 0 \\ B & S_2 \end{array}\right)$$

and

$$X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} : \ker(X)^{\perp} \oplus \ker(X) \longrightarrow \overline{\Re(X)} \oplus \overline{\Re(X)}^{\perp}.$$

Then

$$0 = X(SS^* - S^*S)$$
  
=  $\begin{pmatrix} X_1(S_1S_1^* - S_1^*S_1 - B^*B) & X_1(S_1B^* - B^*S_2) \\ 0 & 0 \end{pmatrix}$ 

and

$$X_1(S_1S_1^* - S_1^*S_1 - B^*B) = 0.$$

Since  $X_1$  is injective with dense range, we have

$$S_1 S_1^* - S_1^* S_1 - B^* B = 0$$

and

$$S_1 S_1^* = S_1^* S_1 + B^* B \ge S_1^* S_1.$$

This implies that  $B_1^*$  is hyponormal. Since TX = XS, we have

$$T_1 X_1 = X_1 S_1$$

where  $T_1$  is w-hyponormal by Lemma 4.3. Hence  $T_1, S_1$  are normal and

$$T_1^* X_1 = X_1 S_1^*$$

by 4.1. Then A = 0 by Lemma 4.4 and B = 0 by Lemma 4.10. Hence

$$T^*X = \begin{pmatrix} T_1^*X_1 & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} X_1S_1^* & 0\\ 0 & 0 \end{pmatrix} = XS^*.$$

Hence  $T|_{\overline{(\Re(X))}}$ ,  $S|_{\ker(X)^{\perp}}$  are normal by Lemma 4.1.

**Theorem 4.13.** Let  $T \in \mathscr{L}(\mathscr{H})$  and  $S^* \in \mathscr{L}(\mathscr{K})$ . If either (i) T is a whyponormal operator such that  $\ker(T) \subset \ker(T^*)$  and  $S^*$  is a class  $\mathcal{Y}$  operator or (ii) T is a class  $\mathcal{Y}$  operator and  $S^*$  is a w-hyponormal operator such that  $\ker(S^*) \subset \ker(S)$ , if TX = XS for some operator  $X \in \mathscr{L}(\mathscr{K}, \mathscr{H})$ , then  $T^*X =$  $XS^*$ . Moreover,  $\Re(X)$  reduces T,  $\ker(X)^{\perp}$  reduces S, and  $T|_{\overline{(\Re(X))}}$ ,  $S|_{\ker(X)^{\perp}}$  are unitarily equivalent normal operators.

*Proof.* (i) Decompose T and  $S^*$  into their normal and pure parts as in Lemma 4.4 and [17]. Then we have

$$T = N \oplus A \quad \text{on} \quad \mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$$
  

$$S^* = M^* \oplus B^* \quad \text{on} \quad \mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2$$
  
and  

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} : \mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2 \longrightarrow \mathscr{H} = \mathscr{H}_1 \oplus \mathscr{H}_2,$$

179

where N, M are normal, A is a w-hyponormal and  $B^*$  is class  $\mathcal{Y}$ . Then TX = XS implies that

$$\left(\begin{array}{cc} NX_{11} & NX_{12} \\ AX_{21} & AX_{22} \end{array}\right) = \left(\begin{array}{cc} X_{11}M & X_{12}B \\ X_{21}M & X_{22}B \end{array}\right).$$

Let  $A = U_2|A|$  be the polar decomposition of A and  $\tilde{A} = |A|^{\frac{1}{2}}U_2|A|^{\frac{1}{2}}, W = |A|^{\frac{1}{2}}X_{22}$ . Then

$$\begin{split} \hat{A}W &= |A|^{\frac{1}{2}}U_2|A|^{\frac{1}{2}}|A|^{\frac{1}{2}}X_{22} \\ &= |A|^{\frac{1}{2}}U_2|A|X_{22} \\ &= |A|^{\frac{1}{2}}X_{22}(B^*)^* = W(B^*)^* \end{split}$$

Since A is a w-hyponormal operator, then  $\widetilde{A}$  is semi-hyponormal operator,  $B^*$  is a class  $\mathcal{Y}$ . Hence it follows from [18, Theorem 7] that  $\Re(W)$  reduces  $\widetilde{A}$ , ker $(W)^{\perp}$ reduces  $B^*$  and  $\widetilde{A}|_{\Re(W)}$ ,  $B^*|_{\ker(W)^{\perp}}$  are unitarily equivalent normal operators. Since A and  $B^*$  are pure, we have W = 0 by Lemma 4.4 and Lemma 4.10. Then  $X_{22} = 0$  as A,  $B^*$  are injective. Since  $AX_{21} = X_{21}M$  and  $NX_{12} = X_{12}B$  we have  $X_{21}M = 0$  and  $NX_{12} = 0$  by similar arguments. Then TX = XS implies

$$\begin{pmatrix} NX_{11} & 0\\ AX_{21} & 0 \end{pmatrix} = \begin{pmatrix} X_{11}M & X_{12}B\\ 0 & 0 \end{pmatrix}$$
  
and  $X_{12} = X_{21} = 0$ . Hence  $X = \begin{pmatrix} X_{11} & 0\\ 0 & 0 \end{pmatrix}$  and  
 $\Re(X) = \Re(X_{11}) \oplus \{0\}, \ker(X)^{\perp} = \ker(X_{11})^{\perp} \oplus \{0\}.$ 

Since  $NX_{11} = X_{11}M$ , we have  $N^*X_{11} = X_{11}M^*$ ,  $\overline{\Re(X_{11})}$  reduces N,  $\ker(X_{11})^{\perp}$ reduces M,  $N|_{\overline{\Re(X_{11})}}$ ,  $M|_{\ker(X_{11})^{\perp}}$  are unitarily equivalent normal operators. Then  $N|_{\overline{\Re(X)}} \cong N|_{\overline{\Re(X_{11})}}$ ,  $M|_{\ker(X)^{\perp}} \cong M|_{\ker(X_{11})^{\perp}}$  imply that  $T^*X = XS^*$ ,  $\overline{\Re(X)}$ reduces T,  $\ker(X)^{\perp}$  reduces S,  $T|_{\overline{\Re(X)}}, S|_{\ker(X)^{\perp}}$  are unitarily equivalent normal operators.

(ii) Since TX = XS, we have  $S^*X^* = X^*T^*$ . Hence  $SX^* = S^{**}X^* = X^*T^{**}$  by part (i) and  $T^*X = XS^*$ . The rest of the proof follows from Lemma 4.1.

**Corollary 4.14.** Let  $T \in \mathscr{L}(\mathscr{H})$ . Then T is normal if and only if either (i) T is a w-hyponormal operator such that  $\ker(T) \subset \ker(T^*)$  and  $T^*$  is a class  $\mathcal{Y}$  operator or (ii) T is a class  $\mathcal{Y}$  operator and  $T^*$  is a w-hyponormal operator such that  $\ker(S^*) \subset \ker(S)$ .

**Corollary 4.15.** Let  $T \in \mathscr{L}(\mathscr{H})$  and  $S^* \in \mathscr{L}(\mathscr{H})$  be such that TX = XS. If either T is pure w-hyponormal such that  $\ker(T) \subset \ker(T^*)$  and  $S^*$  is class  $\mathcal{Y}$  or T is w-hyponormal such that  $\ker(T) \subset \ker(T^*)$  and  $S^*$  is pure class  $\mathcal{Y}$ , then X = 0.

*Proof.* The hypotheses imply that TX = XS and  $T^*X = XS^*$  simultaneously by Theorem 4.13. Therefore  $T|_{\overline{\Re(X)}}$  and  $S|_{\ker(X)^{\perp}}$  are unitarily equivalent normal operators, which contradicts the hypotheses that T or  $S^*$  is pure. Hence we must have X = 0.

## References

- [1] A. Aluthge, On p-hyponormat operators for 0 , Integral Equation Operator Theory 13 (1990) 307–315.
- [2] M. Fujii, S. Izumino, R. Nakamoto, classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J. 5 (1994) 61–67.
- [3] T. Furuta, M. Ito, T. Yamazaki, A subclass of paranormal operators including class of *log*-hyponormal and several related classes. Sci. math. 1 (1998) 389– 403.
- [4] I. H. Jeon, J.I. Lee, A. Uchiyama, On p-quasihyponormal operators and quasisimilarity. Math. Ineq. App. 6 (2) (2003) 309–315.
- [5] T. Ando, Operators with norm condition, Acta. Sci. Math. 33 (4) (1972) 359–365.
- [6] A. Aluthge, D. Wang, w-Hyponormal operators. Integral Equation Operator Theory 36 (2000) 1–10.
- [7] S. M. Patel, A note on p-hyponormal operators for 0 , Integral Equations and Operator Theory 21 (1995) 498–503.
- [8] R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413–415.
- [9] S.M. Patel, K. Tanahashi, A. Uchiyama, M. Yanagida, Quasinormality and Fuglede-Putnam theorem for class A(s,t) operators, Nihonkai Math. J 17 (2006) 49–67.
- [10] M. Radjabalipour, An extension of Putnam-Fuglede theorem for hyponormal operators, Math. Z. 194 (1987) 117120.
- [11] M.H.M. Rashid, Class wA(s,t) operators and quasisimilarity, Portugaliae Math. 69 (4) (2012) 305-320, DOI: 10.4171/PM/1919.
- [12] M.H.M. Rashid, An Extension of Fuglede-Putnam Theorem for w-Hyponormal Operators, Afr. Diaspora J. Math. 14 (1) (2012) 106–118.
- [13] M.H.M. Rashid, Fuglede-Putnam type theorems via the generalized Aluthge transform, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 108 (2) (2014) 1021–1034.

- [14] A. Uchiyama, K. Tanahashi, Fuglede-Putnam theorem for p-hyponormal or log-hyponormal operators, Glassgow Math. Jour. 44 (2002) 397-410.
- [15] K. Takahashi, On the converse of Putnam-Fuglede theorem, Acta Sci. Math.(Szeged) 43 (1981) 123–125.
- [16] M. Yanagida, Powers of class wA(s,t) operators with generalized Aluthge transformation, J. Inequal. Appl. 7 (2002) 143–168.
- [17] A. Uchiyama, T. Yochino, On the class Y operators, Nihonkai. Math. J. 8 (1997) 174–179.
- [18] S. Mecheri, K. Tanahashi, A. Uchiyama, Fuglede-Putnam theorem for phyponormal or class Y operators, Bull. Korean. Math. Soc. 43 (2006) 747–753.

(Received 26 October 2012) (Accepted 11 May 2015)

 $T{\rm HAI}~J.~M{\rm ATH}.$  Online @ http://thaijmath.in.cmu.ac.th