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Abstract : In this paper, we prove a common fixed point theorem for a pair of
occasionally weakly compatible (owc) self mappings satisfying a mixed contractive
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1 Introduction

Generalization of the Banach contraction mapping principle is one of pivotal
results of analysis and has been an heavily investigated field of research. It is
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widely considered as the source of metric fixed point theory and the significance
lies in its vast applicability in a number of branches of mathematics. In particular
the establishment of fixed point theorems for a mapping satisfying a contractive
condition without requirement of continuity at each point was firstly initiated by
Kannan [1] in 1968. After that, there flows a flood of papers and several authors
studied fixed point theorems for a pair of mappings. In this context, the notion
of weakly commuting mappings was introduced by Sessa [2] that weakened the
concept of commutativity of two mappings. Successively, Jungck [3, 4] enlarged
the concept of weakly commuting mappings by adding the notions of compatible
mappings and weakly compatible mappings. Then, Al-Thagafi and Shahzad [5]
gave a definition of occasionally weakly compatible (owc) mappings which is a
proper generalization of weakly compatible mappings. For other relaxed fixed
point theorems in symmetric spaces and their applications, one may refer to [6, 7],
[8]-[12] and [13, 14].
In 2002, Branciari [9] analyzed the existence of fixed points for a mapping f defined
on a complete metric space (X, d) satisfying a contractive condition of integral type
in the following manner:

Theorem 1.1. Let (X, d) be a complete metric space, α ∈ (0, 1) and f : X → X
be a mapping such that for each x, y ∈ X,

∫ d(fx,fy)

0

ϕ(s)ds ≤ α

∫ d(x,y)

0

ϕ(s)ds,

where ϕ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is summable
on each compact subset of [0,+∞) and such that, for each ε > 0,

∫ ε

0 ϕ(s)ds > 0.
Then f has a unique fixed point a ∈ X such that for each x ∈ X, limn→∞ fnx = a.

Recently, on similar lines, Vetro [15] proved the following theorem for two pairs
of mappings.

Theorem 1.2. Let (X, d) be a metric space and let A,B, S and T be self mappings
of X with S(X) ⊆ B(X) and T (X) ⊆ A(X). We define, for each x, y ∈ X,

m(x, y) = d(By, Ty)
1 + d(Ax, Sx)

1 + d(Ax,By)

and
M(x, y) = max{d(Ax,By), d(Ax, Sx), d(By, Ty)}.

We assume that for each x, y ∈ X,
∫ d(Sx,Ty)

0

ϕ(s)ds ≤ α

∫ m(x,y)

0

ϕ(s)ds+ β

∫ M(x,y)

0

ϕ(s)ds,

where α > 0, β > 0, α + β < 1 and ϕ : [0,+∞) → [0,+∞) is a Lebesgue inte-
grable mapping on each compact subset of [0,+∞) and such that for all ε > 0,
∫ ε

0 ϕ(s)ds > 0. Suppose that one of A(X), B(X), S(X) and T (X) is a complete
subset of X and the pairs {A,S} and {B, T } are weakly compatible. Then A,B, S
and T have a unique common fixed point in X.
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We recall the following concepts.

Definition 1.3. A pair of self mappings {f, g} defined on a metric (symmetric)
space (X, d) is said to be:

(i) (Sessa [2]) weakly commuting if d(fgx, gfx) ≤ d(fx, gx), for all x ∈ X ;

(ii) (Jungck [3]) compatible if limn→∞ d(fgxn, gfxn) = 0, whenever {xn} is a
sequence in X such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X ;

(iii) (Jungck [4]) weakly compatible if the mappings commute at their coincidence
points, that is, if fx = gx for some x ∈ X , then fgx = gfx;

(iv) (Pant [16]) R-weakly commuting if there exists some real R > 0 such that
d(fgx, gfx) ≤ Rd(fx, gx) for all x ∈ X .

Definition 1.4. Let f, g be two self mappings of X . A point x ∈ X is called
a coincidence point of f and g iff fx = gx. We call w = fx = gx a point of
coincidence of f and g.

Definition 1.5. [5] Two self mappings f and g of a set X are occasionally weakly
compatible (owc) iff there is a point x which is a coincidence point of f and g at
which f and g commute.

Definition 1.6. A symmetric on X is a mapping d : X ×X → [0,+∞) such that
d(x, y) ≥ 0 and d(x, y) = 0 iff x = y and d(x, y) = d(y, x). A set X endowed with
a symmetric d is called symmetric space.

Lemma 1.7. [13] Let X be a set and f , g be owc self mappings of X. If f and
g have a unique point of coincidence, w = fx = gy, then w is a unique common
fixed point of f and g.

Now, we are ready to prove our results which are of three folds:

(i) We relax the containment of mappings.

(ii) We use occasionally weak compatibility that is more general than compati-
bility.

(iii) We consider the space (X, d) under relaxed condition, that is more general
than metric (symmetric) space.

2 Fixed Point Theorems for a Pair of OWC Map-

pings

In this section, we prove a fixed point theorem for a pair of owc mappings sat-
isfying a mixed contractive condition of integral type on the space (X, d), without
imposing the triangular inequality or the symmetry on d.
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Theorem 2.1. Let X be a non-empty set and d : X×X → [0,+∞) be a function
satisfying the condition d(x, y) = 0 iff x = y, for all x, y ∈ X. Suppose that f and
g are owc mappings of X. We define for each x, y ∈ X,

M(x, y) = p d(fy, gy)
1 + d(fx, gx)

1 + d(fy, gx)
+ φ(max{d(gx, gy), d(gx, fy),

d(gy, fx), d(gy, fy)}), (2.1)

where 0 < p < 1 and φ : [0,+∞) → [0,+∞) is a function satisfying the condition
φ(t) < t for each t > 0 and φ(t) = 0 if t = 0. We assume also that for each
x, y ∈ X,

∫ d(fx,fy)

0

ϕ(s)ds ≤

∫ M(x,y)

0

ϕ(s)ds, (2.2)

where ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping on each compact
subset of [0,+∞) and such that, for all ε > 0,

∫ ε

0
ϕ(s)ds > 0. Then f and g have

a unique common fixed point.

Proof. Since f and g are owc, there exists a point u ∈ X such that fu = gu and
fgu = gfu. We claim that fu is a unique common fixed point of f and g. We
first assert that fu is a fixed point of f , if not, then by (2.1), we have

M(u, fu) = p d(ffu, gfu)
1 + d(fu, gu)

1 + d(ffu, gu)
+ φ(max{d(gu, gfu),

d(gu, ffu), d(gfu, fu), d(gfu, ffu)})

= φ(max{d(fu, ffu), d(ffu, fu)}). (2.3)

By use of (2.3), (2.2) becomes

∫ d(fu,ffu)

0

ϕ(s)ds ≤

∫ φ(max{d(fu,ffu),d(ffu,fu)})

0

ϕ(s)ds. (2.4)

Let α = max{d(fu, ffu), d(ffu, fu)} > 0, then from (2.4), we have

∫ d(fu,ffu)

0

ϕ(s)ds ≤

∫ φ(α)

0

ϕ(s)ds <

∫ α

0

ϕ(s)ds.

Similarly by (2.1), we get

M(fu, u) = p d(fu, gu)
1 + d(ffu, gfu)

1 + d(fu, gfu)
+ φ(max{d(gfu, gu),

d(gfu, fu), d(gu, ffu), d(gu, fu)})

= φ(max{d(ffu, fu), d(fu, ffu)}). (2.5)

By use of (2.5), (2.2) becomes

∫ d(ffu,fu)

0

ϕ(s)ds ≤

∫ φ(α)

0

ϕ(s)ds <

∫ α

0

ϕ(s)ds. (2.6)
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Then, we have

∫ max{d(ffu,fu),d(fu,ffu)}

0

ϕ(s)ds ≤

∫ φ(α)

0

ϕ(s)ds <

∫ α

0

ϕ(s)ds,

a contradiction. Hence ffu = fu and ffu = fgu = gfu = fu. Thus, fu is a
common fixed point of f and g. Finally, we prove uniqueness of the fixed point.
Suppose that u, v ∈ X are such that fu = gu = u, fv = gv = v and u 6= v. Then
by (2.1), we obtain

M(u, v) = p d(fv, gv)
1 + d(fu, gu)

1 + d(fv, gu)
+ φ(max{d(gu, gv), d(gu, fv),

d(gv, fu), d(gv, fv)})

= φ(max d(u, v), d(v, u)). (2.7)

By use of (2.7), (2.2) becomes

∫ d(u,v)

0

ϕ(s)ds =

∫ d(fu,fv)

0

ϕ(s)ds ≤

∫ φ(max{d(u,v),d(v,u)})

0

ϕ(s)ds. (2.8)

Now, let β = max{d(u, v), d(v, u)} > 0, then from (2.8), we have

∫ d(u,v)

0

ϕ(s)ds ≤

∫ φ(β)

0

ϕ(s)ds <

∫ β

0

ϕ(s)ds.

Also, it is easy to show that

∫ d(v,u)

0

ϕ(s)ds ≤

∫ φ(β)

0

ϕ(s)ds <

∫ β

0

ϕ(s)ds.

Hence, we have

∫ max{d(u,v),d(v,u)}

0

ϕ(s)ds ≤

∫ φ(β)

0

ϕ(s)ds <

∫ β

0

ϕ(s)ds,

that is a contradiction. Therefore u = v, i.e., the common fixed point is unique.

Theorem 2.2. Theorem 2.1, will remain true if the contractive condition (2.1) is
replaced by anyone of the following conditions:

(i) M(x, y) = p d(fy, gy)1+d(fx,gx)1+d(fy,gx) + φ(d(gx, gy));

(ii) M(x, y) = p d(fy, gy)1+d(fx,gx)1+d(fy,gx) + k max{d(gx, gy), d(gx, fy),

d(gy, fx), d(gy, fy)}, where 0 < k < 1;

(iii) M(x, y) = a d(gx, gy) + b max{d(fx, gx), d(fy, gy)}
+ c max{d(gx, gy), d(gx, fx), d(gy, fy)}, where a, b and c are nonnegative
numbers such that a+ b+ c < 1.
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Remark 2.3. Every contractive condition of integral type automatically induces
the corresponding contractive condition not including integral, by setting ϕ(s) = 1.

The following example shows that condition (2.2) in Theorem 2.1 is indeed a
proper extension of the same condition with ϕ(s) = 1.

Example 2.1. Consider X = {1/n | n ∈ N}∪{0} equipped with the usual metric
d(x, y) =| x−y | for all x, y ∈ X . Clearly (X, d) is a complete metric space. Define
f, g : X → X as

fx =

{

1
n+4 if x = 1

n , n odd,

0 otherwise,
gx =

{

1
n+2 if x = 1

n , n odd,

0 otherwise.

Thus the reader, following the same lines of Example 3.6 in [9], can verify that
condition (2.2) is satisfied assuming 0 < p < 1/2, φ(t) = t/2 and

ϕ(s) =

{

max{(1− log s)s(1/s)−2, 0} if s > 0,

0 if s = 0.

However, for x = 1/n with n odd and y = 0, condition (2.2) with ϕ(s) = 1
leads to the contradiction

1

n+ 4
≤ p · 0 +

1

2
max

{

1

n+ 2
,

1

n+ 2
,

1

n+ 4
, 0

}

=
1

2n+ 4
.

The Class of symmetric spaces is more general than the class of metric spaces
but we have also relaxed the symmetric condition on d. Therefore, Theorem 2.1,
Corollary 2.1, Theorem 2.2 and Theorem 2.3 of [8] can be seen as special cases of
Theorem 2.1 of this paper by setting p = 0.
The following example and remark are important in order to fully understand that
relaxing the symmetric condition on d is really an useful tool to cover a wide range
of problems.

Example 2.2. Let X = [0, 1] and define d : X ×X → [0,+∞) by

d(x, y) =

{

ex−y − 1 if x ≥ y,

ey−x if y > x.

Define also f, g : X → X by fx = 1+x
2 and gx = 1+3x

4 , for all x ∈ X . Assuming
0 < p < 1/2, ϕ(s) = 1 and φ(t) = t/2, the reader can show easily that all the
hypotheses of Theorem 2.1 are satisfied and so x = 1 is the unique common fixed
point of f and g.

Remark 2.4. In the above Example, clearly, d is symmetric only on the set of
points of coincidence of f and g. Therefore, in this case a very general fixed point
theorem as is Theorem 1 of [13] cannot be applied.
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3 Fixed Point Theorems for Two Pairs of OWG

Self Mappings

In this section, we prove several fixed point theorems for four self mappings
on (X, d) satisfying a contractive condition of integral type assuming symmetry of
d on the points of coincidence of the pairs {f, S} and {g, T }.

Theorem 3.1. Let X be a non-empty set and d : X×X → [0,+∞) be a function
satisfying the condition d(x, y) = 0 iff x = y, for all x, y ∈ X. Suppose that
f, g, S and T are self mappings of X, the pairs {f, S} and {g, T } are owc and
d(z, w) = d(w, z) whenever w and z are, respectively, points of coincidence of
{f, S} and {g, T }. We assume also that, for each x, y ∈ X with fx 6= gy,

∫ d(fx,gy)

0

ϕ(s)ds <

∫ M(x,y)

0

ϕ(s)ds, (3.1)

where

M(x, y) = p d(gy, T y)
1 + d(fx, Sx)

1 + d(fx, gy)
+ max{d(Sx, T y), d(Sx, fx),

d(Ty, gy), d(Ty, fx)}, (3.2)

with 0 < p < 1 and ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping on
each compact subset of [0,+∞) and such that, for all ε > 0,

∫ ε

0 ϕ(s)ds > 0. Then
f, g, S and T have a unique common fixed point.

Proof. Since the pairs {f, S} and {g, T } are owc, there exist points x, y ∈ X such
that fx = Sx and gy = Ty. We claim that fx = gy. If not, then by (3.2), we
have

M(x, y) = p d(gy, T y)
1 + d(fx, Sx)

1 + d(fx, gy)
+ max{d(Sx, T y), d(Sx, fx),

d(Ty, gy), d(Ty, fx)} = max{d(fx, gy), d(gy, fx)}.

As, fx = Sx = w and gy = Ty = z are points of coincidence of {f, S} and {g, T },
respectively, and by use of d(z, w) = d(w, z), from (3.1), we obtain

∫ d(fx,gy)

0

ϕ(s)ds <

∫ max{d(fx,gy),d(gy,fx)}

0

ϕ(s)ds =

∫ d(fx,gy)

0

ϕ(s)ds.

This leads to a contradiction. Hence fx = gy and so fx = Sx = gy = Ty.
Moreover, if there is another point u such that fu = Su, then by (3.2), we get
fu = Su = gy = Ty, and so fx = fu. Thus, w = fx = Sx is the unique point of
coincidence of f and S. By Lemma 1.7, w is the unique common fixed point of f
and S. Similarly, there is a unique point z ∈ X such that z = gz = Tz. Suppose
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that w 6= z. By use of (3.1) and (3.2), we get

∫ d(w,z)

0

ϕ(s)ds =

∫ d(w,gz)

0

ϕ(s)ds

<

∫ max{d(w,z),d(z,w)}

0

ϕ(s)ds =

∫ d(w,z)

0

ϕ(s)ds.

This is a contradiction. Therefore, w = z is the unique common fixed point of
f, g, S and T .

Remark 3.2. Theorem 3.1 complements and extends Theorem 2 of [15].

Example 3.1. Let X and d as in Example 2.2 and define f, g, S, T : X → X by
fx = 1, gx = x, Sx = 1+x

2 and Tx = x2 for all x ∈ X . Assuming 0 < p < 1 and
ϕ(s) = 1, the reader can show easily that all the hypotheses of Theorem 3.1 are
satisfied and so x = 1 is the unique common fixed point of f, g, S and T .
However, d is symmetric only on the set of points of coincidence of f, g, S and T
and so Theorem 1 of [13] cannot be applied.

Theorem 3.3. Let X be a non-empty set and d : X×X → [0,+∞) be a function
satisfying the condition d(x, y) = 0 iff x = y, for all x, y ∈ X. Suppose that
f, g, S and T are self mappings of X, the pairs {f, S} and {g, T } are owc and
d(z, w) = d(w, z) whenever w and z are, respectively, points of coincidence of
{f, S} and {g, T }. We assume also that, for each x, y ∈ X with fx 6= gy,

∫ (d(fx,gy))k

0

ϕ(s)ds <

∫ M(x,y)

0

ϕ(s)ds, (3.3)

where

M(x, y) = p(d(gy, T y))k
1 + (d(fx, Sx))k

1 + (d(fx, gy))k
+ a(d(fx, T y))k +

(1− a)max{(d(fx, Sx))k, (d(gy, T y))k, (d(fx, Sx))k/2

(d(fx, T y))k/2, (d(Ty, fx))k/2(d(Sx, gy))k/2} (3.4)

with 0 < a, p < 1, k ≥ 1 and ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable map-
ping on each compact subset of [0,+∞) and such that, for all ε > 0,

∫ ε

0
ϕ(s)ds > 0.

Then f, g, S and T have a unique common fixed point.

Proof. Since the pairs {f, S} and {g, T } are owc, there exist points x, y ∈ X such
that fx = Sx and gy = Ty. We claim that fx = gy. If not, then by (3.4), we
have

M(x, y) = p 0
1 + 0

1 + (d(fx, gy))k
+ a(d(fx, gy))k

+(1− a)max{0, 0, 0, (d(gy, fx))k/2(d(fx, gy))k/2}

= a(d(fx, gy))k + (1− a){(d(gy, fx))k/2(d(fx, gy))k/2}.
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As fx = Sx = w and gy = Ty = z are, respectively, points of coincidence of {f, S}
and {g, T } and d(z, w) = d(w, z), from (3.3), we obtain

∫ d(fx,gy))k

0

ϕ(s)ds <

∫ a(d(fx,gy))k+(1−a)(d(fx,gy))k

0

ϕ(s)ds

=

∫ (d(fx,gy))k

0

ϕ(s)ds.

It leads to contradiction and hence d(fx, gy) = 0, which yields fx = gy. Now,
suppose that there exists another point u such that fu = Su. Then, by use of
(3.4), we get fu = Su = gy = Ty = fx = Sx. Therefore, w = fx = Sx is the
unique point of coincidence of f and S. By Lemma 1.7, w is the unique common
fixed point of f and S. Similarly the point of coincidence of the pair {g, T } is
unique and it is the unique common fixed point of the pair {g, T }. Following
similar arguments to those in Theorem 3.1, it is easy to show that the point of
coincidence of the pairs {f, S} and {g, T } is the same and it is the unique common
fixed point of f, g, s and T . To avoid repetitions the details are omitted.

Let ψ : [0,+∞) → [0,+∞) be such that ψ(t) < t, for each t > 0 and let
Φ : [0,+∞) → [0,+∞) be a continuous, monotonically increasing function such
that Φ(2t) ≤ 2Φ(t) and Φ(0) = 0 iff t = 0.

Theorem 3.4. Let X be a non-empty set and d : X×X → [0,+∞) be a function
satisfying the condition d(x, y) = 0 iff x = y, for all x, y ∈ X. Suppose that
f, g, S and T are self mappings of X, the pairs {f, S} and {g, T } are owc and
d(z, w) = d(w, z), whenever w and z are, respectively, points of coincidence of
{f, S} and {g, T }. We assume also that, for each x, y ∈ X,

∫ d(fx,gy)

0

ϕ(s)ds ≤

∫ ψ(MΦ(x,y))

0

ϕ(s)ds, (3.5)

where

MΦ(x, y) = p d(gy, T y)
1 + d(fx, Sx)

1 + d(fx, gy)
+ max{Φ(d(Sx, T y)),

Φ(d(Sx, fx)),Φ(d(gy, T y)),
Φ(d(fx, T y)) + Φ(d(Sx, gy))

2
}(3.6)

with 0 < p < 1 and ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping on
each compact subset of [0,+∞) and such that, for all ε > 0,

∫ ε

0 ϕ(s)ds > 0. Then
f, g, S and T have a unique common fixed point.

Proof. Since the pairs {f, S} and {g, T } are owc, there exist points x, y ∈ X such
that fx = Sx and gy = Ty. We claim that fx = gy. If not, by d(z, w) = d(w, z)
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and (3.5), we have

∫ Φ(d(fx,gy))

0

ϕ(s)ds ≤

∫ ψ(MΦ(x,y))

0

ϕ(s)ds

=

∫ ψ(Φ(d(fx,gy)))

0

ϕ(s)ds <

∫ Φ(d(fx,gy))

0

ϕ(s)ds.

This leads to contradiction. Hence Φ(d(fx, gy)) = 0 and so d(fx, gy) = 0, i.e.,
fx = gy. Now, by repeated use of the condition (3.5), it is easy to show that f, g, S
and T have a unique common fixed point. Therefore the details are omitted.

Define Γ = {γ : [0,+∞)5 → [0,+∞)} such that

(γ1) γ is nondecreasing in its fourth and fifth variables;

(γ2) if u, v ∈ [0,+∞) are such that u ≤ Ψ(v, v, u, u+v, 0) or u ≤ Ψ(v, u, v, u+v, 0)
or v ≤ Ψ(u, u, v, u + v, 0) or u ≤ Ψ(v, u, v, u, u + v), then u ≤ hv, where
0 < h < 1 is a constant;

(γ3) if u ∈ [0,+∞) is such that u ≤ Ψ(u, 0, 0, u, u) or u ≤ Ψ(0, u, 0, u, u) or
u ≤ Ψ(0, 0, u, u, u), then u = 0.

Theorem 3.5. Let X be a non-empty set and d : X×X → [0,+∞) be a function
satisfying the condition d(x, y) = 0 iff x = y, for all x, y ∈ X. Suppose that
f, g, S and T are self mappings of X, the pairs {f, S} and {g, T } are owc and
d(z, w) = d(w, z) whenever w and z are, respectively, points of coincidence of
{f, S} and {g, T }. We assume also that, for all x, y ∈ X,

∫ d(fx,gy)

0

ϕ(s)ds ≤

∫ M(x,y)

0

ϕ(s)ds, (3.7)

where

M(x, y) = p d(gy, T y)
1 + d(fx, Sx)

1 + d(fx, gy)
+ Ψ(max{d(Sx, T y),

d(fx, Sx), d(gy, T y), d(gy, Sx), d(fx, T y)}), (3.8)

with 0 < p < 1 and ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping on
each compact subset of [0,+∞) and such that, for all ε > 0,

∫ ε

0 ϕ(s)ds > 0. Then
f, g, S and T have a unique common fixed point.

Proof. Since the pairs {f, S} and {g, T } are owc, there exist points x, y ∈ X such
that fx = Sx and gy = Ty. We claim that fx = gy. If not, then by (3.8), we
have

M(x, y) = Ψ(max{d(fx, gy), 0, 0, d(fx, gy), d(gy, fx)}).

As, fx = Sx = w and gy = Ty = z are, respectively, points of coincidence of
{f, S} and {g, T } and d(z, w) = d(w, z), from (3.7), we have

∫ d(fx,gy)

0

ϕ(s)ds ≤

∫ Ψ(max{d(fx,gy),0,0,d(fx,gy),d(fx,gy)})

0

ϕ(s)ds.
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Using (γ3), we have d(fx, gy) = 0, i.e. fx = gy. Suppose that there exists another
point u ∈ X such that fu = Su. Then, using (3.7), we get fu = Su = gy = Ty =
fx = Sx. Hence w = fx = Sx is the unique point of coincidence of f and S.
Since {f, S} is owc, by using Lemma 1.7, we conclude that w is the unique common
fixed point of f and S. Similarly, there exists a unique point z ∈ X such that
z = gv = Tv. Following the same lines as above, one can show easily that z = w
and so w is the unique common fixed point of f, g, S and T .

Remark 3.6. Theorems 3.1, 3.2, 3.3 and 3.4 of [8] are, respectively, special cases
of Theorems 3.1, 3.3, 3.4 and 3.5 of this paper by setting p = 0 and ϕ(s) = 1.

4 Application to Dynamic Programming

Throughout this section, we assume that X and Y are Banach Spaces, S ⊆ X
is a state space and D ⊆ Y a decision space. We denote by B(S) the set of all
bounded real valued functions defined on S. Bellman and Lee [17], first studied the
existence of solutions for some classes of functional equations arising in dynamic
programming. They pointed out that the basic form of the functional equations
in dynamic programming is the following:

f(x) = optyH(x, y, f(T (x, y))),

where opt represents sup or inf, x and y denote the state and decision vectors,
respectively, T stands for the transformation of the process, and f(x) represents
the optimal return function with the initial state x.

Now we study existence and uniqueness of common solution for some kinds of
functional equations arising in dynamic programming:

P (x) = sup
y∈D

H(x, y, P (T (x, y))), x ∈ S (4.1)

Q(x) = sup
y∈D

F (x, y,Q(T (x, y))), x ∈ S (4.2)

where T : S ×D → S, H and F : S ×D × R → R.
For all h, k ∈ B(S), we endow B(S) with the metric

d(h, k) = sup |h(x) − k(x)|, x ∈ S.

Now, we give the main result of this section.

Theorem 4.1. Assume that the following conditions hold:

(i) H and F are bounded;

(ii) |H(x, y, h(t))−H(x, y, k(t))| ≤ p|fk(t)− gk(t)| |fh(t)−gh(t)||fk(t)−gh(t)|

+ φ(max{|gh(t)− gk(t)|, |gh(t)− fk(t)|, |gk(t)− fh(t)|, |gk(t)− k(t)|}). For
all (x, y) ∈ S × D, h, k ∈ B(S) and t ∈ S, where φ : R+ → R+ is a
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nondecreasing function satisfying the condition φ(t) < t for each t > 0, f
and g are defined as follows:

fh(x) = sup
y∈D

H(x, y, h(T (x, y))), x ∈ S, h ∈ B(S)

and
gk(x) = sup

y∈D
F (x, y, k(T (x, y))), x ∈ S, k ∈ B(S);

(iii) fu(x) = gu(x) = k(x) for some u(x) ∈ B(S) implies fgu(x) = gfu(x).
Then k(x) is the unique solution of (4.1) and (4.2).

Proof. From conditions (i), (ii) and (iii), it follows that f and g are self mappings
of B(S). Let h1, h2 ∈ B(S). Then, for every η > 0, there exist y1, y2 ∈ D such
that

fh1(x) < H(x, y1, h1(x1)) + η, (4.3)

fh2(x) < H(x, y2, h2(x2)) + η,

fh1(x) ≥ H(x, y2, h1(x2)),

fh2(x) ≥ H(x, y1, h2(x1)). (4.4)

Now, subtracting (4.4) from (4.3) and using (ii), we have

fh1(x)− fh2(x) < H(x, y1, h1(x1))−H(x, y1, h2(x1)) + η

≤ |H(x, y1, h1(x1))−H(x, y1, h2(x1))|+ η

≤ p|fh2(x1)− gh2(x1)|
|fh1(x1)− gh1(x1)|

|fh2(x1)− gh1(x1)|

+φ(max{|gh1(x1)− gh2(x1)|, |gh1(x1)− fh2(x1)|,

|gh2(x1)− fh1(x1)|, |gh2(x1)− fh2(x1)}) + η.

Letting η → 0+ in the above inequality, we obtain

d(fh1, fh2) ≤ p d(fh2, gh2)
1 + d(fh1, gh1)

1 + d(fh2, gh1)
+ φ(max{d(gh1, gh2),

d(gh1, fh2), d(gh2, fh2), d(gh2, fh1)}),

for all h1, h2 ∈ B(S). Therefore, the mappings f and g satisfy the hypotheses of
Theorem 2.1 with ϕ(s) = 1. Thus, f and g have a unique common fixed point that
is the unique common solution of functional equations (4.1) and (4.2) in B(S).

Remark 4.2. Theorem 4.1 is a generalization of Theorem 4.1 of [8].
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