Weakened Mannheim Curves in Pseudo-Galilean 3-Space

Murat Kemal Karacan ${ }^{11}$ and Yılmaz Tunçer
Department of Mathematics, Faculty of Sciences and Arts Uşak University, 1 Eylul Campus, 64200, Uşak, Turkey
e-mail : murat.karacan@usak.edu.tr (M.K. Karacan) yilmaz.tuncer@usak.edu.tr (Y. Tunçer)

Abstract

In this study, Frenet-Mannheim curves and Weakened Mannheim curves are investigated in pseudo-Galilean 3-space. Some characterizations for this curves are obtained.

Keywords : Mannheim cuves; Frenet-Mannheim curves; Weakened-Mannheim curves; pseudo-Galilean 3-space.
2010 Mathematics Subject Classification : 53A35.

1 Introduction

In the study of the fundamental theory and the characterizations of space curves, the corresponding relations between the curves are the very interesting and important problem. The well-known Bertrand curve is characterized as a kind of such corresponding relation between the two curves. For the Bertrand curve α, it shares the normal lines with another curve β, called Bertrand mate or Bertrand partner curve of α [1].

In 1967, Lai investigated the properties of two types of similar curves (the Frenet-Bertrand curves and the Weakened Bertrand curves) under weakened conditions [2].

In recent works, Liu and Wang [1, 3] studied the Mannheim curves in both Euclidean and Minkowski 3-space and they obtained the necessary and sufficient conditions between the curvature and the torsion for a curve to be the Mannheim

[^0]partner curves. Meanwhile, the detailed discussion concerned with the Mannheim curves can be found in literature (see Wang and Liu [3, Liu and Wang [1, Orbay and Kasap (4) and references therein [4]. Karacan and Tuncer investigated the properties of two types of similar curves (the Frenet-Mannheim curves and the Weakened Mannheim curves) under weakened conditions, in [5, 6]. Öztekin investigated Weakened Bertrand curves in [7] under weakened conditions.

In this paper, our main purpose is to extend some results which were given in [2] to Frenet-Mannheim curves and Weakened Mannheim curves in pseudoGalilean 3 -space and we assume that, the angle between tangent vectors T_{β} and T_{α} is constant such that $\left\langle T_{\alpha}, T_{\beta}\right\rangle=\cosh \theta \neq 0$.

2 Preliminaries

The geometry of the pseudo-Galilean space is similar (but not the same) to the Galilean space. The pseudo-Galilean space G_{3}^{1} is a three-dimensional projective space in which the absolute consists of a real plane w (the absolute plane), a real line $f \subset w$ (the absolute line) and a hyperbolic involution on f. Projective transformations which preserve the absolute form of a group H_{8} and are in nonhomogeneous coordinates can be written in the form

$$
\begin{align*}
\bar{x} & =a+b x \tag{2.1}\\
\bar{y} & =c+d x+r \cosh \theta \cdot y+r \sinh \theta \cdot z \\
\bar{z} & =e+f x+r \sinh \theta \cdot y+r \cos \theta \cdot z
\end{align*}
$$

where a, b, c, d, e, f, r and θ are real numbers. Particularly, for $b=r=1$, the group (2.1) becomes the group $B_{6} \subset H_{8}$ of isometries (proper motions) of the pseudoGalilean space G_{3}^{1}. The motion group remains invariant the absolute figure and defines the other invariants of this geometry. It has the following form

$$
\begin{align*}
\bar{x} & =a+x \tag{2.2}\\
\bar{y} & =c+d x+\cosh \theta \cdot y+\sinh \theta \cdot z \\
\bar{z} & =e+f x+\sinh \theta \cdot y+\cos \theta \cdot z
\end{align*}
$$

According to the motion group in the pseudo-Galilean space, there are nonisotropic vectors $X(x, y, z)$ (for which holds $x \neq 0)$ and four types of isotropic vectors: spacelike $\left(x=0, y^{2}-z^{2}>0\right)$, timelike $\left(x=0, y^{2}-z^{2}<0\right)$ and two types of lightlike vectors $(x=0, y=\mp z)$. The scalar product of two vectors $A=\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$ in G_{3}^{1} is defined by

$$
\langle A, B\rangle_{G_{3}^{1}}= \begin{cases}a_{1} b_{1}, & \text { if } \quad a_{1} \neq 0 \vee b_{1} \neq 0 \tag{2.3}\\ a_{2} b_{2}-a_{3} b_{3}, & \text { if } \quad a_{1}=0 \wedge b_{1}=0\end{cases}
$$

The pseudo-Galilean cross product is defined for $a=\left(a_{1}, a_{2}, a_{3}\right), b=\left(b_{1}, b_{2}, b_{3}\right)$ by

$$
a \wedge_{G_{3}^{1}} b=\left|\begin{array}{ccc}
0 & -e_{2} & e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

A curve $\alpha(t)=(x(t), y(t), z(t))$ is admissible if it has no inflection points, no isotropic tangents or tangents or normals whose projections on the absolute plane would be light-like vectors. For an admissible curve $\alpha: I \subseteq R \rightarrow G_{3}^{1}$ the curvature $\kappa(t)$ and the torsion $\tau(t)$ are defined by

$$
\begin{equation*}
\kappa(t)=\frac{\sqrt{\left(y^{\prime \prime}(t)\right)^{2}-\left(z^{\prime \prime}(t)\right)^{2}}}{\left(x^{\prime}(t)\right)^{2}}, \quad \tau(t)=\frac{y^{\prime \prime}(t) z^{\prime \prime \prime}(t)-y^{\prime \prime \prime}(t) z^{\prime \prime}(t)}{\left|x^{\prime}(t)\right|^{5} \kappa^{2}(t)} \tag{2.4}
\end{equation*}
$$

expressed in components. Hence, for an admissible curve $\alpha: I \subseteq R \rightarrow G_{3}^{1}$ parameterized by the arc length s with differential form $d s=d x$, given by

$$
\begin{equation*}
\alpha(t)=(x, y(s), z(s)) \tag{2.5}
\end{equation*}
$$

the formulas (2.5) have the following form

$$
\begin{equation*}
\kappa(s)=\sqrt{\left|\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right|}, \quad \tau(s)=\frac{y^{\prime \prime}(s) z^{\prime \prime \prime}(s)-y^{\prime \prime \prime}(s) z^{\prime \prime}(s)}{\kappa^{2}(s)} \tag{2.6}
\end{equation*}
$$

The associated trihedron is given by

$$
\begin{align*}
T & =\alpha^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right) \tag{2.7}\\
N & =\frac{1}{\kappa(s)} \alpha^{\prime \prime}(s)=\frac{1}{\kappa(s)}\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s)\right) \\
B & =\frac{1}{\kappa(s)}\left(0, \epsilon z^{\prime \prime}(s), \epsilon y^{\prime \prime}(s)\right)
\end{align*}
$$

where $\epsilon=\mp 1$, chosen by criterion $\operatorname{det}(T, N, B)=1$, that means

$$
\left|\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right|=\epsilon\left(\left(y^{\prime \prime}(s)\right)^{2}-\left(z^{\prime \prime}(s)\right)^{2}\right)
$$

We derive an important relation

$$
\alpha^{\prime \prime \prime}(s)=\kappa^{\prime}(s) N(s)+\kappa(s) \tau(s) B(s) .
$$

The curve α given by (2.5) is timelike (resp. spacelike) if $N(s)$ is a spacelike(resp. timelike) vector. The principal normal vector or simply normal is spacelike if $\epsilon=1$ and timelike if $\epsilon=-1$. For derivatives of the tangent (vector) T, the normal N and the binormal B, respectively, the following Serret-Frenet formulas [8, 9] hold

$$
\begin{align*}
T^{\prime} & =\kappa N \tag{2.8}\\
N^{\prime} & =\tau B \\
B^{\prime} & =\tau N
\end{align*}
$$

Definition 2.1. Let G_{3}^{1} be the 3 -dimensional pseudo-Galilean space with the standard inner product $\langle,\rangle_{G_{3}^{1}}$. If there exists a corresponding relationship between the
admissible curves α and β such that, at the corresponding points of the admissible curves, the principal normal lines of β coincides with the binormal lines of α, then β is called an admissible Mannheim curve, and α a Mannheim partner curve of β. The pair $\{\alpha, \beta\}$ is said to be a Mannheim pair [8].

Definition 2.2. An admissible Mannheim curve $\beta\left(s^{\star}\right), s^{\star} \in I$ is a C^{∞} regular curve with non-zero curvature for which there exists another (different) C^{∞} regular curve $\alpha(s)$ where $\alpha(s)$ is of class C^{∞} and $\alpha^{\prime}(s) \neq 0$ (s being the arc length of $\alpha(s)$ only), also with non-zero curvature, in bijection with it in such a manner that the principal normal to $\beta\left(s^{\star}\right)$ and the binormal to $\alpha(s)$ at each pair of corresponding points coincide with the line joining the corresponding points. The curve $\alpha(s)$ is called a Mannheim conjugate of $\beta\left(s^{\star}\right)$.

Definition 2.3. An admissible Frenet-Mannheim curve $\beta\left(s^{\star}\right)$ (briefly called a $F M$ curve) is a C^{∞} Frenet curve for which there exists another C^{∞} Frenet curve $\alpha(s)$, where $\alpha(s)$ is of class C^{∞} and $\alpha^{\prime}(s) \neq 0$, in bijection with it so that, by suitable choice of the Frenet frames the principal normal vector $N_{\beta}\left(s^{\star}\right)$ and binormal vector $B_{\alpha}(s)$ at corresponding points on $\beta\left(s^{\star}\right), \alpha(s)$, both lie on the line joining the corresponding points. The curve $\alpha(s)$ is called a FM conjugate of $\beta\left(s^{\star}\right)$.

Definition 2.4. An admissible weakened Mannheim curve $\beta\left(s^{\star}\right), s^{\star} \in I^{\star}$ (briefly called a $W M$ curve) is a C^{∞} regular curve for which there exists another C^{∞} regular curve $\alpha(s), s \in I$, where s is the arclength of $\alpha(s)$, and a homeomorphism $\sigma: I \rightarrow I^{\star}$ such that
(i) There exist two (disjoint) closed subsets Z, N of I with void interiors such that $\sigma \in C^{\infty}$ on $I \backslash N,\left(\frac{d s^{\star}}{d s}\right)=0$ on $Z, \sigma^{-1} \in C^{\infty}$ on $\sigma(I \backslash Z)$ and $\left(\frac{d s}{d s^{\star}}\right)=0$ on $\sigma(N)$;
(ii) The line joining corresponding points s, s^{\star} of $\alpha(s)$ and $\beta\left(s^{\star}\right)$ is orthogonal to $\alpha(s)$ and $\beta\left(s^{\star}\right)$ at the points s, s^{\star} respectively, and is along the principal normal to $\beta\left(s^{\star}\right)$ or $\alpha(s)$ at the points s, s^{\star} whenever it is well defined.

The curve $\alpha(s)$ is called a $W M$ conjugate of $\beta\left(s^{\star}\right)$.
Thus for a WM curve we not only drop the requirement of $\alpha(s)$ being a Frenet curve, but also allow $\left(\frac{d s^{*}}{d s}\right)$ to be zero on a subset with void interior $\left(\frac{d s^{\star}}{d s}\right)=0$ on an interval would destroy the injectivity of the mapping σ. Since $\left(\frac{d s^{\star}}{d s}\right)=0$ implies that $\left(\frac{d s}{d s^{\star}}\right)$ does not exist, the apparently artificial requirements in (i) are in fact quite natural.

It is clear that an admissible Mannheim curve is necessarily a FM curve, and a FM curve is necessarily a WM curve. It will be proved in Theorem4.3 that under certain conditions a WM curve is also a FM curve.

3 Frenet-Mannheim Curves

In this section we study the structure and characterization of FM curves. We begin with a lemma, the method used in which is classical.

Lemma 3.1. Let $\beta\left(s^{\star}\right)$, $s^{\star} \in I^{\star}$ be a $F M$ curve and $\alpha(s)$ a $F M$ conjugate of $\beta\left(s^{\star}\right)$. Let

$$
\begin{equation*}
\beta\left(s^{\star}\right)=\alpha(s)+\lambda(s) B_{\alpha}(s) \tag{3.1}
\end{equation*}
$$

Then the distance $|\lambda|$ between corresponding points of $\alpha(s), \beta\left(s^{\star}\right)$ is constant, and there is a constant angle θ such that $\left\langle T_{\alpha}, T_{\beta}\right\rangle=\cos \theta$ and
(i) $\sinh \theta=\lambda \tau_{\alpha} \cosh \theta$;
(ii) $\sinh \theta=\lambda \tau_{\beta} \cosh \theta$;
(iii) $\cosh ^{2} \theta=1$;
(iv) $\sinh ^{2} \theta=\lambda^{2} \tau_{\alpha} \tau_{\beta}$.

Proof. From (3.1) it follows that

$$
\lambda(s)=\left\langle\beta\left(s^{\star}\right)-\alpha(s), B_{\alpha}(s)\right\rangle
$$

is of class C^{∞}. Differentiation of (3.1) with respect to s gives

$$
\begin{equation*}
T_{\beta} \frac{d s^{\star}}{d s}=T_{\alpha}+\lambda^{\prime} B_{\alpha}+\lambda \tau_{\alpha} N_{\alpha} \tag{3.2}
\end{equation*}
$$

Since by hypothesis we have $B_{\alpha}=\epsilon N_{\beta}$ with $\epsilon= \pm 1$, scalar multiplication of (3.2) by B_{α} gives

$$
\lambda^{\prime}=0,
$$

then we have λ is a constant function. Therefore

$$
\begin{equation*}
T_{\beta} \frac{d s^{\star}}{d s}=T_{\alpha}+\lambda \tau_{\alpha} N_{\alpha} \tag{3.3}
\end{equation*}
$$

But by definition of FM curve we have $\frac{d s^{\star}}{d s} \neq 0$, so that T_{β} is C^{∞} function of s. Hence

$$
\left\langle T_{\alpha}, T_{\beta}\right\rangle_{G_{3}^{1}}^{\prime}=\kappa_{\alpha}\left\langle N_{\alpha}, T_{\beta}\right\rangle_{G_{3}^{1}}+\frac{d s^{\star}}{d s} \kappa_{\beta}\left\langle T_{\alpha}, N_{\beta}\right\rangle_{G_{3}^{1}}=0 .
$$

Consequently $\left\langle T_{\alpha}, T_{\beta}\right\rangle$ is constant, and there exists a constant angle θ such that

$$
\begin{equation*}
T_{\beta}=T_{\alpha} \cosh \theta+N_{\alpha} \sinh \theta \tag{3.4}
\end{equation*}
$$

Taking the vector product of (3.3) and (3.4), we obtain

$$
\sin \theta=\lambda \tau_{\alpha} \cosh \theta
$$

which is (i). Now write

$$
\alpha(s)=\beta\left(s^{\star}\right)-\epsilon \lambda(s) N_{\beta}(s) .
$$

Therefore

$$
\begin{equation*}
T_{\alpha}=\frac{d s^{\star}}{d s}\left[T_{\beta}-\lambda \epsilon \tau_{\beta} B_{\beta}\right] . \tag{3.5}
\end{equation*}
$$

On the other hand, equation (3.4) gives

$$
B_{\beta}=T_{\beta} \wedge_{G_{3}^{1}} N_{\beta}=\epsilon N_{\alpha} \cosh \theta
$$

Using (3.4) again, we get

$$
\begin{equation*}
T_{\alpha}=T_{\beta} \cosh \theta-\epsilon B_{\beta} \sinh \theta \tag{3.6}
\end{equation*}
$$

Taking the vector product of (3.5) and (3.6), we obtain

$$
\sinh \theta=\lambda \tau_{\beta} \cosh \theta
$$

which is (ii). On the other hand, comparison of (3.3) and (3.4) gives

$$
\begin{gather*}
\frac{d s^{\star}}{d s} \cosh \theta=1, \tag{3.7}\\
\frac{d s^{\star}}{d s} \sinh \theta=\lambda \tau_{\alpha} . \tag{3.8}
\end{gather*}
$$

Similarly (3.5), (3.6) give

$$
\begin{gather*}
\frac{d s^{\star}}{d s}=\cosh \theta \tag{3.9}\\
\frac{d s^{\star}}{d s}\left(\lambda \tau_{\beta}\right)=\sinh \theta \tag{3.10}
\end{gather*}
$$

The properties (iii) and (iv) then easily follow from (3.7) and (3.9), (3.6) and (3.8) and (3.10).

Theorem 3.2. Let $\beta\left(s^{\star}\right)$, $s^{\star} \in I^{\star}$ be a C^{∞} Frenet curve with τ_{β} nowhere zero and satisfying the equation for constants λ with $\lambda \neq 0$. Then $\beta\left(s^{\star}\right)$ is a non-planar FM curve.

$$
\begin{equation*}
\sinh \theta=\lambda \tau_{\beta} \cosh \theta \tag{3.11}
\end{equation*}
$$

Proof. Define the curve $\beta\left(s^{\star}\right)$ with position vector

$$
\beta\left(s^{\star}\right)=\alpha(s)+\lambda(s) B_{\alpha}(s)
$$

Then, denoting differentiation with respect to s by a dash, we have

$$
\beta^{\prime}\left(s^{\star}\right)=T_{\alpha}+\lambda \tau_{\alpha} N_{\alpha} .
$$

Since $\tau_{\alpha} \neq 0$, it follows that $\beta\left(s^{\star}\right)$ is a C^{∞} regular curve. Then

$$
T_{\beta} \frac{d s^{\star}}{d s}=T_{\alpha}+\lambda \tau_{\alpha} N_{\alpha}
$$

Hence

$$
\frac{d s^{\star}}{d s}=\sqrt{1+\lambda^{2} \tau_{\alpha}^{2}}
$$

And, using (3.11)

$$
T_{\beta}=T_{\alpha} \cosh \theta+N_{\alpha} \sinh \theta
$$

notice that from (3.11) we have $\sinh \theta \neq 0$. Therefore

$$
\frac{T_{\beta}}{d s^{\star}} \frac{d s^{\star}}{d s}=\kappa_{\alpha} N_{\alpha} \cosh \theta+\tau_{\alpha} B_{\alpha} \sinh \theta
$$

Now define $N_{\beta}=\epsilon B_{\alpha}$,

$$
\kappa_{\beta}=\frac{\epsilon}{\frac{d s^{\star}}{d s}} \tau_{\alpha} \sinh \theta
$$

These are C^{∞} functions of s (and hence of s^{\star}), and

$$
\frac{T_{\beta}}{d s^{\star}}=\kappa_{\beta} N_{\beta}
$$

Further define $B_{\beta}=T_{\beta} \wedge_{G_{3}^{1}} B_{\alpha}$ and $\tau_{\beta}=\left\langle\frac{B_{\beta}}{d s^{\star}}, N_{\beta}\right\rangle_{G_{3}^{1}}$. These are also C^{∞} functions on I^{\star}. It is then easy to verify that with the frame $\left\{T_{\beta}, N_{\beta}, B_{\beta}\right\}$ and the functions $\kappa_{\beta}, \tau_{\beta}$, the curve $\beta\left(s^{\star}\right)$ becomes a C^{∞} Frenet curve. But B_{α} and N_{β} lie on the line joining corresponding points of $\alpha(s)$ and $\beta\left(s^{\star}\right)$. Thus $\beta\left(s^{\star}\right)$ is a FM curve and $\alpha(s)$ a FM conjugate of $\beta\left(s^{\star}\right)$.

Lemma 3.3. A necessary and sufficient condition for a C^{∞} regular curve β to be a FM curve with a FM conjugate. Then β should be either a line or a non-planar circular helix.

Proof. (\Rightarrow) : Let β have a FM conjugate α which is a line. Then $\kappa_{\alpha}=0$. Using Lemma 3.1, (iii) and (i), (ii), we have

$$
\begin{equation*}
\cosh ^{2} \theta=1 \tag{3.12}
\end{equation*}
$$

and then

$$
\begin{gather*}
\cosh ^{2} \theta \sin \theta=\lambda \tau_{\beta} \cosh \theta \tag{3.13}\\
\sinh \theta=\lambda \tau_{\alpha} \cosh \theta \tag{3.14}
\end{gather*}
$$

From (3.14) it follows that $\cosh \theta \neq 0$. Hence (3.13) is equivalent to

$$
\begin{equation*}
\lambda \tau_{\beta}=\cosh \theta \sinh \theta \tag{3.15}
\end{equation*}
$$

Case 1. $\sinh \theta=0$. Then $\cosh \theta= \pm 1$, so that (3.12) implies that $\kappa_{\beta}=0$, and β is a line. We note also that (3.15) implies that $\tau_{\beta}=0$.

Case 2. $\sinh \theta \neq 0$. Then $\cosh \theta \neq \pm 1$, and (3.12), (3.15) imply that $\kappa_{\beta}, \tau_{\beta}$ are non-zero constants, and β is a non-planar circular helix.
(\Leftarrow) : If β is a non-planar circular helix

$$
\beta=(a s, b \cosh s, b \sinh s),
$$

we may take

$$
N_{\beta}=(0, \cosh s, \sinh s) .
$$

Now put $\lambda=b$, then the curve β with

$$
\beta=\alpha+\lambda B_{\alpha}
$$

will be a line along the x-axis, and can be made into a FM conjugate of β if N_{β} is defined to be equal to B_{α}.

Theorem 3.4. Let $\beta\left(s^{\star}\right)$ be a plane C^{∞} Frenet curve with zero torsion and whose curvature is either bounded below or bounded above. Then β is a FM curve, and has FB conjugates which are plane curves.

Proof. Let β be a curve satisfying the conditions of the hypothesis. Then there are non-zero numbers λ such that $\kappa_{\beta}<-\frac{1}{\lambda}$ on I or $\kappa_{\beta}>-\frac{1}{\lambda}$ on I. For any such λ, consider the plane curve α with position vector

$$
\alpha=\beta-\lambda N_{\beta} .
$$

Then

$$
T_{\alpha}=T_{\beta}
$$

It is then a straightforward matter to verify that α is a FM conjugate of β.

4 Weakened Mannheim Curves

Definition 4.1. Let D be a subset of a topological space X. A function on X into a set Y is said to be D-piecewise constant if it is constant on each component of D.

Lemma 4.2. Let X be a proper interval on the real line and D an open subset of X. Then a necessary and sufficient condition for every continuous, D-piecewise constant real function on X to be constant is that $X \backslash D$ should have empty dense-in-itself kernel.

We notice that if D is dense in X, any C^{1} and D-piecewise constant real function on X must be constant, even if D has non-empty dense-in-itself kernel.

Theorem 4.3. A WM curve for which N and Z have empty dense-in-itself kernels is a FM curve.

Proof. Let $\beta\left(s^{\star}\right), s^{\star} \in I^{\star}$ be a WM curve and $\alpha(s), s \in I$ a WM conjugate of $\beta\left(s^{\star}\right)$. It follows from the definition that $\alpha(s)$ and $\beta\left(s^{\star}\right)$ each has a C^{∞} family of tangent vectors $T_{\beta}\left(s^{\star}\right), T_{\alpha}(s)$. Let

$$
\begin{equation*}
\beta(s)=\beta(\sigma(s))=\alpha(s)+\lambda(s) B_{\alpha}(s) \tag{4.1}
\end{equation*}
$$

where $B_{\alpha}(s)$ is some unit vector function and $\lambda(s) \geq 0$ is some scalar function. Let $D=I \backslash N, D^{\star}=I^{\star} \backslash \sigma(Z)$. Then $s^{\star}(s) \in C^{\infty}$ on D^{\star}.

Step 1. To prove $\lambda=$ constant.
Since $\lambda=\|\beta(s)-\alpha(s)\|$, it is continuous on I and is of class C^{∞} on every interval of D on which it is nowhere zero. Let $P=\{s \in I: \lambda(s) \neq 0\}$ and X any component of P. Then P, and hence also X, is open in I. Let L be any component interval of $X \cap D$. Then on $L, \lambda(s)$ and $B_{\alpha}(s)$ are of class C^{∞}, and from (4.1) we have

$$
\beta^{\prime}(s)=\alpha^{\prime}(s)+\lambda^{\prime}(s) B_{\alpha}(s)+\lambda(s) B_{\alpha}^{\prime}(s) .
$$

Now by definition of a WM curve we have $\left\langle\alpha^{\prime}(s), B_{\alpha}(s)\right\rangle_{G_{3}^{1}}=0=\left\langle\beta^{\prime}\left(s^{\star}\right), B_{\alpha}(s)\right\rangle_{G_{3}^{1}}$. Hence, using the identity $\left\langle B_{\alpha}^{\prime}(s), B_{\alpha}(s)\right\rangle_{G_{3}^{1}}=0$, we have

$$
0=\lambda^{\prime}(s)\left\langle B_{\alpha}(s), B_{\alpha}(s)\right\rangle_{G_{3}^{1}}
$$

Therefore $\lambda=$ constant on L.
Hence λ is constant on each interval of the set $X \cap D$. But by hypothesis $X \backslash D$ has empty dense-in-itself kernel. It follows from Lemma 3.3 that λ is constant (and non-zero) on X. Since λ is continuous on I, X must be closed in I. But X is also open in I. Therefore by connectedness we must have $X=I$, that is, λ is constant on I.

Step 2. To prove the existence of two frames

$$
\left\{T_{\alpha}(s), N_{\alpha}(s), B_{\alpha}(s)\right\},\left\{T_{\beta}\left(s^{\star}\right), N_{\beta}\left(s^{\star}\right), B_{\beta}\left(s^{\star}\right)\right\}
$$

which are Frenet frames for $\alpha(s), \beta\left(s^{\star}\right)$ on D, D^{\star} respectively.
Since λ is a non-zero constant, it follows from (4.1) that $B_{\alpha}(s)$ is continuous on I and C^{∞} on D, and is always orthogonal to $T_{\alpha}(s)$. Now define $B_{\alpha}(s)=$ $T_{\alpha}(s) \wedge_{G_{3}^{1}} N_{\alpha}(s)$. Then $\left\{T_{\alpha}(s), N_{\alpha}(s), B_{\alpha}(s)\right\}$ forms a right-handed orthonormal frame for $\alpha(s)$ which is continuous on I and C^{∞} on D.

Now from the definition of WM curve we see that there exists a scalar function $\kappa_{\beta}\left(s^{\star}\right)$ such that $T_{\beta}^{\prime}\left(s^{\star}\right)=\kappa_{\beta}\left(s^{\star}\right) N_{\beta}\left(s^{\star}\right)$ on I^{\star}. Hence $\kappa_{\beta}\left(s^{\star}\right)=\left\langle T_{\beta}^{\prime}\left(s^{\star}\right), N_{\beta}\left(s^{\star}\right)\right\rangle_{G_{3}^{1}}$ is continuous on I^{\star} and C^{∞} on D^{\star}. Thus the first Frenet formula holds on D^{\star}. It is then straightforward to show that there exists a C^{∞} function $\tau_{\alpha}(s)$ on D such that the Frenet formulas hold. Thus $\left\{T_{\alpha}(s), N_{\alpha}(s), B_{\alpha}(s)\right\}$ is a Frenet frame for $\alpha(s)$ on D.

Similarly there exists a right-handed orthonormal frame $\left\{T_{\beta}\left(s^{\star}\right), N_{\beta}\left(s^{\star}\right), B_{\beta}\left(s^{\star}\right)\right\}$ for $\beta\left(s^{\star}\right)$ which is continuous on I^{\star} and is a Frenet frame for $\beta\left(s^{\star}\right)$ on D^{\star}. Moreover, we can choose

$$
B_{\alpha}(s)=N_{\beta}(\sigma(s))
$$

Step 3. To prove that $N=\emptyset, Z=\emptyset$. We first notice that on D we have

$$
\left\langle T_{\beta}, T_{\alpha}\right\rangle_{G_{3}^{1}}^{\prime}=\left\langle\kappa_{\beta} N_{\beta} \frac{d s^{\star}}{d s}, T_{\alpha}\right\rangle_{G_{3}^{1}}+\left\langle T_{\beta}, \kappa_{\alpha} N_{\alpha}\right\rangle_{G_{3}^{1}}=0
$$

so that $\left\langle T_{\beta}, T_{\alpha}\right\rangle$ is constant on each component of D and hence on I by Lemma 4.2. Consequently there exists a angle θ such that

$$
T_{\beta}=T_{\alpha} \cosh \theta+N_{\alpha} \sinh \theta
$$

Further,

$$
B_{\alpha}(s)=N_{\beta}(\sigma(s))
$$

and so

$$
B_{\beta}\left(s^{\star}\right)=-T_{\alpha} \sinh \theta+N_{\alpha} \cosh \theta
$$

Thus $\left\{T_{\beta}\left(s^{\star}\right), N_{\beta}\left(s^{\star}\right), B_{\alpha}(s)\right\}$ are also of class C^{∞} on D. On the other hand $\left\{T_{\beta}\left(s^{\star}\right), N_{\beta}\left(s^{\star}\right), B_{\beta}\left(s^{\star}\right)\right\}$ are of class C^{∞} with respect to s^{\star} on D^{\star}. Writing (4.1) in the form

$$
\alpha=\beta-\lambda N_{\beta}
$$

and differentiating with respect to s on $D \cap \sigma^{-1}\left(D^{\star}\right)$, we have

$$
T_{\alpha}=\frac{d s^{\star}}{d s}\left[T_{\beta}+\lambda \tau_{\beta} B_{\beta}\right]
$$

But

$$
T_{\alpha}=T_{\beta} \cosh \theta-B_{\beta} \sinh \theta
$$

Hence

$$
\begin{equation*}
\frac{d s^{\star}}{d s}=\cosh \theta \text { and } \lambda \tau_{\beta}=\sinh \theta \tag{4.2}
\end{equation*}
$$

Since $\kappa_{\beta}\left(s^{\star}\right)=\left\langle T_{\beta}^{\prime}, N_{\beta}\right\rangle_{G_{3}^{1}}$ is defined and continuous on I^{\star} and $\sigma^{-1}\left(D^{\star}\right)$ is dense, it follows by continuity that (4.2) holds throughout D. If $\cosh \theta \neq 0$ then (4.2) implies that $\frac{d s^{\star}}{d s} \neq 0$ on D. Hence $Z=\emptyset$. Similarly $N=\emptyset$.

References

[1] H.L. Liu, F. Wang, Mannheim partner curves in 3-space, J. Geom. 88 (1-2) (2008) 120-126.
[2] H.F. Lai, Weakened Bertrand curves, Tohoku Math. J. 19 (2) (1967) 141-155.
[3] F. Wang, H.L. Liu, Mannheim partner curves in 3-Euclidean space, Math. Practice Theory 37 (2007) 141-143.
[4] K. Orbay, E. Kasap, On Mannheim partner curves in E^{3}, Int. J. Phys. Sci. 4 (5) (2009) 261-264.
[5] M.K. Karacan, Y. Tuncer, Weakened Mannheim curves, Int. J. Phys. Sci. 6 (20) (2011) 4700-4705.
[6] M.K. Karacan, Y. Tuncer, Weakened Mannheim curves in Galilean 3-space, Int. Electron. J. Geom. 5 (2) (2012) 10-18.
[7] H.B. Oztekin, Weakened Bertrand curves in the Galilean space G_{3}, J. Adv. Math. Stud. 2 (2) (2009) 69-76.
[8] M. Akyigit, A.Z. Azak, Admissible Mannheim curves in pseudo-Galilean space G_{3}^{1}, Afr. Diaspora J. Math. (N.S.) 10 (2) (2010) 58-65.
[9] Z. Erjavec, B.Divjak, The equiform differential geometry of curves in the pseudo-Galilean space, Mathematical Communications 13 (2008) 321-332.
(Received 24 July 2012)
(Accepted 10 October 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

