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1 Introduction

In the study of the fundamental theory and the characterizations of space
curves, the corresponding relations between the curves are the very interesting
and important problem. The well-known Bertrand curve is characterized as a
kind of such corresponding relation between the two curves. For the Bertrand
curve α, it shares the normal lines with another curve β, called Bertrand mate or
Bertrand partner curve of α [1].

In 1967, Lai investigated the properties of two types of similar curves (the
Frenet-Bertrand curves and the Weakened Bertrand curves) under weakened con-
ditions [2].

In recent works, Liu and Wang [1, 3] studied the Mannheim curves in both
Euclidean and Minkowski 3-space and they obtained the necessary and sufficient
conditions between the curvature and the torsion for a curve to be the Mannheim
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partner curves. Meanwhile, the detailed discussion concerned with the Mannheim
curves can be found in literature (see Wang and Liu [3], Liu and Wang [1], Or-
bay and Kasap [4]) and references therein [4]. Karacan and Tuncer investigated
the properties of two types of similar curves (the Frenet-Mannheim curves and
the Weakened Mannheim curves) under weakened conditions, in [5, 6]. Öztekin
investigated Weakened Bertrand curves in [7] under weakened conditions.

In this paper, our main purpose is to extend some results which were given
in [2] to Frenet-Mannheim curves and Weakened Mannheim curves in pseudo-
Galilean 3-space and we assume that, the angle between tangent vectors Tβ and
Tα is constant such that 〈Tα, Tβ〉 = cosh θ 6= 0.

2 Preliminaries

The geometry of the pseudo-Galilean space is similar (but not the same) to
the Galilean space. The pseudo-Galilean space G1

3
is a three-dimensional projec-

tive space in which the absolute consists of a real plane w (the absolute plane),
a real line f ⊂ w (the absolute line) and a hyperbolic involution on f . Projec-
tive transformations which preserve the absolute form of a group H8 and are in
nonhomogeneous coordinates can be written in the form

x = a+ bx (2.1)

y = c+ dx+ r cosh θ · y + r sinh θ · z

z = e+ fx+ r sinh θ · y + r cos θ · z

where a, b, c, d, e, f, r and θ are real numbers. Particularly, for b = r = 1, the group
(2.1) becomes the group B6 ⊂ H8 of isometries (proper motions) of the pseudo-
Galilean space G1

3
. The motion group remains invariant the absolute figure and

defines the other invariants of this geometry. It has the following form

x = a+ x (2.2)

y = c+ dx+ cosh θ · y + sinh θ · z

z = e + fx+ sinh θ · y + cos θ · z.

According to the motion group in the pseudo-Galilean space, there are nonisotropic
vectors X (x, y, z) (for which holds x 6= 0) and four types of isotropic vectors:
spacelike

(

x = 0, y2 − z2 > 0
)

, timelike
(

x = 0, y2 − z2 < 0
)

and two types of light-
like vectors (x = 0, y = ∓z). The scalar product of two vectors A = (a1, a2, a3)
and B = (b1, b2, b3) in G1

3
is defined by

〈A,B〉G1

3

=

{

a1b1, if a1 6= 0 ∨ b1 6= 0
a2b2 − a3b3, if a1 = 0 ∧ b1 = 0.

(2.3)

The pseudo-Galilean cross product is defined for a = (a1, a2, a3), b = (b1, b2, b3) by

a ∧G1

3

b =

∣

∣

∣

∣

∣

∣

0 −e2 e3
a1 a2 a3
b1 b2 b3

∣

∣

∣

∣

∣

∣

.
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A curve α(t) = (x(t), y(t), z(t)) is admissible if it has no inflection points, no
isotropic tangents or tangents or normals whose projections on the absolute plane
would be light-like vectors. For an admissible curve α : I ⊆ R → G1

3
the curvature

κ(t) and the torsion τ(t) are defined by

κ(t) =

√

(y′′(t))
2 − (z′′(t))

2

(x′(t))2
, τ(t) =

y′′(t)z′′′(t)− y′′′(t)z′′(t)

|x′(t)|5 κ2(t)
. (2.4)

expressed in components. Hence, for an admissible curve α : I ⊆ R → G1

3
param-

eterized by the arc length s with differential form ds = dx, given by

α(t) = (x, y(s), z(s)) , (2.5)

the formulas (2.5) have the following form

κ(s) =

√

∣

∣

∣
(y′′(s))2 − (z′′(s))2

∣

∣

∣
, τ(s) =

y′′(s)z′′′(s)− y′′′(s)z′′(s)

κ2(s)
. (2.6)

The associated trihedron is given by

T = α′(s) = (1, y′(s), z′(s)) (2.7)

N =
1

κ(s)
α′′(s) =

1

κ(s)
(0, y′′(s), z′′(s))

B =
1

κ(s)
(0, ǫz′′(s), ǫy′′(s))

where ǫ = ∓1, chosen by criterion det (T,N,B) = 1, that means

∣

∣

∣
(y′′(s))

2
− (z′′(s))

2

∣

∣

∣
= ǫ

(

(y′′(s))
2
− (z′′(s))

2
)

.

We derive an important relation

α′′′(s) = κ′(s)N(s) + κ(s)τ(s)B(s).

The curve α given by (2.5) is timelike (resp. spacelike) if N(s) is a space-
like(resp. timelike) vector. The principal normal vector or simply normal is space-
like if ǫ = 1 and timelike if ǫ = −1. For derivatives of the tangent (vector) T , the
normal N and the binormal B, respectively, the following Serret-Frenet formulas

[8, 9] hold

T ′ = κN (2.8)

N ′ = τB

B′ = τN.

Definition 2.1. Let G1

3
be the 3-dimensional pseudo-Galilean space with the stan-

dard inner product 〈, 〉G1

3

. If there exists a corresponding relationship between the
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admissible curves α and β such that, at the corresponding points of the admissible
curves, the principal normal lines of β coincides with the binormal lines of α, then
β is called an admissible Mannheim curve, and α a Mannheim partner curve of β.
The pair {α, β} is said to be a Mannheim pair [8].

Definition 2.2. An admissible Mannheim curve β(s⋆), s⋆ ∈ I is a C∞ regular
curve with non-zero curvature for which there exists another (different) C∞ regular
curve α(s) where α(s) is of class C∞ and α′(s) 6= 0 (s being the arc length of α(s)
only), also with non-zero curvature, in bijection with it in such a manner that the
principal normal to β(s⋆) and the binormal to α(s) at each pair of corresponding
points coincide with the line joining the corresponding points. The curve α(s) is
called a Mannheim conjugate of β(s⋆).

Definition 2.3. An admissible Frenet-Mannheim curve β(s⋆) (briefly called a FM

curve) is a C∞ Frenet curve for which there exists another C∞ Frenet curve α(s),
where α(s) is of class C∞ and α′(s) 6= 0, in bijection with it so that, by suitable
choice of the Frenet frames the principal normal vectorNβ(s

⋆) and binormal vector
Bα(s) at corresponding points on β(s⋆), α(s), both lie on the line joining the
corresponding points. The curve α(s) is called a FM conjugate of β(s⋆).

Definition 2.4. An admissible weakened Mannheim curve β(s⋆), s⋆ ∈ I⋆ (briefly
called a WM curve) is a C∞ regular curve for which there exists another C∞

regular curve α(s), s ∈ I, where s is the arclength of α(s), and a homeomorphism
σ : I → I⋆such that

(i) There exist two (disjoint) closed subsets Z,N of I with void interiors such

that σ ∈ C∞ on I\N,
(

ds⋆

ds

)

= 0 on Z, σ−1 ∈ C∞ on σ (I\Z) and
(

ds
ds⋆

)

= 0

on σ(N);

(ii) The line joining corresponding points s, s⋆ of α(s) and β(s⋆) is orthogonal
to α(s) and β(s⋆) at the points s, s⋆ respectively, and is along the principal
normal to β(s⋆) or α(s) at the points s, s⋆ whenever it is well defined.

The curve α(s) is called a WM conjugate of β(s⋆).

Thus for a WM curve we not only drop the requirement of α(s) being a Frenet

curve, but also allow
(

ds⋆

ds

)

to be zero on a subset with void interior
(

ds⋆

ds

)

= 0

on an interval would destroy the injectivity of the mapping σ. Since
(

ds⋆

ds

)

= 0

implies that
(

ds
ds⋆

)

does not exist, the apparently artificial requirements in (i) are
in fact quite natural.

It is clear that an admissible Mannheim curve is necessarily a FM curve, and a
FM curve is necessarily a WM curve. It will be proved in Theorem 4.3 that under
certain conditions a WM curve is also a FM curve.
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3 Frenet-Mannheim Curves

In this section we study the structure and characterization of FM curves. We
begin with a lemma, the method used in which is classical.

Lemma 3.1. Let β(s⋆), s⋆ ∈ I⋆ be a FM curve and α(s) a FM conjugate of β(s⋆).
Let

β(s⋆) = α(s) + λ(s)Bα(s) (3.1)

Then the distance |λ| between corresponding points of α(s), β(s⋆) is constant, and
there is a constant angle θ such that 〈Tα, Tβ〉 = cos θ and

(i) sinh θ = λτα cosh θ;

(ii) sinh θ = λτβ cosh θ;

(iii) cosh2 θ = 1;

(iv) sinh2 θ = λ2τατβ .

Proof. From (3.1) it follows that

λ(s) = 〈β(s⋆)− α(s), Bα(s)〉

is of class C∞. Differentiation of (3.1) with respect to s gives

Tβ

ds⋆

ds
= Tα + λ′Bα + λταNα. (3.2)

Since by hypothesis we have Bα = ǫNβ with ǫ = ±1, scalar multiplication of (3.2)
by Bα gives

λ′ = 0,

then we have λ is a constant function. Therefore

Tβ

ds⋆

ds
= Tα + λταNα. (3.3)

But by definition of FM curve we have ds⋆

ds
6= 0, so that Tβ is C∞ function of s.

Hence

〈Tα, Tβ〉
′

G1

3

= κα 〈Nα, Tβ〉G1

3

+
ds⋆

ds
κβ 〈Tα, Nβ〉G1

3

= 0.

Consequently 〈Tα, Tβ〉 is constant, and there exists a constant angle θ such that

Tβ = Tα cosh θ +Nα sinh θ. (3.4)

Taking the vector product of (3.3) and (3.4), we obtain

sin θ = λτα cosh θ

which is (i). Now write

α(s) = β(s⋆)− ǫλ(s)Nβ(s).
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Therefore

Tα =
ds⋆

ds
[Tβ − λǫτβBβ] . (3.5)

On the other hand, equation (3.4) gives

Bβ = Tβ ∧G1

3

Nβ = ǫNα cosh θ.

Using (3.4) again, we get

Tα = Tβ cosh θ − ǫBβ sinh θ. (3.6)

Taking the vector product of (3.5) and (3.6), we obtain

sinh θ = λτβ cosh θ,

which is (ii). On the other hand, comparison of (3.3) and (3.4) gives

ds⋆

ds
cosh θ = 1, (3.7)

ds⋆

ds
sinh θ = λτα. (3.8)

Similarly (3.5), (3.6) give
ds⋆

ds
= cosh θ, (3.9)

ds⋆

ds
(λτβ) = sinh θ. (3.10)

The properties (iii) and (iv) then easily follow from (3.7) and (3.9), (3.6) and (3.8)
and (3.10).

Theorem 3.2. Let β(s⋆), s⋆ ∈ I⋆ be a C∞ Frenet curve with τβ nowhere zero and

satisfying the equation for constants λ with λ 6= 0. Then β(s⋆) is a non-planar

FM curve.

sinh θ = λτβ cosh θ. (3.11)

Proof. Define the curve β(s⋆) with position vector

β(s⋆) = α(s) + λ(s)Bα(s)

Then, denoting differentiation with respect to s by a dash, we have

β′(s⋆) = Tα + λταNα.

Since τα 6= 0, it follows that β(s⋆) is a C∞ regular curve. Then

Tβ

ds⋆

ds
= Tα + λταNα.
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Hence
ds⋆

ds
=

√

1 + λ2τ2α.

And, using (3.11)

Tβ = Tα cosh θ +Nα sinh θ,

notice that from (3.11) we have sinh θ 6= 0. Therefore

Tβ

ds⋆
ds⋆

ds
= καNα cosh θ + ταBα sinh θ

Now define Nβ = ǫBα,

κβ =
ǫ

ds⋆

ds

τα sinh θ.

These are C∞ functions of s (and hence of s⋆), and

Tβ

ds⋆
= κβNβ.

Further define Bβ = Tβ ∧G1

3

Bα and τβ =
〈

Bβ

ds⋆
, Nβ

〉

G1

3

. These are also C∞

functions on I⋆. It is then easy to verify that with the frame {Tβ , Nβ, Bβ} and the
functions κβ, τβ , the curve β(s⋆) becomes a C∞ Frenet curve. But Bα and Nβ lie
on the line joining corresponding points of α(s) and β(s⋆). Thus β(s⋆) is a FM
curve and α(s) a FM conjugate of β(s⋆).

Lemma 3.3. A necessary and sufficient condition for a C∞ regular curve β to be

a FM curve with a FM conjugate. Then β should be either a line or a non-planar

circular helix.

Proof. (⇒) : Let β have a FM conjugate α which is a line. Then κα = 0. Using
Lemma 3.1, (iii) and (i), (ii), we have

cosh2 θ = 1, (3.12)

and then

cosh2 θ sin θ = λτβ cosh θ, (3.13)

sinh θ = λτα cosh θ. (3.14)

From (3.14) it follows that cosh θ 6= 0. Hence (3.13) is equivalent to

λτβ = cosh θ sinh θ. (3.15)

Case 1. sinh θ = 0. Then cosh θ = ±1, so that (3.12) implies that κβ = 0,
and β is a line. We note also that (3.15) implies that τβ = 0.

Case 2. sinh θ 6= 0. Then cosh θ 6= ±1, and (3.12), (3.15) imply that κβ , τβ
are non-zero constants, and β is a non-planar circular helix.
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(⇐) : If β is a non-planar circular helix

β = (as, b cosh s, b sinh s) ,

we may take

Nβ = (0, cosh s, sinh s) .

Now put λ = b, then the curve β with

β = α+ λBα

will be a line along the x−axis, and can be made into a FM conjugate of β if Nβ

is defined to be equal to Bα.

Theorem 3.4. Let β(s⋆) be a plane C∞ Frenet curve with zero torsion and whose

curvature is either bounded below or bounded above. Then β is a FM curve, and

has FB conjugates which are plane curves.

Proof. Let β be a curve satisfying the conditions of the hypothesis. Then there
are non-zero numbers λ such that κβ < − 1

λ
on I or κβ > − 1

λ
on I. For any such

λ, consider the plane curve α with position vector

α = β − λNβ.

Then

Tα = Tβ.

It is then a straightforward matter to verify that α is a FM conjugate of β.

4 Weakened Mannheim Curves

Definition 4.1. Let D be a subset of a topological space X . A function on X

into a set Y is said to be D-piecewise constant if it is constant on each component
of D.

Lemma 4.2. Let X be a proper interval on the real line and D an open subset of

X. Then a necessary and sufficient condition for every continuous, D-piecewise

constant real function on X to be constant is that X\D should have empty dense-

in-itself kernel.

We notice that if D is dense in X , any C1 and D-piecewise constant real
function on X must be constant, even if D has non-empty dense-in-itself kernel.

Theorem 4.3. A WM curve for which N and Z have empty dense-in-itself kernels

is a FM curve.
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Proof. Let β(s⋆), s⋆ ∈ I⋆ be a WM curve and α(s), s ∈ I a WM conjugate of
β(s⋆). It follows from the definition that α(s) and β(s⋆) each has a C∞ family of
tangent vectors Tβ(s

⋆), Tα(s). Let

β(s) = β(σ(s)) = α(s) + λ(s)Bα(s), (4.1)

where Bα(s) is some unit vector function and λ(s) ≥ 0 is some scalar function.
Let D = I\N , D⋆ = I⋆\σ(Z). Then s⋆(s) ∈ C∞on D⋆.

Step 1. To prove λ = constant.
Since λ = ‖β(s)− α(s)‖, it is continuous on I and is of class C∞ on every

interval of D on which it is nowhere zero. Let P = {s ∈ I : λ(s) 6= 0} and X any
component of P . Then P , and hence also X , is open in I. Let L be any component
interval of X ∩D. Then on L, λ(s) and Bα(s) are of class C∞, and from (4.1) we
have

β′(s) = α′(s) + λ′(s)Bα(s) + λ(s)B′

α(s).

Now by definition of a WM curve we have 〈α′(s), Bα(s)〉G1

3

= 0 = 〈β′(s⋆), Bα(s)〉G1

3

.

Hence, using the identity 〈B′

α(s), Bα(s)〉G1

3

= 0, we have

0 = λ′(s) 〈Bα(s), Bα(s)〉G1

3

.

Therefore λ = constant on L.
Hence λ is constant on each interval of the set X∩D. But by hypothesis X\D

has empty dense-in-itself kernel. It follows from Lemma 3.3 that λ is constant
(and non-zero) on X . Since λ is continuous on I, X must be closed in I. But X
is also open in I. Therefore by connectedness we must have X = I, that is, λ is
constant on I.

Step 2. To prove the existence of two frames

{Tα(s), Nα(s), Bα(s)} , {Tβ(s
⋆), Nβ(s

⋆), Bβ(s
⋆)}

which are Frenet frames for α(s), β(s⋆) on D, D⋆ respectively.
Since λ is a non-zero constant, it follows from (4.1) that Bα(s) is continuous

on I and C∞ on D, and is always orthogonal to Tα(s). Now define Bα(s) =
Tα(s) ∧G1

3

Nα(s). Then {Tα(s), Nα(s), Bα(s)} forms a right-handed orthonormal
frame for α(s) which is continuous on I and C∞ on D.

Now from the definition of WM curve we see that there exists a scalar function
κβ(s

⋆) such that T ′

β(s
⋆) = κβ(s

⋆)Nβ(s
⋆) on I⋆. Hence κβ(s

⋆)=
〈

T ′

β(s
⋆), Nβ(s

⋆)
〉

G1

3

is continuous on I⋆ and C∞ on D⋆. Thus the first Frenet formula holds on D⋆. It
is then straightforward to show that there exists a C∞ function τα(s) on D such
that the Frenet formulas hold. Thus {Tα(s), Nα(s), Bα(s)} is a Frenet frame for
α(s) on D.

Similarly there exists a right-handed orthonormal frame {Tβ(s
⋆), Nβ(s

⋆), Bβ(s
⋆)}

for β(s⋆) which is continuous on I⋆ and is a Frenet frame for β(s⋆) on D⋆. More-
over, we can choose

Bα(s) = Nβ(σ(s))
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Step 3. To prove that N = ∅, Z = ∅ . We first notice that on D we have

〈Tβ, Tα〉
′

G1

3

=

〈

κβNβ

ds⋆

ds
, Tα

〉

G1

3

+ 〈Tβ, καNα〉G1

3

= 0,

so that 〈Tβ , Tα〉 is constant on each component of D and hence on I by Lemma
4.2. Consequently there exists a angle θ such that

Tβ = Tα cosh θ +Nα sinh θ.

Further,
Bα(s) = Nβ(σ(s))

and so
Bβ(s

⋆) = −Tα sinh θ +Nα cosh θ.

Thus {Tβ(s
⋆), Nβ(s

⋆), Bα(s)} are also of class C∞ on D. On the other hand
{Tβ(s

⋆), Nβ(s
⋆), Bβ(s

⋆)} are of class C∞ with respect to s⋆ on D⋆. Writing (4.1)
in the form

α = β − λNβ.

and differentiating with respect to s on D ∩ σ−1(D⋆), we have

Tα =
ds⋆

ds
[Tβ + λτβBβ] .

But
Tα = Tβ cosh θ −Bβ sinh θ.

Hence
ds⋆

ds
= cosh θ and λτβ = sinh θ. (4.2)

Since κβ(s
⋆) =

〈

T ′

β , Nβ

〉

G1

3

is defined and continuous on I⋆ and σ−1(D⋆) is dense,

it follows by continuity that (4.2) holds throughout D. If cosh θ 6= 0 then (4.2)
implies that ds⋆

ds
6= 0 on D. Hence Z = ∅. Similarly N = ∅.

References

[1] H.L. Liu, F. Wang, Mannheim partner curves in 3-space, J. Geom. 88 (1-2)
(2008) 120-126.

[2] H.F. Lai, Weakened Bertrand curves, Tohoku Math. J. 19 (2) (1967) 141-155.

[3] F. Wang, H.L. Liu, Mannheim partner curves in 3-Euclidean space, Math.
Practice Theory 37 (2007) 141-143.

[4] K. Orbay, E. Kasap, On Mannheim partner curves in E3, Int. J. Phys. Sci. 4
(5) (2009) 261-264.



Weakened Mannheim Curves in Pseudo-Galilean 3-Space 151

[5] M.K. Karacan, Y. Tuncer, Weakened Mannheim curves, Int. J. Phys. Sci. 6
(20) (2011) 4700-4705.

[6] M.K. Karacan, Y. Tuncer, Weakened Mannheim curves in Galilean 3-space,
Int. Electron. J. Geom. 5 (2) (2012) 10-18.

[7] H.B. Oztekin, Weakened Bertrand curves in the Galilean space G3, J. Adv.
Math. Stud. 2 (2) (2009) 69-76.

[8] M. Akyigit, A.Z. Azak, Admissible Mannheim curves in pseudo-Galilean space
G1

3
, Afr. Diaspora J. Math. (N.S.) 10 (2) (2010) 58-65.

[9] Z. Erjavec, B.Divjak, The equiform differential geometry of curves in the
pseudo-Galilean space, Mathematical Communications 13 (2008) 321-332.

(Received 24 July 2012)
(Accepted 10 October 2015)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	Frenet-Mannheim Curves
	Weakened Mannheim Curves

