The Order of Elements of the Semigroups

$$
\left(W_{\tau}\left(X_{2}\right)\right)^{2} \text { and }\left(W_{\tau}\left(X_{3}\right)\right)^{3}
$$

Damrongsak Punyathip and Thawhat Changphas 1
Department of Mathematics, Faculty of Science
Khon Kaen University, Khon Kaen 40002, Thailand
Centre of Excellence in Mathematics
CHE, Si Ayuttaya Rd., Bangkok 10400, Thailand
e-mail : math_1160@hotmail.com (D. Punyathip)
thacha@kku.ac.th (T. Changphas)

Abstract

In this paper, we determine the order of all elements of the semigroups $\left(W_{\tau}\left(X_{2}\right)\right)^{2}$ and $\left(W_{\tau}\left(X_{3}\right)\right)^{3}$, respectively. We show that the order of an element of $\left(W_{\tau}\left(X_{2}\right)\right)^{2}$ is 1,2 or infinite and the order of an element of $\left(W_{\tau}\left(X_{3}\right)\right)^{3}$ is $1,2,3$ or infinite.

Keywords : semigroup; order; term; superposition.
2010 Mathematics Subject Classification : 20M20.

1 Preliminaries

Using the operation which is called the superposition we can define an associative binary operation on the cartesian power of terms of a given type. Let $\tau=\left(n_{i}\right)_{i \in I}$ be a type of an algebra with operation symbols f_{i}, indexed by some set I, each having arity $n_{i}\left(n_{i} \geq 1\right.$ a natural number). Let $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a countably infinite alphabet of variables, disjoint from the set of operation symbols of type τ. Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the n-element alphabet of variables. For each natural number $n \geq 1$, the n-ary terms [1] of type τ are inductively defined as follows.
(i) Every variable $x_{i} \in X_{n}$ is an n-ary term of type τ.

[^0](ii) If $t_{1}, \ldots, t_{n_{i}}$ are n-ary terms of type τ and f_{i} is an n_{i}-ary operation symbol, then $f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ is an n-ary term of type τ.

Let $W_{\tau}\left(X_{n}\right)$ be the smallest set containing x_{1}, \ldots, x_{n} which is closed under finite application of (ii). The set of all terms of type τ over the alphabet X is defined as the union $W_{\tau}(X)=\bigcup_{n=1}^{\infty} W_{\tau}\left(X_{n}\right)$.

There is a well known $(n+1)$-ary superposition operation

$$
S^{n}: W_{\tau}\left(X_{n}\right)^{n+1} \rightarrow W_{\tau}\left(X_{n}\right)
$$

which maps $(n+1) n$-ary terms to a single n-ary term.
Define a binary operation + on $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$ by

$$
\left(t_{1}, \ldots, t_{n}\right)+\left(s_{1}, \ldots, s_{n}\right)=\left(S^{n}\left(t_{1}, s_{1}, \ldots, s_{n}\right), \ldots, S^{n}\left(t_{n}, s_{1}, \ldots, s_{n}\right)\right)
$$

for all $\left(t_{1}, \ldots, t_{n}\right),\left(s_{1}, \ldots, s_{n}\right) \in\left(W_{\tau}\left(X_{n}\right)\right)^{n}$.
By [2], $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$ satisfies the identity

$$
\begin{gathered}
\tilde{S}^{n}\left(U_{0}, S^{n}\left(V_{1}, W_{1}, \ldots, W_{n}\right), \ldots, \tilde{S}^{n}\left(V_{n}, W_{1}, \ldots, W_{n}\right)\right) \approx \\
\tilde{S}^{n}\left(\tilde{S}^{n}\left(U_{0}, V_{1}, \ldots, V_{n}\right), W_{1}, \ldots, W_{n}\right) .
\end{gathered}
$$

Here, \tilde{S} is an $(n+1)$-ary operation symbol, and $U_{0}, V_{1}, \ldots, V_{n}, W_{1}, \ldots, W_{n}$ are variables. Therefore, $\left(\left(W_{\tau}\left(X_{n}\right)\right)^{n},+\right)$ is a semigroup.

Semigroup properties of $\left(\left(W_{\tau}\left(X_{n}\right)\right)^{n},+\right)$ have been studied by many authors. In [3] , the maximal regular subsemigroups and the maximal inverse subsemigroups of $\left(W_{\tau}\left(X_{2}\right)\right)^{2}$ were determined. In [4], the regular elements of $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$ was characterized. The same authors also studied Green's relations on $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$.

Let S be a semigroup. If S is finite, then the order [5] of S is defined as the number of its elements, otherwise S is of infinite order. For an element a of S, the subsemigroup of S generated by a will be denoted by $\langle a\rangle$. The order of an element a of S is defined as the order of $\langle a\rangle$. An element e of S is called an idempotent of S if $e e=e$. Note that the order of an idempotent of S is 1 .

The idempotent elements of $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$ were characterized by the authors in [4] as follows: An element $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in\left(W_{\tau}\left(X_{n}\right)\right)^{n}$ is idempotent if and only if

$$
x_{j} \in \bigcup_{i=1}^{n} \operatorname{var}\left(t_{i}\right) \Rightarrow t_{j}=x_{j}
$$

where $\operatorname{var}\left(t_{i}\right)$ denotes the set of all variables occurring in t_{i}. For example: the terms $t_{1}=\left(x_{1}, f\left(x_{1}, x_{1}\right)\right)$ and $t_{2}=\left(x_{1}, f\left(x_{3}, x_{1}, x_{1}\right), x_{3}\right)$ are idempotent elements in $\left(W_{\tau}\left(X_{2}\right)\right)^{2}$ and $\left(W_{\tau}\left(X_{3}\right)\right)^{3}$, respectively.

The purpose of this paper is to determine the order of elements of the semigroups $\left(\left(W_{\tau}\left(X_{2}\right)\right)^{2},+\right)$ and $\left(\left(W_{\tau}\left(X_{3}\right)\right)^{3},+\right)$ where τ is not unary type.

To prove the results, we need the following notion. For $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in$ $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$, let

$$
\overline{o p}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\sum_{k=1}^{n} o p\left(t_{k}\right)
$$

where $o p\left(t_{k}\right)$ is inductively defined by
(i) $o p\left(t_{k}\right)=0$, if t_{k} is a variable;
(ii) $o p\left(t_{k}\right)=1+\sum_{j=1}^{n_{i}} o p\left(t_{k_{j}}\right)$, if $t_{k}=f_{i}\left(t_{k_{1}}, t_{k_{2}}, \ldots, t_{k_{n_{i}}}\right)$ is a composite term.

For example, let $t_{1}=f\left(x_{1}, f\left(x_{2}, f\left(x_{2}, x_{1}\right)\right)\right)$ and $t_{2}=f\left(x_{1}, x_{1}\right)$, then $o p\left(t_{1}\right)=$ $3, o p\left(t_{2}\right)=1$ and $\overline{o p}\left(t_{1}, t_{2}\right)=4$.

2 The Order of Elements of $\left(W_{\tau}\left(X_{2}\right)\right)^{2}$

We shall prove the main result in this section, Theorem 2.5, by considering the following lemmas.

Lemma 2.1.

(1) The order of each of $\left(x_{1}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{2}\right)$ is 1 .
(2) The order of $\left(x_{2}, x_{1}\right)$ is 2 .
(3) The order of $\left(x_{1}, t_{2}\right)$ where $t_{2} \notin X_{2}$ and $\operatorname{var}\left(t_{2}\right)=\left\{x_{1}\right\}$ is 1 .
(4) The order of $\left(t_{1}, x_{2}\right)$ where $t_{1} \notin X_{2}$ and $\operatorname{var}\left(t_{1}\right)=\left\{x_{2}\right\}$ is 1 .

Proof. Since the order of an idempotent is 1, we have (1), (3) and (4). Since $\left\langle\left(x_{2}, x_{1}\right)\right\rangle=\left\{\left(x_{2}, x_{1}\right),\left(x_{1}, x_{2}\right)\right\}$, the order of $\left(x_{2}, x_{1}\right)$ is 2 . This proves (2).

Lemma 2.2.

(1) The order of $\left(x_{1}, t_{2}\right)$ where $t_{2} \notin X_{2}$ and $\operatorname{var}\left(t_{2}\right) \nsubseteq\left\{x_{1}\right\}$ is infinite.
(2) The order of $\left(t_{1}, x_{2}\right)$ where $t_{1} \notin X_{2}$ and $\operatorname{var}\left(t_{1}\right) \nsubseteq\left\{x_{2}\right\}$ is infinite.

Proof. We will prove for the statement (1). For the statement (2), it can be proved similarly to (1). To show that $\overline{o p}\left(x_{1}, t_{2}\right)^{n+1}>\overline{o p}\left(x_{1}, t_{2}\right)^{n}$ for all positive integers n, let n be a positive integer. Then $\left(x_{1}, t_{2}\right)^{n}=\left(x_{1}, t\right)$ for some $t \in W_{\tau}\left(X_{2}\right) \backslash X_{2}$ such that $x_{2} \in \operatorname{var}(t)$. We have

$$
\begin{aligned}
\overline{o p}\left(x_{1}, t_{2}\right)^{n+1} & =\overline{o p}\left(\left(x_{1}, t_{2}\right)^{n}+\left(x_{1}, t_{2}\right)\right) \\
& =\overline{o p}\left(x_{1}, t\left(x_{1}, t_{2}\right)\right) \\
& =o p\left(t\left(x_{1}, t_{2}\right)\right) \\
& >o p(t) \\
& =\overline{o p}\left(\left(x_{1}, t_{2}\right)^{n}\right) .
\end{aligned}
$$

Thus (1) holds.
Lemma 2.3. The order of $\left(t_{1}, t_{2}\right)$ where $t_{1}, t_{2} \in W_{\tau}\left(X_{2}\right) \backslash X_{2}$ is infinite.

Proof. We claim that $\overline{o p}\left(t_{1}, t_{2}\right)^{n+1}>\overline{o p}\left(t_{1}, t_{2}\right)^{n}$ for all positive integers n. Let n be a positive integer. Then $\left(t_{1}, t_{2}\right)^{n}=\left(t^{\prime}, t^{\prime \prime}\right)$ for some $t^{\prime}, t^{\prime \prime} \in W_{\tau}\left(X_{2}\right) \backslash X_{2}$. We have

$$
\begin{aligned}
\overline{o p}\left(t_{1}, t_{2}\right)^{n+1} & =\overline{o p}\left(\left(t_{1}, t_{2}\right)^{n}+\left(t_{1}, t_{2}\right)\right) \\
& =\overline{o p}\left(t^{\prime}\left(t_{1}, t_{2}\right), t^{\prime \prime}\left(t_{1}, t_{2}\right)\right) \\
& >\overline{o p}\left(t^{\prime}, t^{\prime \prime}\right) \\
& =\overline{o p}\left(t_{1}, t_{2}\right)^{n}
\end{aligned}
$$

Therefore, the order of $\left(t_{1}, t_{2}\right)$ where $t_{1}, t_{2} \in W_{\tau}\left(X_{2}\right) \backslash X_{2}$ is infinite.

Lemma 2.4.

(1) The order of $\left(x_{2}, t_{2}\right)$ where $t_{2} \in W_{\tau}\left(X_{2}\right) \backslash X_{2}$ is infinite.
(2) The order of $\left(t_{1}, x_{1}\right)$ where $t_{1} \in W_{\tau}\left(X_{2}\right) \backslash X_{2}$ is infinite.

Proof. (1) We have $\left\langle\left(x_{2}, t_{2}\right)^{2}\right\rangle$ is a subsemigroup of $\left\langle\left(x_{2}, t_{2}\right)\right\rangle$. Since $\left(x_{2}, t_{2}\right)^{2}=$ $\left(t^{\prime}, t^{\prime \prime}\right)$ for some $t^{\prime}, t^{\prime \prime} \in W_{\tau}\left(X_{2}\right) \backslash X_{2}$, by Lemma 2.3 the order of $\left(x_{2}, t_{2}\right)^{2}$ is infinite. Therefore, the order of $\left(x_{2}, t_{2}\right)$ is infinite.
(2) This can be proved similarly to (1).

Theorem 2.5. The order of an element of $\left(W_{\tau}\left(X_{2}\right)\right)^{2}$ is 1,2 or infinite.
Proof. This follows from Lemma 2.1. Lemma 2.4.

3 The Order of Elements of $\left(W_{\tau}\left(X_{3}\right)\right)^{3}$

We begin with the following lemma obtained by calculations.
Lemma 3.1. For $t_{1}, t_{2}, t_{3} \in X_{3}$, the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is shown below:

t_{1}	t_{2}	t_{3}	the order of $\left(t_{1}, t_{2}, t_{3}\right)$	t_{1}	t_{2}	t_{3}	the order of $\left(t_{1}, t_{2}, t_{3}\right)$
x_{1}	x_{1}	x_{2}	2	x_{2}	x_{3}	x_{1}	3
x_{1}	x_{1}	x_{3}	1	x_{2}	x_{3}	x_{2}	2
x_{1}	x_{2}	x_{1}	1	x_{2}	x_{3}	x_{3}	2
x_{1}	x_{2}	x_{2}	1	x_{3}	x_{1}	x_{1}	2
x_{1}	x_{2}	x_{3}	1	x_{3}	x_{1}	x_{2}	3
x_{1}	x_{3}	x_{1}	2	x_{3}	x_{1}	x_{3}	2
x_{1}	x_{3}	x_{2}	2	x_{3}	x_{2}	x_{1}	2
x_{1}	x_{3}	x_{3}	1	x_{3}	x_{2}	x_{2}	2
x_{2}	x_{1}	x_{1}	2	x_{3}	x_{2}	x_{2}	2
x_{2}	x_{1}	x_{2}	2	x_{3}	x_{2}	x_{3}	
x_{2}	x_{1}	x_{3}	2	x_{3}	x_{3}	x_{1}	1
x_{2}	x_{2}	x_{1}	1	x_{3}	x_{3}	x_{2}	2
x_{2}	x_{2}	x_{2}	1			2	
x_{2}	x_{2}	x_{3}			x_{3}	x_{3}	

Lemma 3.2. The order of $\left(t_{1}, t_{2}, t_{3}\right)$ where $t_{1}, t_{2}, t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ is infinite.
Proof. Let $t_{1}, t_{2}, t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$. We shall show that $\overline{o p}\left(t_{1}, t_{2}, t_{3}\right)^{n+1}>\overline{o p}\left(t_{1}, t_{2}, t_{3}\right)^{n}$ for all positive integers n. For any positive integer n, we have $\left(t_{1}, t_{2}, t_{3}\right)^{n}=$ $\left(t^{\prime}, t^{\prime \prime}, t^{\prime \prime \prime}\right)$ for some $t^{\prime}, t^{\prime \prime}, t^{\prime \prime \prime} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$. Then

$$
\begin{aligned}
\overline{o p}\left(t_{1}, t_{2}, t_{3}\right)^{n+1} & =\overline{o p}\left(\left(t_{1}, t_{2}, t_{3}\right)^{n}+\left(t_{1}, t_{2}, t_{3}\right)\right) \\
& =\overline{o p}\left(t^{\prime}\left(t_{1}, t_{2}, t_{3}\right), t^{\prime \prime}\left(t_{1}, t_{2}, t_{3}\right), t^{\prime \prime \prime}\left(t_{1}, t_{2}, t_{3}\right)\right) \\
& >\overline{o p}\left(t^{\prime}, t^{\prime \prime}, t^{\prime \prime}\right) \\
& =\overline{o p}\left(t_{1}, t_{2}, t_{3}\right)^{n} .
\end{aligned}
$$

Hence the order of $\left(t_{1}, t_{2}, t_{3}\right)$ where $t_{1}, t_{2}, t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ is infinite.
Assume that $t_{1} \in X_{3}$ and $t_{2}, t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$. The following lemma shows that if $\left(t_{1}, t_{2}, t_{3}\right)$ is not idempotent, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.

Lemma 3.3. Let $t_{1} \in X_{3}$ and $t_{2}, t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$.
(1) If $t_{1} \neq x_{1}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(2) If $t_{1}=x_{1}$ and $\operatorname{var}\left(t_{2}\right) \nsubseteq\left\{x_{1}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3) If $t_{1}=x_{1}, \operatorname{var}\left(t_{2}\right) \subseteq\left\{x_{1}\right\}$ and $\operatorname{var}\left(t_{3}\right) \nsubseteq\left\{x_{1}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(4) If $t_{1}=x_{1}, \operatorname{var}\left(t_{2}\right) \subseteq\left\{x_{1}\right\}$ and $\operatorname{var}\left(t_{3}\right) \subseteq\left\{x_{1}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 1 .

Proof. (1) Assume that $t_{1} \neq x_{1}$. Then $t_{1}=x_{2}$ or $t_{1}=x_{3}$. If $t_{1}=x_{2}$, then by Lemma 3.2 the order of $\left(x_{2}, t_{2}, t_{3}\right)^{2}$ is infinite. Since $\left\langle\left(x_{2}, t_{2}, t_{3}\right)^{2}\right\rangle$ is a subsemigroup of $\left\langle\left(x_{2}, t_{2}, t_{3}\right)\right\rangle$, so the order of $\left(x_{2}, t_{2}, t_{3}\right)$ is infinite. Similarly, $t_{1}=x_{3}$ implies that the order of $\left(x_{2}, t_{2}, t_{3}\right)^{2}$ is infinite. Hence the order of $\left(x_{3}, t_{2}, t_{3}\right)$ is infinite.
(2) To show that $\overline{o p}\left(x_{1}, t_{2}, t_{3}\right)^{n+1}>\overline{o p}\left(x_{1}, t_{2}, t_{3}\right)^{n}$ for all positive integers n, let n be a positive integer. Assume that $x_{2} \in \operatorname{var}\left(t_{2}\right)$. We have $\left(x_{1}, t_{2}, t_{3}\right)^{n}=$ $\left(x_{1}, t^{\prime \prime}, t^{\prime \prime \prime}\right)$ for some $t^{\prime \prime}, t^{\prime \prime \prime} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $x_{2} \in \operatorname{var}\left(t^{\prime \prime}\right)$. Then

$$
\begin{aligned}
\overline{o p}\left(x_{1}, t_{2}, t_{3}\right)^{n+1} & =\overline{o p}\left(\left(x_{1}, t_{2}, t_{3}\right)^{n}+\left(x_{1}, t_{2}, t_{3}\right)\right) \\
& =\overline{o p}\left(x_{1}, t^{\prime \prime}\left(x_{1}, t_{2}, t_{3}\right), t^{\prime \prime \prime}\left(x_{1}, t_{2}, t_{3}\right)\right) \\
& =o p\left(t^{\prime \prime}\left(x_{1}, t_{2}, t_{3}\right)\right)+o p\left(t^{\prime \prime \prime}\left(x_{1}, t_{2}, t_{3}\right)\right) \\
& >o p\left(t^{\prime \prime}\right)+o p\left(t^{\prime \prime \prime}\right) \\
& =\overline{o p}\left(x_{1}, t_{2}, t_{3}\right)^{n} .
\end{aligned}
$$

Therefore, the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. Similarly, if $x_{3} \in \operatorname{var}\left(t_{2}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3) This can be proved similarly to (2).
(4) This follows since the order of an idempotent is 1 .

In the same manner as Lemma 3.3, we have the following two lemmas.

Lemma 3.4. Let $t_{2} \in X_{3}$ and $t_{1}, t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$.
(1) If $t_{2} \neq x_{2}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(2) If $t_{2}=x_{2}$ and $\operatorname{var}\left(t_{1}\right) \nsubseteq\left\{x_{2}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3) If $t_{2}=x_{2}, \operatorname{var}\left(t_{1}\right) \subseteq\left\{x_{2}\right\}$ and $\operatorname{var}\left(t_{3}\right) \nsubseteq\left\{x_{2}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(4) If $t_{2}=x_{2}, \operatorname{var}\left(t_{1}\right) \subseteq\left\{x_{2}\right\}$ and $\operatorname{var}\left(t_{3}\right) \subseteq\left\{x_{2}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 1 .

Lemma 3.5. Let $t_{3} \in X_{3}$ and $t_{1}, t_{2} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$.
(1) If $t_{3} \neq x_{3}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(2) If $t_{3}=x_{3}$ and $\operatorname{var}\left(t_{1}\right) \nsubseteq\left\{x_{3}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3) If $t_{3}=x_{3}, \operatorname{var}\left(t_{1}\right) \subseteq\left\{x_{3}\right\}$ and $\operatorname{var}\left(t_{2}\right) \nsubseteq\left\{x_{3}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(4) If $t_{3}=x_{3}, \operatorname{var}\left(t_{1}\right) \subseteq\left\{x_{3}\right\}$ and $\operatorname{var}\left(t_{2}\right) \subseteq\left\{x_{3}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 1 .

If $t_{1}, t_{2} \in X_{3}$ such that $x_{3} \in\left\{t_{1}, t_{2}\right\}$, then there are 5 cases to consider:
(i) $t_{1}=x_{1}, t_{2}=x_{3}$,
(ii) $t_{1}=x_{3}, t_{2}=x_{2}$,
(iii) $t_{1}=x_{3}, t_{2}=x_{1}$,
(iv) $t_{1}=x_{2}, t_{2}=x_{3}$,
(v) $t_{1}=x_{3}, t_{2}=x_{3}$.

We have the following.

Lemma 3.6.

(1) Let $t_{1}, t_{2} \in X_{3}$ and $t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{3}\right) \subseteq\left\{t_{1}, t_{2}\right\}$.
(1.1) If $x_{3} \notin\left\{t_{1}, t_{2}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is shown below:

t_{1}	t_{2}	$\operatorname{var}\left(t_{3}\right)$	the order of $\left(t_{1}, t_{2}, t_{3}\right)$
x_{1}	x_{1}	$\left\{x_{1}\right\}$	1
x_{1}	x_{2}	$\left\{x_{1}\right\}$	1
x_{1}	x_{2}	$\left\{x_{2}\right\}$	1
x_{1}	x_{2}	$\left\{x_{1}, x_{2}\right\}$	1
x_{2}	x_{1}	$\left\{x_{1}\right\}$	2
x_{2}	x_{1}	$\left\{x_{2}\right\}$	2
x_{2}	x_{1}	$\left\{x_{1}, x_{2}\right\}$	2
x_{2}	x_{2}	$\left\{x_{2}\right\}$	1

(1.2) If $x_{3} \in\left\{t_{1}, t_{2}\right\}, t_{1}=x_{1}, t_{2}=x_{3}$ and $x_{3} \notin \operatorname{var}\left(t_{3}\right)$ (i.e. $\operatorname{var}\left(t_{3}\right)=$ $\left.\left\{x_{1}\right\}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(1.3) If $x_{3} \in\left\{t_{1}, t_{2}\right\}, t_{1}=x_{1}, t_{2}=x_{3}$ and $x_{3} \in \operatorname{var}\left(t_{3}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.4) If $x_{3} \in\left\{t_{1}, t_{2}\right\}, t_{1}=x_{3}, t_{2}=x_{2}$ and $x_{3} \notin \operatorname{var}\left(t_{3}\right)$ (i.e. $\operatorname{var}\left(t_{3}\right)=$ $\left.\left\{x_{2}\right\}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(1.5) If $x_{3} \in\left\{t_{1}, t_{2}\right\}, t_{1}=x_{3}, t_{2}=x_{2}$ and $x_{3} \in \operatorname{var}\left(t_{3}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.6) If $x_{3} \in\left\{t_{1}, t_{2}\right\}$ and $t_{1}=x_{3}, t_{2}=x_{1}$ or $t_{1}=x_{2}, t_{2}=x_{3}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.7) If $x_{3} \in\left\{t_{1}, t_{2}\right\}, t_{1}=x_{3}, t_{2}=x_{3}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(2) Let $t_{1}, t_{2} \in X_{3}$ and $t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{3}\right) \nsubseteq\left\{t_{1}, t_{2}\right\}$ and $x_{3} \in \operatorname{var}\left(t_{3}\right)$. Then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3) Let $t_{1}, t_{2} \in X_{3}$ and $t_{3} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{3}\right) \nsubseteq\left\{t_{1}, t_{2}\right\}$ and $x_{3} \notin \operatorname{var}\left(t_{3}\right)$.
(3.1) If $\operatorname{var}\left(t_{3}\right)=\left\{x_{1}\right\}$ and $\left(t_{1}, t_{2}\right)=\left(x_{2}, x_{2}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.2) If $\operatorname{var}\left(t_{3}\right)=\left\{x_{1}\right\}$, and $\left(t_{1}, t_{2}\right) \in\left\{\left(x_{2}, x_{3}\right),\left(x_{3}, x_{2}\right),\left(x_{3}, x_{3}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3.3) If $\operatorname{var}\left(t_{3}\right)=\left\{x_{2}\right\}$ and $\left(t_{1}, t_{2}\right)=\left(x_{1}, x_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.4) If $\operatorname{var}\left(t_{3}\right)=\left\{x_{2}\right\}$ and $\left(t_{1}, t_{2}\right) \in\left\{\left(x_{1}, x_{3}\right),\left(x_{3}, x_{1}\right),\left(x_{3}, x_{3}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3.5) If $\operatorname{var}\left(t_{3}\right)=\left\{x_{1}, x_{2}\right\}$ and $\left(t_{1}, t_{2}\right)=\left(x_{1}, x_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.6) If $\operatorname{var}\left(t_{3}\right)=\left\{x_{1}, x_{2}\right\}$ and

$$
\left(t_{1}, t_{2}\right) \in\left\{\left(x_{2}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{3}, x_{1}\right),\left(x_{3}, x_{3}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{2}\right)\right\},
$$

then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
Proof. (1) It is easy to see that (1.1), (1.2) and (1.4) hold.
To prove (1.3), let n be a positive integer. We have $\left(x_{1}, x_{3}, t_{3}\right)^{n}=\left(x_{1}, t^{\prime \prime}, t^{\prime \prime \prime}\right)$ for some $t^{\prime \prime}, t^{\prime \prime \prime} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $x_{3} \in \operatorname{var}\left(t^{\prime \prime \prime}\right)$. Then

$$
\begin{aligned}
\overline{o p}\left(x_{1}, x_{3}, t_{3}\right)^{n+1} & =\overline{o p}\left(\left(x_{1}, x_{3}, t_{3}\right)^{n}+\left(x_{1}, x_{3}, t_{3}\right)\right) \\
& =\overline{o p}\left(x_{1}, t^{\prime \prime}\left(x_{1}, x_{3}, t_{3}\right), t^{\prime \prime \prime}\left(x_{1}, x_{3}, t_{3}\right)\right) \\
& =o p\left(t^{\prime \prime}\left(x_{1}, x_{3}, t_{3}\right)\right)+o p\left(t^{\prime \prime \prime}\left(x_{1}, x_{3}, t_{3}\right)\right) \\
& >o p\left(t^{\prime \prime}\right)+o p\left(t^{\prime \prime \prime}\right) \\
& =\overline{o p}\left(x_{1}, x_{3}, t_{3}\right)^{n} .
\end{aligned}
$$

Therefore, the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. Similarly, we obtain (1.5).
Assume that $t_{1}=x_{3}$ and $t_{2}=x_{1}$. By Lemma 3.2, the order of $\left(x_{3}, x_{1}, t_{3}\right)^{3}$ is infinite. Since $\left\langle\left(x_{3}, x_{1}, t_{3}\right)^{3}\right\rangle$ is a subsemigroup of $\left\langle\left(x_{3}, x_{1}, t_{3}\right)\right\rangle$, so the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. Similarly, if $t_{1}=x_{2}$ and $t_{2}=x_{3}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. Hence (1.6) holds.

For (1.7), let $t_{1}=x_{3}$ and $t_{2}=x_{3}$. By Lemma 3.2] the order of $\left(x_{3}, x_{3}, t_{3}\right)^{2}$ is infinite. Since $\left\langle\left(x_{3}, x_{3}, t_{3}\right)^{2}\right\rangle$ is a subsemigroup of $\left\langle\left(x_{3}, x_{3}, t_{3}\right)\right\rangle$, we have the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(2) This can be proved similarly to (1.3).
(3) It is easy to see that (3.1), (3.3) and (3.5) hold.

By Lemma 3.2, $\left(t_{1}, t_{2}\right) \in\left\{\left(x_{2}, x_{3}\right),\left(x_{3}, x_{3}\right)\right\}$ implies that the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. In a similar way as (1.3), if $\left(t_{1}, t_{2}\right)=\left(x_{3}, x_{2}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. This proves (3.2). Similarly, we obtain (3.4).

By Lemma 3.2, if $\left(t_{1}, t_{2}\right) \in\left\{\left(x_{3}, x_{1}\right),\left(x_{3}, x_{3}\right),\left(x_{2}, x_{3}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. In a similar way as (1.3), if $\left(t_{1}, t_{2}\right) \in\left\{\left(x_{2}, x_{2}\right),\left(x_{1}, x_{3}\right)\left(x_{3}, x_{2}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite. This proves (3.6).

Similarly, we state the following two lemmas without proofs.

Lemma 3.7.

(1) Let $t_{1}, t_{3} \in X_{3}$ and $t_{2} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{2}\right) \subseteq\left\{t_{1}, t_{3}\right\}$.
(1.1) If $x_{2} \notin\left\{t_{1}, t_{3}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is shown below:

t_{1}	$\operatorname{var}\left(t_{2}\right)$	t_{3}	the order of $\left(t_{1}, t_{2}, t_{3}\right)$
x_{1}	$\left\{x_{1}\right\}$	x_{1}	1
x_{1}	$\left\{x_{1}\right\}$	x_{3}	1
x_{1}	$\left\{x_{3}\right\}$	x_{3}	1
x_{1}	$\left\{x_{1}, x_{3}\right\}$	x_{3}	1
x_{3}	$\left\{x_{1}\right\}$	x_{1}	2
x_{3}	$\left\{x_{3}\right\}$	x_{1}	2
x_{3}	$\left\{x_{1}, x_{3}\right\}$	x_{1}	2
x_{3}	$\left\{x_{3}\right\}$	x_{3}	1

(1.2) If $x_{2} \in\left\{t_{1}, t_{3}\right\}, t_{1}=x_{1}, t_{3}=x_{2}$ and $x_{2} \notin \operatorname{var}\left(t_{2}\right)$ (i.e. $\operatorname{var}\left(t_{2}\right)=$ $\left.\left\{x_{1}\right\}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(1.3) If $x_{2} \in\left\{t_{1}, t_{3}\right\}, t_{1}=x_{1}, t_{3}=x_{2}$ and $x_{2} \in \operatorname{var}\left(t_{2}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.4) If $x_{2} \in\left\{t_{1}, t_{3}\right\}, t_{1}=x_{2}, t_{3}=x_{3}$ and $x_{2} \notin \operatorname{var}\left(t_{2}\right)$ (i.e. $\operatorname{var}\left(t_{2}\right)=$ $\left.\left\{x_{3}\right\}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(1.5) If $x_{2} \in\left\{t_{1}, t_{3}\right\}, t_{1}=x_{2}, t_{3}=x_{3}$ and $x_{2} \in \operatorname{var}\left(t_{2}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.6) If $x_{2} \in\left\{t_{1}, t_{3}\right\}$ and $t_{1}=x_{2}, t_{3}=x_{1}$ or $t_{1}=x_{3}, t_{3}=x_{2}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.7) If $x_{2} \in\left\{t_{1}, t_{3}\right\}$ and $t_{1}=x_{2}, t_{3}=x_{2}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(2) Let $t_{1}, t_{3} \in X_{3}$ and $t_{2} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{2}\right) \nsubseteq\left\{t_{1}, t_{3}\right\}$ and $x_{2} \in \operatorname{var}\left(t_{2}\right)$. Then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3) Let $t_{1}, t_{3} \in X_{3}$ and $t_{2} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{2}\right) \nsubseteq\left\{t_{1}, t_{3}\right\}$ and $x_{2} \notin \operatorname{var}\left(t_{2}\right)$.
(3.1) If $\operatorname{var}\left(t_{2}\right)=\left\{x_{1}\right\}$ and $\left(t_{1}, t_{3}\right)=\left(x_{2}, x_{2}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.2) If $\operatorname{var}\left(t_{2}\right)=\left\{x_{1}\right\}$, and $\left(t_{1}, t_{3}\right) \in\left\{\left(x_{2}, x_{3}\right),\left(x_{3}, x_{2}\right),\left(x_{3}, x_{3}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3.3) If $\operatorname{var}\left(t_{2}\right)=\left\{x_{3}\right\}$ and $\left(t_{1}, t_{3}\right)=\left(x_{1}, x_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.4) If $\operatorname{var}\left(t_{2}\right)=\left\{x_{3}\right\}$ and $\left(t_{1}, t_{3}\right) \in\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3.5) If $\operatorname{var}\left(t_{2}\right)=\left\{x_{1}, x_{3}\right\}$ and $\left(t_{1}, t_{3}\right)=\left(x_{1}, x_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.6) If $\operatorname{var}\left(t_{2}\right)=\left\{x_{1}, x_{3}\right\}$ and

$$
\left(t_{1}, t_{3}\right) \in\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{2}\right),\left(x_{3}, x_{3}\right)\right\},
$$

then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.

Lemma 3.8.

(1) Let $t_{2}, t_{3} \in X_{3}$ and $t_{1} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{1}\right) \subseteq\left\{t_{2}, t_{3}\right\}$.
(1.1) If $x_{1} \notin\left\{t_{2}, t_{3}\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is shown below:

$\operatorname{var}\left(t_{1}\right)$	t_{2}	t_{3}	the order of $\left(t_{1}, t_{2}, t_{3}\right)$
$\left\{x_{2}\right\}$	x_{2}	x_{2}	1
$\left\{x_{2}\right\}$	x_{2}	x_{3}	1
$\left\{x_{3}\right\}$	x_{2}	x_{3}	2
$\left\{x_{2}, x_{3}\right\}$	x_{2}	x_{3}	1
$\left\{x_{2}\right\}$	x_{3}	x_{2}	2
$\left\{x_{3}\right\}$	x_{3}	x_{2}	2
$\left\{x_{2}, x_{3}\right\}$	x_{3}	x_{2}	2
$\left\{x_{3}\right\}$	x_{3}	x_{3}	1

(1.2) If $x_{1} \in\left\{t_{2}, t_{3}\right\}, t_{2}=x_{1}, t_{3}=x_{3}$ and $x_{1} \notin \operatorname{var}\left(t_{1}\right)$ (i.e. $\operatorname{var}\left(t_{1}\right)=$ $\left.\left\{x_{3}\right\}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(1.3) If $x_{1} \in\left\{t_{2}, t_{3}\right\}, t_{2}=x_{1}, t_{3}=x_{3}$ and $x_{1} \in \operatorname{var}\left(t_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.4) If $x_{1} \in\left\{t_{2}, t_{3}\right\}, t_{2}=x_{2}, t_{3}=x_{1}$ and $x_{1} \notin \operatorname{var}\left(t_{1}\right)$ (i.e. $\operatorname{var}\left(t_{1}\right)=$ $\left.\left\{x_{2}\right\}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(1.5) If $x_{1} \in\left\{t_{2}, t_{3}\right\}, t_{2}=x_{2}, t_{3}=x_{1}$ and $x_{1} \in \operatorname{var}\left(t_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.6) If $x_{1} \in\left\{t_{2}, t_{3}\right\}$ and $t_{2}=x_{3}, t_{3}=x_{1}$ or $t_{2}=x_{1}, t_{3}=x_{2}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(1.7) If $x_{1} \in\left\{t_{2}, t_{3}\right\}$ and $t_{2}=x_{1}, t_{3}=x_{1}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(2) Let $t_{2}, t_{3} \in X_{3}$ and $t_{1} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{1}\right) \nsubseteq\left\{t_{2}, t_{3}\right\}$ and $x_{1} \in \operatorname{var}\left(t_{1}\right)$. Then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3) Let $t_{2}, t_{3} \in X_{3}$ and $t_{1} \in W_{\tau}\left(X_{3}\right) \backslash X_{3}$ such that $\operatorname{var}\left(t_{1}\right) \nsubseteq\left\{t_{2}, t_{3}\right\}$ and $x_{1} \notin \operatorname{var}\left(t_{1}\right)$.
(3.1) If $\operatorname{var}\left(t_{1}\right)=\left\{x_{2}\right\}$ and $\left(t_{2}, t_{3}\right)=\left(x_{2}, x_{2}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.2) If $\operatorname{var}\left(t_{1}\right)=\left\{x_{2}\right\}$, and $\left(t_{2}, t_{3}\right) \in\left\{\left(x_{2}, x_{3}\right),\left(x_{3}, x_{2}\right),\left(x_{3}, x_{3}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3.3) If $\operatorname{var}\left(t_{1}\right)=\left\{x_{3}\right\}$ and $\left(t_{2}, t_{3}\right)=\left(x_{1}, x_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.4) If $\operatorname{var}\left(t_{1}\right)=\left\{x_{3}\right\}$ and $\left(t_{2}, t_{3}\right) \in\left\{\left(x_{1}, x_{3}\right),\left(x_{3}, x_{1}\right),\left(x_{3}, x_{3}\right)\right\}$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
(3.5) If $\operatorname{var}\left(t_{1}\right)=\left\{x_{2}, x_{3}\right\}$ and $\left(t_{2}, t_{3}\right)=\left(x_{1}, x_{1}\right)$, then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is 2 .
(3.6) If $\operatorname{var}\left(t_{1}\right)=\left\{x_{2}, x_{3}\right\}$ and

$$
\left(t_{2}, t_{3}\right) \in\left\{\left(x_{2}, x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{3}, x_{1}\right),\left(x_{3}, x_{3}\right),\left(x_{2}, x_{1}\right),\left(x_{1}, x_{2}\right)\right\}
$$

then the order of $\left(t_{1}, t_{2}, t_{3}\right)$ is infinite.
Using Lemma 3.1 - Lemma 3.8, we obtain the main result of this section.
Theorem 3.9. The order of an element of $\left(W_{\tau}\left(X_{3}\right)\right)^{3}$ is $1,2,3$ or infinite.
Remark. Lemma2.3 and Lemma 3.2 can be generalized to the semigroup $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$. Indeed: the order of $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where $t_{1}, t_{2}, \ldots, t_{n} \in W_{\tau}\left(X_{n}\right) \backslash X_{n}$ is infinite. In fact: let $t_{1}, t_{2}, \ldots, t_{n} \in W_{\tau}\left(X_{n}\right) \backslash X_{n}$. We shall show that $\overline{o p}\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{m+1}>$ $\overline{o p}\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{m}$ for all positive integers m. For a positive integer m, we have $\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{n}=\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{n}^{\prime}\right)$ for some $t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{n}^{\prime} \in W_{\tau}\left(X_{n}\right) \backslash X_{n}$. Then

$$
\begin{aligned}
\overline{o p}\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{m+1} & =\overline{o p}\left(\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{m}+\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right) \\
& =\overline{o p}\left(t_{1}^{\prime}\left(t_{1}, t_{2}, \ldots, t_{n}\right), t_{2}^{\prime}\left(t_{1}, t_{2}, \ldots, t_{n}\right), \ldots, t_{n}^{\prime}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right) \\
& >\overline{o p}\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{n}^{\prime}\right) \\
& =\overline{o p}\left(t_{1}, t_{2}, \ldots, t_{n}\right)^{m} .
\end{aligned}
$$

Therefore, the order of $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where $t_{1}, t_{2}, \ldots, t_{n} \in W_{\tau}\left(X_{n}\right) \backslash X_{n}$ is infinite.
Question. Determine the order of the semigroup $\left(W_{\tau}\left(X_{n}\right)\right)^{n}$ for a positive integer $n \geq 4$.

References

[1] K. Denecke, S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman \& Hall/CRC Publishers, 2002.
[2] K. Denecke, J. Koppitz, M-solid Varieties of Algebras, Springer-Verlag, 2006.
[3] P. Duangpuy, Some Semigroup Properties of Terms, Thesis of Mathematics, Khon Kaen University, 2010.
[4] K. Denecke, P. Jampachon, Regular Elements and Green's Relations in Menger Algebras of Terms, Discussiones Mathematicae, General Algebra and Applications 26 (2006) 85-109.
[5] M. Petrich, Introduction to Semigroups, Merrill, Columbus, 1973.
(Received 21 September 2012)
(Accepted 31 October 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.

