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1 Introduction

In 1986, Mitsch [6] defined the partial order ≤ on any semigroup S as follows: for
a, b ∈ S,

a ≤ b ⇐⇒ a = xb = by and a = ay for some x, y ∈ S1,

which is called the natural partial order on S.
Next, Kowol and Mitsch [4] studied the natural partial order on T (X), the

semigroup of all transformations of a set X. Marques-Smith and Sullivan [5]
extended that work to PT (X), the semigroup of all partial transformations of
X. They also determined when two elements in PT (X) are related under ≤ and
compared ≤ with another natural partial order ⊆ on PT (X). Moreover, they
described the maximal, minimal, left compatible and right compatible elements
of PT (X) with respect to each order. In this paper, we study two natural
partial orders ≤ and ⊆ on B(X), the semigroup of binary relations on a set X
under composition and characterize when two elements are related under these
two orders. Furthermore, we determine the maximal, minimal, left compatible
and right compatible elements of B(X) with respect to each order.

1.1 Preliminaries

Let S be a semigroup and E(S) denote the set of all idempotents of S. The Green’s
relations L and R on a semigroup S are defined by aLb ⇐⇒ S1a = S1b and aRb
⇐⇒ aS1 = bS1 for all a, b ∈ S.
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Let ≤ be any partial order on a semigroup S. An element a of S is called left
[right ] compatible with respect to ≤ on S if for all x, y ∈ S, x ≤ y implies ax ≤ ay
[xa ≤ ya].

In the remainder, the relation ≤ given on any semigroup S always means the
natural partial order on S defined previously, that is, for any a, b ∈ S,

a ≤ b ⇐⇒ a = xb = by and a = ay for some x, y ∈ S1.

In this case, we have that a = (xb)y = x(by) = xa.

Lemma 1.1. ([2]). Let S be a semigroup and a, b ∈ S. If a ≤ b and (a, b) ∈ L∪R,
then a = b.

1.2 On the semigroup of binary relations

Let X be a set. From the definition of B(X), we have

B(X) = {α | α ⊆ X ×X}

and for α, β ∈ B(X),

αβ = {(x, y) ∈ X ×X | (x, z) ∈ α and (z, y) ∈ β for some z ∈ X}.

Then the empty relation is the zero of B(X) which is denoted by 0. For Y ⊆ X,
let

∆Y = {(y, y) | y ∈ Y }
and

∇Y = {(x, y) | x, y ∈ Y },
so ∆X and ∇X are the identity and universal relations on X, respectively.

In particular, for a finite set X = {a1, a2, . . . , an}, we can represent a relation
α ∈ B(X) with the n× n Boolean matrix A defined by

Aij =

{
1 if (ai, aj) ∈ α,

0 otherwise.

For example, if α = {(a1, a1), (a1, a2), (a2, a1), (a3, a2), (a3, a3)} ∈ B(X) with X =
{a1, a2, a3}, then

α =




1 1 0
1 0 0
0 1 1


 .

Let α ∈ B(X). For x ∈ X, let

xα = {y ∈ X | (x, y) ∈ α}
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and
αx = {y ∈ X | (y, x) ∈ α}

and they are called a row and a column of α, respectively. For A ⊆ X, set

Aα =
⋃

x∈A

xα and αA =
⋃

x∈A

αx.

Then αA = Aα−1. Let
V (α) = {Aα | A ⊆ X}

and
W (α) = {αA | A ⊆ X}.

Lemma 1.2. ([8]). Let α ∈ B(X). Then V (α) and W (α) are anti-isomorphic
lattices.

We say that a relation α ∈ B(X) is row reduced if for all x ∈ X and A ⊆ X,
∅ 6= xα = Aα implies that x ∈ A and column reduced if for all x ∈ X and A ⊆ X,
∅ 6= αx = αA implies that x ∈ A.

A relation α ∈ B(X) is row minimal if for all x ∈ X and A ⊆ X, ∅ 6= xα = Aα
implies that {x} = A and column minimal if for all x ∈ X and A ⊆ X, ∅ 6= αx =
αA implies that {x} = A. Observe that if α is row [column] minimal, then it is
row [column] reduced.

Example 1.3. Let

α =




1 0 1 0
0 1 0 1
1 1 0 0
1 1 1 0


 .

Then α is column reduced but not column minimal.

Let α, β ∈ B(X). We say that β is a row descendant of α if there exist a, b ∈ X
with a 6= b and a nonempty subset A of X such that A ⊆ aα ⊆ bα, bβ = bα\A
and xα = xβ for all x 6= b. A column descendant of α is defined in a dual manner.
Set

Rα = {β | β is a row descendant of α}
and

Cα = {β | β is a column descendant of α}.
It is easy to see that if α is row [column] minimal, then Rα[Cα] = ∅.
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Example 1.4. Let

α =




0 1 1 1
1 0 1 0
0 0 1 0
0 1 1 0


 .

Then

Rα =

{[
0 1 0 1
1 0 1 0
0 0 1 0
0 1 1 0

]
,

[
0 0 1 1
1 0 1 0
0 0 1 0
0 1 1 0

]
,

[
0 0 0 1
1 0 1 0
0 0 1 0
0 1 1 0

]
,

[
0 1 1 1
1 0 0 0
0 0 1 0
0 1 1 0

]
,

[
0 1 1 1
1 0 1 0
0 0 1 0
0 1 0 0

]}

and

Cα =

{[
0 1 0 1
1 0 1 0
0 0 1 0
0 1 1 0

]
,

[
0 1 1 1
1 0 0 0
0 0 1 0
0 1 1 0

]
,

[
0 1 1 1
1 0 1 0
0 0 1 0
0 1 0 0

]
,

[
0 1 0 1
1 0 1 0
0 0 1 0
0 1 0 0

]
,

[
0 0 1 1
1 0 1 0
0 0 1 0
0 1 1 0

] }
.

The following lemma is easily shown.

Lemma 1.5. Let α, β, γ ∈ B(X) . Then
(1) (α′)′ = α,
(2) (α−1)−1 = α and (αβ)−1 = β−1α−1,
(3) α ⊆ β implies γα ⊆ γβ and αγ ⊆ βγ,
(4) α ⊆ β if and only if α−1 ⊆ β−1,
(5) α ⊆ β if and only if β′ ⊆ α′.

Lemma 1.6. ([7]). Let α, β ∈ B(X) and A ⊆ X. Then
(1) A(αβ) = (Aα)β and (αβ)A = α(βA),
(2) V (αβ) ⊆ V (β),
(3) W (αβ) ⊆ W (α),
(4) αLβ if and only if V (α) = V (β),
(5) αRβ if and only if W (α) = W (β).

Lemma 1.7. Let α ∈ B(X). Then the following statements are equivalent.
(1) α2 = α.
(2) For every A ∈ V (α), Aα = A.
(3) For every A ∈ W (α), αA = A.

Proof. (1) =⇒ (2) Assume that α2 = α. Let A ∈ V (α), Then there exists B ⊆ X
such that Bα = A. Thus Aα = Bαα = Bα = A.

(2) =⇒ (1) For x ∈ X, xα ∈ V (α). By assumption, xα2 = xαα = xα.
Hence α2 = α.

(1) ⇐⇒ (3) can be proved similarly.

Lemma 1.8. Let A and B be nonempty subsets of X such that A∩B 6= ∅. Define
α = A × B. Then V (α) = {∅, B} and W (α) = {∅, A}, hence α is an idempotent
of B(X).
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Proof. By the definition of α, aα = B for all a ∈ A and aα = ∅ for all a ∈ X\A.
Then V (α) = {∅, B}. Since A ∩B 6= ∅, we have

Bα =
⋃

x∈B

xα =

( ⋃

x∈A∩B

xα

)⋃ ( ⋃

x∈B\A
xα

)
= B ∪ ∅ = B.

By Lemma 1.7, α is an idempotent.

2 Main results

2.1 Natural partial orders on B(X)

Regarding elements of B(X) as subsets of X ×X, ⊆ is a natural partial order of
B(X), that is,

α ⊆ β ⇐⇒ for every (x, y) ∈ X ×X, (x, y) ∈ α implies (x, y) ∈ β.

The next proposition is evident.

Proposition 2.1. Let α, β ∈ B(X). Then the following statements are equivalent.
(1) α ⊆ β.
(2) αX ⊆ βX and for every x ∈ αX, xα ⊆ xβ.
(3) Xα ⊆ Xβ and for every y ∈ Xα, αy ⊆ βy.

From Proposition 2.1, we have

Corollary 2.2. Let α, β ∈ B(X). Then
(1) α = β if and only if αX = βX and for every x ∈ αX, xα = xβ,
(2) α = β if and only if Xα = Xβ and for every x ∈ Xα, αx = βx.

Recall that the natural partial order ≤ defined on B(X) is as follows:

α ≤ β ⇐⇒ α = λβ = βµ and α = αµ for some λ, µ ∈ B(X).

In this case, we also have α = λα.

In the next theorem, we give a characterization when α, β ∈ B(X) are com-
parable under ≤.

Theorem 2.3. Let α, β ∈ B(X). Then the following statements are equivalent:
(1) α ≤ β.
(2) α−1 ≤ β−1.
(3) V (α) ⊆ V (β),W (α) ⊆ W (β) and for all A,B ∈ X,Aα = Bβ implies Aα

= Bα and αA = βB implies αA = αB.
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Proof. (1)=⇒(2) Assume that α ≤ β. Then there exist λ, µ ∈ B(X) such that
α = λβ = βµ and α = αµ = λα. By Lemma 1.5 (2), we have α−1 = β−1λ−1 =
µ−1β−1 and α−1 = α−1λ−1. Hence α−1 ≤ β−1.

(2)=⇒(3) Assume that α−1 ≤ β−1. Then there are λ, µ ∈ B(X) such
that α−1 = λβ−1 = β−1µ and α−1 = α−1µ = λα−1, so α = βλ−1 = µ−1β and
α = µ−1α = αλ−1. By Lemma 1.6 (2) and (3), we have

V (α) = V (µ−1β) ⊆ V (β) and W (α) = W (βλ−1) ⊆ W (β).

Let A, B ⊆ X. If Aα = Bβ, then Aα = Aαλ−1 = Bβλ−1 = Bα. If αA = βB,
then αA = µ−1αA = µ−1βB = αB. Hence (3) holds.

(3)=⇒(1) Assume that (3) holds. Then for each x ∈ X, xα ∈ V (α) ⊆ V (β)
and αx ∈ W (α) ⊆ W (β). Then there exist Ax, Bx ⊆ X such that xα = Axβ
and αx = βBx. By assumption, we have xα = Axα and αx = αBx. Define
λ, µ ∈ B(X) by xλ = Ax for all x ∈ X and µx = Bx for all x ∈ X. Then for every
x ∈ X,

xλβ = Axβ = xα and
αµx = αBx = αx = βBx = βµx.

This shows that α = λβ and α = αµ = βµ, so α ≤ β.

The following example shows that ≤ and ⊆ are distinct.

Example 2.4. Suppose that X = {a1, a2, a3} and let

α =




1 0 0
0 0 0
0 1 0


 , β =




1 0 1
0 0 1
0 1 0


 and γ =




1 0 1
1 0 1
0 0 0


 .

Clearly, α ⊆ β. Since a1α = {a1} ∈ V (α) and {a1} /∈ V (β), by Theorem 2.3
α 
 β. We can check that γ ≤ β but γ * β.

2.2 Maximal and minimal elements

Since 0 and ∇X are the minimum and maximum elements of (B(X),⊆), respec-
tively. The following proposition determines the minimal elements in B(X)\{0}
and the maximal element in B(X)\{∇X} with respect to ⊆ and the proof is
obvious.

Proposition 2.5. The following statements about B(X) hold.
(1) For α ∈ B(X)\{0}, α is minimal in (B(X)\{0},⊆) if and only if |α| = 1.
(2) For α ∈ B(X)\{∇X}, α is maximal in (B(X)\{∇X},⊆) if and only if α′

is minimal in (B(X)\{0},⊆).
(3) For α ∈ B(X)\{∇X}, α is maximal in (B(X)\{∇X},⊆) if and only if

α−1 is maximal in (B(X)\{∇X},⊆).
(4) For α ∈ B(X)\{0}, α is minimal in (B(X)\{0},⊆) if and only if α−1 is

minimal in (B(X)\{0},⊆).
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To obtain the theorem concerning the maximal elements of B(X) with respect
to ≤, the following series of lemmas will be used.

Lemma 2.6. Let α, β ∈ B(X). If β ∈ Rα ∩ Cα, then the following state-
ments hold.

(1) There exist a, b, c, d ∈ X with a 6= b and c 6= d such that

{d} ⊆ aα ⊆ bα, {b} ⊆ αc ⊆ αd and β = α\{(b, d)}.

(2) αX = βX and Xα = Xβ.

Proof. Assume that β ∈ Rα ∩ Cα. Since β ∈ Rα, there exist a, b ∈ X with a 6= b
and a nonempty subset A of X such that

A ⊆ aα ⊆ bα, bβ = bα\ A and xα = xβ for all x ∈ X\{b}.

Claim that β = α\({b} ×A). Let (x, y) ∈ β. Then y ∈ xβ.

Case 1: x = b. Then y ∈ bβ. Since bβ = bα\A, we have y ∈ bα and y /∈ A. So
(x, y) ∈ α, hence (x, y) ∈ α\({b} ×A).

Case 2: x 6= b. Since xβ = xα for all x 6= b, y ∈ xα. Thus (x, y) ∈ α\({b} ×A).

Hence β ⊆ α\({b} ×A).
For the reverse inclusion, let (x, y) ∈ α\({b} × A). Then y ∈ xα and (x, y) /∈

{b} ×A.

Case 1: x = b. Then y ∈ bα and y /∈ A, so y ∈ bα\A. Since bα\A = bβ, y ∈ bβ.
Hence (x, y) ∈ β.

Case 2: x 6= b. Then y ∈ xα = xβ, so (x, y) ∈ β.

Therefore α\({b} ×A) ⊆ β. So we have the claim.

Since β ∈ Cα, there are c, d ∈ X with c 6= d and a nonempty subset B of X
such that

B ⊆ αc ⊆ αd, βd = αd\B and αx = βx for all x ∈ X\{d}.

We can prove similarly that β = α\(B × {d}).
Since A ⊆ bα and B ⊆ αd, {b} × A ⊆ α and B × {d} ⊆ α, respectively.

But β ⊆ α\({b} × A) and β = α\(B × {d}), so we have B = {b} and A = {d}.
Therefore β = α\{(b, d)}. But {b} ⊆ αd, so we have α = β ∪ {(b, d)}. Since
{b} = B ⊆ αc ⊆ αd, {(b, c), (b, d)} ⊆ α. Then {(b, c)} ⊆ α\{(b, d)} = β and so
b ∈ βX. Thus

αX = (β ∪ {(b, d)})X = βX ∪ {b} = βX.

Similarly, we can show that Xα = Xβ, as required.
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Lemma 2.7. Let α ∈ B(X). If α is a maximal element with respect to ≤, then
Rα ∩ Cα = ∅.
Proof. Assume that Rα ∩ Cα 6= ∅. Let β ∈ Rα ∩ Cα. From the proof of Lemma
2.6, there exist a, b, c, d ∈ X with a 6= b and c 6= d such that {d} ⊆ aα ⊆ bα,
{b} ⊆ αc ⊆ αd, bβ = bα\{d}, βd = αd\{b}, xβ = xα for all x 6= b, βy = αy for all
y 6= d, βX = αX and Xβ = Xα. Then

{a, b}β = aβ ∪ bβ = aα ∪ bα\{d} = bα

and
β{c, d} = βc ∪ βd = αc ∪ αd\{b} = αd.

Define λ, µ ∈ B(X) by

uλ =

{
{a, b} if u = b,

u if u ∈ αX\{b}

and

µv =

{
{c, d} if v = d,

v if v ∈ Xα\{d}.
Then

βµv = βv = αv and αµv = αv for all v ∈ Xα\d
and

βµd = β{c, d} = αd and αµd = α{c, d} = αd.

We conclude that α = βµ = αµ. Also, we have that

uλβ = uβ = uα for all u ∈ αX\b and bλβ = {a, b}β = bα.

Thus α = λβ. This proves that α ≤ β. From Lemma 2.6 (1), we have α 6= β.
Hence α is not maximal.

Lemma 2.8. Let α ∈ B(X). If α is maximal with respect to ≤, then either α is
row reduced and αX = X or α is column reduced and Xα = X.

Proof. Assume that the converse condition is not true.

Case 1: αX  X and Xα  X. Then there exist a, b ∈ X such that a /∈ αX
and b /∈ Xα. Define β, λ, µ ∈ B(X) by β = α ∪ {(a, b)}, λ = ∆αX and µ = ∆Xα.
Clearly that α = αµ and α 6= β. Since βX = αX ∪ {a} and Xβ = Xα ∪ {b},
α = ∆αXβ = λβ and α = β∆Xα = βµ. Hence α = λβ = βµ and α = αµ, we
deduce that α < β. Hence α is not maximal.

Case 2: αX  X and α is not column reduced. Then there exist a, b ∈ X and
a nonempty subset B of X such that a /∈ αX, ∅ 6= αb = αB and b /∈ B. Define
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β ∈ B(X) by β = α ∪ {(a, b)}. Then βX = αX ∪ {a}, Xβ = Xα, xβ = xα for all
x 6= a and βy = αy for all y 6= b. Thus βB = αB = αb.

Define λ, µ ∈ B(X) by λ = ∆αX and

µy =

{
B if y = b,

y if y ∈ Xα\{b}.

Then we have
α = ∆αXβ = λβ,

βµy = βy = αy = αµy for all y ∈ Xα\{b}
and

βµb = βB = αb = αB = αµb.

Thus α = λβ = βµ and α = αµ. Hence α < β, so α is not maximal.

Case 3: α is not row reduced and Xα  X. Its proof is similar to the Case 2.

Case 4: α is neither row nor column reduced. Then there are a, b ∈ X and
nonempty subsets A,B of X such that aα = Aα,αb = αB, a /∈ A and b /∈ B.
Define β ∈ B(X) by

β =

{
α ∪ {(a, b)} if (a, b) /∈ α,

α\{(a, b)} if (a, b) ∈ α.

Then βX = αX, Xβ = Xα and α 6= β. By the definition of β, we get that
xβ = xα for all x 6= a and βy = αy for all y 6= b. Define λ, µ ∈ B(X) by

xλ =

{
A if x = a,

x if x ∈ αX\{a}

and

µy =

{
B if y = b,

y if y ∈ Xα\{b}.
If x ∈ αX\{a}, then xλβ = xβ = xα. And aλβ = Aβ = Aα = aα. Thus α = λβ.
If y ∈ Xα\{b}, then βµy = βy = αy = αµy. Since βµb = βB = αB = αb and
αµb = αB = αb, we deduce that α = βµ = αµ. These imply that α < β, hence α
is not maximal.

Therefore the lemma is proved.

Lemma 2.9. Let α ∈ B(X). If Rα ∩ Cα = ∅ and either α is row reduced and
αX = X or α is column reduced and Xα = X, then α is maximal with respect
to ≤.
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Proof. Let β ∈ B(X) be such that α ≤ β. To prove that β ⊆ α, let x ∈ X.
First, assume that α is row reduced and αX = X. Since αX = X, xα 6= ∅. By
Theorem 2.3, we have xα ∈ V (α) ⊆ V (β). Then xα = Aβ for some A ⊆ X.
Again by Theorem 2.3, xα = Aα. Since α is row reduced, we have x ∈ A, and so
xβ ⊆ Aβ = xα. Hence β ⊆ α. If α is column reduced and Xα = X, we can show
similarly that β ⊆ α.

Next, suppose that β 6= α. Since β ⊆ α, there exists a ∈ X such that aβ  aα.
Set A = aα\aβ. Since aα ∈ V (α), by Theorem 2.3, aα = Bβ for some B ⊆ X,
hence aα = Bα. Let c ∈ A. Then c ∈ aα, so c ∈ bβ for some b ∈ B since aα = Bβ.
By β ⊆ α, we have

c ∈ bβ ⊆ bα ⊆ Bα = aα.

Since {a, b} ⊆ αc and c /∈ aβ, βc  αc. Let C = αc\βc. Then αc = βD for some
D ⊆ X since αc ∈ W (α) ⊆ W (β). So αc = αD by Theorem 2.3. Since a /∈ βc,
a ∈ C. And since a ∈ αc = βD, a ∈ βd for some d ∈ D. Hence

a ∈ βd ⊆ αd ⊆ αD = αc.

Define ρ = α\{(a, d)}. From the above proof, we have that ρ ∈ Rα ∩ Cα which is
a contradiction. Hence β = α.

Theorem 2.10. Let α ∈ B(X). Then α is maximal with respect to ≤ if and only
if α satisfies the following two conditions.

(1) α is row reduced and αX = X or α is column reduced and Xα = X.
(2) Rα ∩ Cα = ∅.

Proof. It follows directly from Lemma 2.7, Lemma 2.8 and Lemma 2.9.

The following theorem determines the minimal elements of B(X) with respect
to ≤.

Theorem 2.11. Let α ∈ B(X)\{0}. Then α is minimal in B(X)\{0} with
respect to ≤ if and only if V (α) = {∅, Xα}.
Proof. Assume that V (α) = {∅, Xα}. Let β ∈ B(X)\{0} be such that β ≤ α.
By Theorem 2.3(3), V (β) ⊆ V (α). Since β 6= 0, V (β) = V (α). Hence α = β by
Lemma 1.6(4) and Lemma 1.1.

Conversely, suppose that |V (α)| > 2. Define β ∈ B(X) by β = αX × Xα.
Then 0 6= β and V (β) = {∅, Xα}, so α 6= β. Define λ, µ ∈ B(X) by

λ = αX × αX and µ = Xα×Xα.

Then for each x ∈ αX, xλα = (αX)α = Xα = xβ, so λα = β, and for each
x ∈ Xα, αµx = α(Xα) = αX = βx and βµx = β(Xα) = αX = βx. Hence
β = αµ = βµ.

Hence β < α, so α is not minimal.
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By Lemma 1.2, we have the following corollary.

Corollary 2.12. Let α ∈ B(X)\{0}. Then α is minimal in B(X)\{0} with
respect to ≤ if and only if W (α) = {∅, αX}.

We know that if α ∈ B(X) is row [column] minimal, then α is row [column]
reduced and Rα [Cα] = ∅. Thus from Theorem 2.10, we have the following corol-
lary.

Corollary 2.13. Let α ∈ B(X).
(1) If α is row minimal and αX = X, then α is maximal with respect to ≤.
(2) If α is column minimal and Xα = X, then α is maximal with respect to ≤.

The next corollary is obtained directly from Theorem 2.3.

Corollary 2.14. The following statements about B(X) hold.
(1) For α ∈ B(X), α is maximal with respect to ≤ if and only if α−1 is

maximal with respect to ≤.
(2) For α ∈ B(X)\{0}, α is minimal in B(X)\{0} with respect to ≤ if and

only if α−1 is minimal in B(X)\{0} with respect to ≤.

2.3 Left and right compatible elements

By Lemma 1.5(3), we have that every element of B(X) is both left and right
compatible with respect to ⊆.

In the following two proposition, we provide necessary and sufficient conditions
for elements in B(X) to be left compatible and right compatible with respect to ≤.

Proposition 2.15. Let α ∈ B(X). Then α is left compatible with respect to ≤
on B(X) if and only if V (α) = P(X) where P(X) is the power set of X.

Proof. Assume that V (α) = P(X). Since V (∆X) = P(X), by Lemma 1.6 (4),
γα = ∆X for some γ ∈ B(X). Let σ, β ∈ B(X) be such that σ ≤ β. Then
σ = λβ = βµ and σ = σµ for some λ, µ ∈ B(X). Thus ασ = (αβ)µ, ασ = (ασ)µ
and ασ = αλβ = αλ∆Xβ = αλγ(αβ) which imply that ασ ≤ αβ. Hence α is left
compatible.

On the other hand, suppose that α is left compatible. To show that V (α) =
P(X), it suffices to prove that {a} ∈ V (α) for all a ∈ X. Let a ∈ X. Define
σ ∈ B(X) by σ = X × {a}. By Lemma 1.8, σ is an idempotent of B(X),
so σ ≤ ∆X . By assumption, ασ ≤ α∆X = α. Then ασ = λα = αµ and
ασ = ασµ for some λ, µ ∈ B(X). Since ασ 6= 0 and V (ασ) ⊆ V (σ) = {∅, {a}},
V (ασ) = {∅, {a}}. But V (ασ) = V (λα) ⊆ V (α), thus {a} ∈ V (α).

Proposition 2.16. Let α ∈ B(X). Then α is right compatible with respect to ≤
on B(X) if and only if W (α) = P(X).

Proof. The proof can be given similarly to that of Proposition 2.15.
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