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Abstract : Let %(X) denote the semigroup of binary relations on a set X under
composition. We study two natural partial orders on %(X) and characterize when
two elements of #(X) are related under these orders. The maximality, minimality,
left compatibility and right compatibility of elements are considered with respect
to each order.
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1 Introduction

In 1986, Mitsch [6] defined the partial order < on any semigroup S as follows: for
a,bes,
a<b<= a=axb=by and a = ay for some z,y € S*,

which is called the natural partial order on S.

Next, Kowol and Mitsch [4] studied the natural partial order on .7 (X), the
semigroup of all transformations of a set X. Marques-Smith and Sullivan [5]
extended that work to &7 (X), the semigroup of all partial transformations of
X. They also determined when two elements in .7 (X) are related under < and
compared < with another natural partial order C on #.7(X). Moreover, they
described the maximal, minimal, left compatible and right compatible elements
of 7 (X) with respect to each order. In this paper, we study two natural
partial orders < and C on #(X), the semigroup of binary relations on a set X
under composition and characterize when two elements are related under these
two orders. Furthermore, we determine the maximal, minimal, left compatible
and right compatible elements of #(X) with respect to each order.

1.1 Preliminaries

Let S be a semigroup and E(S) denote the set of all idempotents of S. The Green’s
relations £ and R on a semigroup S are defined by alb <= S'a = S'b and aRb
<= aS' =bS! for all a,b € S.
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Let < be any partial order on a semigroup S. An element a of S is called left
[right] compatible with respect to < on S if for all x,y € S, < y implies ax < ay
[xa < yal.

In the remainder, the relation < given on any semigroup S always means the
natural partial order on S defined previously, that is, for any a,b € S,

a<b<= a=azb=by and a = ay for some z,y € S*.

In this case, we have that a = (zb)y = x(by) = za.

Lemma 1.1. ([2]). Let S be a semigroup and a,b € S. Ifa < b and (a,b) € LUR,
then a = b.

1.2 On the semigroup of binary relations

Let X be a set. From the definition of #(X), we have
B(X)={a|al X x X}
and for o, 3 € B(X),
af ={(z,y) € X x X | (z,2) € a and (z,y) € B for some z € X}.

Then the empty relation is the zero of %(X) which is denoted by 0. For Y C X,
let

Ay ={(y,y) |y eY}
and
Vy = {(l‘,y) | T,y € Y}7

so Ax and Vx are the identity and universal relations on X, respectively.
In particular, for a finite set X = {aq,as,...,a,}, we can represent a relation
a € B(X) with the n x n Boolean matrix A defined by

ij = .
0 otherwise.

A= { 1 if (a;,a5) € a,

For example, if « = {(a1,a1), (a1, a2), (a2, a1), (a3, a2), (as,a3)} € B(X) with X =
{al,az,ag}, then

Q

I
O = =
—_ O
_= o O

Let o € #(X). For z € X, let

ra={ye X | (z,y) €a}
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and
ar={ye X | (y,z) € a}

and they are called a row and a column of «, respectively. For A C X, set

Aa = Uxa and oA = Uam.

z€A T€A

Then A = Aa~!. Let
V(ia)={Aa | AC X}

and
W(a)={aA | AC X}.

Lemma 1.2. ([8]). Let o € B(X). Then V(a) and W(«) are anti-isomorphic
lattices.

We say that a relation o € #B(X) is row reduced if for all x € X and A C X,
() # za = A« implies that z € A and column reduced if for all zx € X and A C X,
) # ax = aA implies that x € A.

A relation o € #(X) is row minimal if for allz € X and A C X, 0§ # za = A«
implies that {z} = A and column minimal if for all x € X and A C X, ) # ax =
aA implies that {x} = A. Observe that if « is row [column] minimal, then it is
row [column| reduced.

Example 1.3. Let

= O
e i )
_ o o =
oo RO

Then « is column reduced but not column minimal.

Let o, 8 € #(X). We say that § is a row descendant of « if there exist a,b € X
with a # b and a nonempty subset A of X such that A C aa C ba, b3 = ba\A
and za = 8 for all © # b. A column descendant of « is defined in a dual manner.
Set

R ={p | B is a row descendant of a}

and
C* = {p | B is a column descendant of a}.

It is easy to see that if a is row [column]| minimal, then R*[C*] = ().
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Example 1.4. Let

c oo
— o o R
— = e
co o~

Then

and

The following lemma is easily shown.

Lemma 1.5. Let o, 8,7 € B(X) . Then

(aHt=aand (af)~! =pta™t,
a C B implies yoao C 3 and ay C B,
a C B if and only if =1 C 371,

a C B if and only if 8’ C .

Lemma 1.6. ([7]). Let o, € B(X) and A C X. Then
(1) A(@f) = (Aa)3 and (af)A = a(5A),

(2) V(aB) S V(B),

(3) W(aB) € W(a),

(4) aLp if and only if V(o) =V (0),
(5) aRB if and only if W(«a) = W(5).

Lemma 1.7. Let a € #(X). Then the following statements are equivalent.
(1) o? = a.
(2) For every A € V(a), Aa = A.
(3) For every A € W(a), aA = A.

Proof. (1) = (2) Assume that a? = a. Let A € V(«), Then there exists B C X
such that Ba = A. Thus Aa = Baa = Ba = A.

(2) = (1) For z € X, za € V(a). By assumption, za? = zaa = za.
Hence o? = a.

(1) <= (3) can be proved similarly. O

Lemma 1.8. Let A and B be nonempty subsets of X such that ANB # (. Define
a=AxB. Then V(a) = {0, B} and W(a) = {0, A}, hence a is an idempotent
of B(X).
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Proof. By the definition of a, acc = B for all a € A and aa = () for all a € X\ A.
Then V(a) = {0, B}. Since AN B # (), we have

Ba-Uxa-( U za)U( U :coz)-BU(D—B.
zeB r€ANB z€B\A

By Lemma 1.7, « is an idempotent. O

2 Main results

2.1 Natural partial orders on #(X)

Regarding elements of (X)) as subsets of X x X, C is a natural partial order of
P(X), that is,

a C B« forevery (z,y) € X x X, (z,y) € o implies (z,y) € 5.

The next proposition is evident.

Proposition 2.1. Let o, § € #(X). Then the following statements are equivalent.
(1) a CB.
(2) aX C X and for every x € aX, za C zf.
(3) Xa C X3 and for every y € Xa, ay C By.

From Proposition 2.1, we have

Corollary 2.2. Let a,3 € B(X). Then
(1) a =B if and only if X = X and for every x € aX, za = 0,
(2) a =g if and only if Xa = X0 and for every x € Xa, azx = fx.

Recall that the natural partial order < defined on #(X) is as follows:
a< <= a=\3=puand a = au for some A\, u € A(X).

In this case, we also have a = A\a.

In the next theorem, we give a characterization when «, 8 € #(X) are com-
parable under <.

Theorem 2.3. Let o, 3 € B(X). Then the following statements are equivalent:
(1) a < 8.
(2) a”t <7t
(3) V(a) CV(B),W(a) CW(B) and for all A, B € X, Ao = Bf3 implies Aa
= Ba and aA = B implies aA = aB.
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Proof. (1)==(2) Assume that o« < 8. Then there exist A\, u € %(X) such that
a=\3 = pBpand a = ap = Aa. By Lemma 1.5 (2), we have a=! = g7IA\"! =
w17t and ot = a AL Hence a~! < g1,

(2)==(3) Assume that a=! < B71. Then there are \,u € Z(X) such
that a ! = A8t = lpand o' =a lp= Ao, s0oa =Bt =!8 and
a=pta=a)"l. By Lemma 1.6 (2) and (3), we have

V(a) = V(') € V(8) and W(a) = W(BA™") C W(B).

Let A,B C X. If Ao = Bf, then Ao = Aal™! = BA\"! = Ba. If A = 8B,
then aA = p~'aA = p~18B = aB. Hence (3) holds.

(3)=(1) Assume that (3) holds. Then for each x € X, za € V(a) C V(5)
and ar € W(a) C W(B). Then there exist A,, B, C X such that za = A,0
and ax = (B,. By assumption, we have xa = A,a and ax = aB,. Define
A€ B(X)by xh= A, for all x € X and ux = B, for all x € X. Then for every
re X,

xA3 = A0 =za and

apr = aB, = ar = B, = Pux.
This shows that « = A§ and o = ap = Bu, so a < 5. O
The following example shows that < and C are distinct.
Example 2.4. Suppose that X = {a1,a2,a3} and let

1 00 1
a=1{0 0 0|,86=10 and v = .
010 0

Clearly, « C (. Since aia = {a1} € V(o) and {a1} ¢ V(8), by Theorem 2.3
a £ 3. We can check that v < 8 but v € .

= o O
O~
O~ =
o o o
S~

~—

2.2 Maximal and minimal elements

Since 0 and Vx are the minimum and maximum elements of (#(X), C), respec-
tively. The following proposition determines the minimal elements in %(X)\{0}
and the maximal element in Z(X)\{Vx} with respect to C and the proof is
obvious.

Proposition 2.5. The following statements about Z(X) hold.

(1) For a € B(X)\{0}, « is minimal in (B(X)\{0}, C) if and only if |a| = 1.

(2) For a € Z(X)\{Vx}, a is mazimal in (B(X)\{Vx}, Q) if and only if o/
is minimal in (B(X)\{0}, C).

(3) For a € B(X)\{Vx}, a is mazimal in (B(X)\{Vx}, Q) if and only if
a~t is maximal in (B(X)\{Vx}, Q).

(4) For a € B(X)\{0}, v is minimal in (B(X)\{0}, Q) if and only if o=t is
minimal in (B(X)\{0}, C).
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To obtain the theorem concerning the maximal elements of %(X) with respect
to <, the following series of lemmas will be used.

Lemma 2.6. Let o, € #(X). If B € R* N C%, then the following state-
ments hold.

(1) There exist a,b,c,d € X with a # b and ¢ # d such that
{d} Caa Cba, {b} C acC ad and = a\{(b,d)}.
(2) aX =X and Xa = Xp.

Proof. Assume that § € R* N C®. Since 8 € R, there exist a,b € X with a # b
and a nonempty subset A of X such that

A Caa Cba, bf=ba\ A and za = zp for all x € X\{b}.

Claim that 8 = o\ ({b} x A). Let (z,y) € . Then y € z0.

Case 1: © = b. Then y € b83. Since b3 = ba\ A, we have y € ba and y ¢ A. So
(x,y) € a, hence (x,y) € a\({b} x A).

Case 2: = # b. Since 20 = za for all © # b, y € za. Thus (z,y) € a\({b} x A).
Hence 8 C o\({b} x A).

For the reverse inclusion, let (z,y) € a\({b} x A). Then y € xa and (z,y) ¢
{b} x A.

Case 1: x =b. Then y € baw and y ¢ A, so y € ba\A. Since ba\A = bj, y € bS.
Hence (z,y) € 5.

Case 2: © #b. Then y € za =z, so (z,y) € (.

Therefore o\({b} x A) C 3. So we have the claim.

Since g € C%, there are ¢,d € X with ¢ # d and a nonempty subset B of X
such that

B CacCad, 3d=ad\B and az = gz for all € X\{d}.

We can prove similarly that 5 = a\(B x {d}).

Since A C ba and B C ad, {b} x A C a and B x {d} C «, respectively.
But 8 C a\({b} x A) and 8 = a\(B x {d}), so we have B = {b} and A = {d}.
Therefore § = a\{(b,d)}. But {b} C ad, so we have a = U {(b,d)}. Since
{b} = B C ac C ad, {(b,¢),(b,d)} C a. Then {(b,c)} C a\{(b,d)} = 3 and so
b e X. Thus

aX =(BU{(b,d}X =X U{b} =BX.

Similarly, we can show that Xa = X3, as required. O
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Lemma 2.7. Let o € B(X). If « is a mazimal element with respect to <, then
R*NC>=.

Proof. Assume that R* N C* # (). Let 3 € R* N C®. From the proof of Lemma
2.6, there exist a,b,c,d € X with a # b and ¢ # d such that {d} C aa C ba,
{b} C ac C ad, bp = ba\{d}, fd = ad\{b}, 28 = za for all x # b, By = ay for all
y#d, X =aX and X = Xa. Then

{a,b} =afUbB = aa Uba\{d} = ba

and
B{c,d} = fcU fBd = acU ad\{b} = ad.

Define A, p € #(X) by

u}\{{a,b} if u=0o,

u if uweaX\{b}
and
v = {c,d} ?f v=d,
v if ve Xa\{d}.
Then
Buv=pv=cav and auv=oav forallve Xa\d
and

Bud = p{c,d} =ad and aud = afc,d} = ad.
We conclude that o = B = ap. Also, we have that

uAB = uf =ua for all u € aX\b and bAG = {a,b}s = ba.

Thus o = AB. This proves that « < 8. From Lemma 2.6 (1), we have o # 3.
Hence a is not maximal. O

Lemma 2.8. Let o € Z(X). If a is mazimal with respect to <, then either « is
row reduced and aX = X or « is column reduced and Xa = X.

Proof. Assume that the converse condition is not true.

Case 1: X ¢ X and Xa & X. Then there exist a,b € X such that a ¢ aX
and b ¢ Xa. Define 8, \,p € B(X) by =aU{(a,b)}, A = Ansx and p = Ax,.
Clearly that « = au and a # 3. Since X = aX U{a} and X = Xa U {b},
a=AyxfB =3 and a = fAx, = Bu. Hence o« = \G = Bu and a = au, we
deduce that a < . Hence a is not maximal.

Case 2: aX ¢ X and « is not column reduced. Then there exist a,b € X and
a nonempty subset B of X such that a ¢ aX, ) # ab = aB and b ¢ B. Define
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B e B(X)by 8=aU{(a,b)}. Then X = aX U{a}, Xf = Xa, 23 = za for all
x # a and By = ay for all y # b. Thus 6B = aB = ab.
Define A\, € #A(X) by A = A,x and

| B if y=2,
= Yy if ye Xa\{b}.

Then we have
o = AozXB = Aﬁ’
Buy = Py = ay = apy for all y € Xa\{b}

and
Bub = B = ab = aB = aub.

Thus a = A3 = B and o = au. Hence a < 3, so « is not maximal.
Case 3: « is not row reduced and Xo & X. Its proof is similar to the Case 2.

Case 4: « is neither row nor column reduced. Then there are a,b € X and
nonempty subsets A, B of X such that aa = Aa,ab = aB,a ¢ A and b ¢ B.
Define 8 € #(X) by

a\{(a,b)} if (a,b) € a.

Then BX = aX, X3 = Xa and a # 3. By the definition of 3, we get that
xf = za for all x # a and By = ay for all y # b. Define A\, u € B(X) by

A ifz=a,
TA = ]
{m if x € aX\{a}

5o { aU{(a,b)} if (a,b) ¢ a,

and

_} B ify=y,
PI=Yy ity e Xa\[b).
If x € aX\{a}, then z\3 = 28 = za. And a\f = AS = Aa = aa. Thus a = AS.
If y € Xa\{b}, then Suy = By = ay = apy. Since fub = BB = aB = ab and
apb = aB = ab, we deduce that a = fu = ap. These imply that a < 3, hence «
is not maximal.

Therefore the lemma is proved. O

Lemma 2.9. Let o € B(X). If R* N C* = 0 and either « is row reduced and
aX = X or a is column reduced and Xa = X, then « is mazximal with respect
to <.
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Proof. Let § € A(X) be such that o < . To prove that 8 C «, let z € X.
First, assume that « is row reduced and aX = X. Since aX = X, za # 0. By
Theorem 2.3, we have za € V(a) C V(8). Then za = A for some A C X.
Again by Theorem 2.3, xa« = Aa. Since « is row reduced, we have x € A, and so
xfB C AB = za. Hence 8 C a. If o is column reduced and Xa = X, we can show
similarly that 8 C a.

Next, suppose that 8 # «. Since 8 C «, there exists a € X such that a8 & ac.
Set A = aa\af. Since aa € V(«), by Theorem 2.3, aac = Bf for some B C X,
hence aae = Ba. Let ¢ € A. Then ¢ € aa, so ¢ € bf for some b € B since ac = Bf3.
By 0 C «, we have

ce bl Cba C Ba=aa.

Since {a,b} C ac and ¢ ¢ a8, fc & ac. Let C' = ac\Be. Then ac = D for some
D C X since ac € W(a) C W(B). So ac = aD by Theorem 2.3. Since a ¢ e,
a € C. And since a € ac = 8D, a € (d for some d € D. Hence

a€ BdCadC aD = ac.

Define p = a\{(a,d)}. From the above proof, we have that p € R* N C* which is
a contradiction. Hence 8 = a. O

Theorem 2.10. Let o € B(X). Then « is mazimal with respect to < if and only
if a satisfies the following two conditions.
(1) a is row reduced and aX = X or « is column reduced and Xa = X.

(2) R*NnC* = 0.
Proof. 1t follows directly from Lemma 2.7, Lemma 2.8 and Lemma 2.9. U

The following theorem determines the minimal elements of Z(X) with respect
to <.

Theorem 2.11. Let o € B(X)\{0}. Then « is minimal in B(X)\{0} with
respect to < if and only if V(a) = {0, Xa}.

Proof. Assume that V(a) = {0, Xa}. Let 8 € #B(X)\{0} be such that 3 < a.
By Theorem 2.3(3), V(8) C V(«). Since 8 # 0, V(8) = V(a). Hence a = 3 by
Lemma 1.6(4) and Lemma 1.1.

Conversely, suppose that |V (a)| > 2. Define 8 € #(X) by 8 = aX x Xa.
Then 0 # 8 and V(8) = {0, Xa}, so a # 5. Define A\, u € B(X) by

A=aX xaX and p = Xa x Xa.

Then for each z € aX, zda = (aX)a = Xa = z0, so Aa = 8, and for each
z € Xa, aur = a(Xa) = aX = Bz and fuzr = f(Xa) = aX = fx. Hence
B = ap=pp.

Hence < «a, so « is not minimal. O
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By Lemma 1.2, we have the following corollary.

Corollary 2.12. Let a« € Z(X)\{0}. Then « is minimal in B(X)\{0} with
respect to < if and only if W(a) = {0, aX}.

We know that if & € Z(X) is row [column] minimal, then « is row [column]
reduced and R* [C*] = ). Thus from Theorem 2.10, we have the following corol-
lary.

Corollary 2.13. Let o € B(X).
(1) If « is row minimal and aX = X, then « is mazimal with respect to <.
(2) If v is column minimal and Xa = X, then « is mazimal with respect to <.

The next corollary is obtained directly from Theorem 2.3.

Corollary 2.14. The following statements about #(X) hold.
(1) For a € B(X), a is mazimal with respect to < if and only if a= " is
maximal with respect to <.
(2) For a € B(X)\{0}, v is minimal in B(X)\{0} with respect to < if and
only if o=t is minimal in B(X)\{0} with respect to <.

2.3 Left and right compatible elements

By Lemma 1.5(3), we have that every element of #(X) is both left and right
compatible with respect to C.

In the following two proposition, we provide necessary and sufficient conditions
for elements in Z(X) to be left compatible and right compatible with respect to <.

Proposition 2.15. Let a € #(X). Then « is left compatible with respect to <
on B(X) if and only if V() = P(X) where P(X) is the power set of X.

Proof. Assume that V(a) = Z(X). Since V(Ax) = #(X), by Lemma 1.6 (4),
ya = Ax for some v € #(X). Let 0,6 € B(X) be such that 0 < 3. Then
o= M3 = fp and o = op for some A\, p € B(X). Thus ac = (af)y, ac = (ao)p
and ac = aAf = a A x [ = aly(af) which imply that o < a5, Hence « is left
compatible.

On the other hand, suppose that « is left compatible. To show that V(«) =
Z(X), it suffices to prove that {a} € V(a) for all « € X. Let a € X. Define
o € B(X) by 0 = X x {a}. By Lemma 1.8, ¢ is an idempotent of Z(X),
so 0 < Ax. By assumption, ac < aAx = a. Then ac = Ao = apu and
ac = aop for some A, pu € B(X). Since ao # 0 and V(ao) C V(o) = {0,{a}},
V(ao) ={0,{a}}. But V(ao) =V (Aa) C V(«a), thus {a} € V(). O

Proposition 2.16. Let o € B(X). Then « is right compatible with respect to <
on B(X) if and only if W(a) = 2(X).

Proof. The proof can be given similarly to that of Proposition 2.15. O
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