Natural Partial Orders on the Semigroup of Binary Relations

C. Namnak and P. Preechasilp

Abstract

Let $\mathscr{B}(X)$ denote the semigroup of binary relations on a set X under composition. We study two natural partial orders on $\mathscr{B}(X)$ and characterize when two elements of $\mathscr{B}(X)$ are related under these orders. The maximality, minimality, left compatibility and right compatibility of elements are considered with respect to each order.

Keywords : natural partial order, the semigroup of binary relations
2000 Mathematics Subject Classification : 20M20, 06A06

1 Introduction

In 1986, Mitsch [6] defined the partial order \leq on any semigroup S as follows: for $a, b \in S$,

$$
a \leq b \Longleftrightarrow a=x b=b y \text { and } a=a y \text { for some } x, y \in S^{1},
$$

which is called the natural partial order on S.
Next, Kowol and Mitsch [4] studied the natural partial order on $\mathscr{T}(X)$, the semigroup of all transformations of a set X. Marques-Smith and Sullivan [5] extended that work to $\mathscr{P} \mathscr{T}(X)$, the semigroup of all partial transformations of X. They also determined when two elements in $\mathscr{P} \mathscr{T}(X)$ are related under \leq and compared \leq with another natural partial order \subseteq on $\mathscr{P} \mathscr{T}(X)$. Moreover, they described the maximal, minimal, left compatible and right compatible elements of $\mathscr{P} \mathscr{T}(X)$ with respect to each order. In this paper, we study two natural partial orders \leq and \subseteq on $\mathscr{B}(X)$, the semigroup of binary relations on a set X under composition and characterize when two elements are related under these two orders. Furthermore, we determine the maximal, minimal, left compatible and right compatible elements of $\mathscr{B}(X)$ with respect to each order.

1.1 Preliminaries

Let S be a semigroup and $E(S)$ denote the set of all idempotents of S. The Green's relations \mathcal{L} and \mathcal{R} on a semigroup S are defined by $a \mathcal{L} b \Longleftrightarrow S^{1} a=S^{1} b$ and $a \mathcal{R} b$ $\Longleftrightarrow a S^{1}=b S^{1}$ for all $a, b \in S$.

Let \leq be any partial order on a semigroup S. An element a of S is called left [right] compatible with respect to \leq on S if for all $x, y \in S, x \leq y$ implies $a x \leq a y$ $[x a \leq y a]$.

In the remainder, the relation \leq given on any semigroup S always means the natural partial order on S defined previously, that is, for any $a, b \in S$,

$$
a \leq b \Longleftrightarrow a=x b=b y \text { and } a=a y \text { for some } x, y \in S^{1}
$$

In this case, we have that $a=(x b) y=x(b y)=x a$.

Lemma 1.1. ([2]). Let S be a semigroup and $a, b \in S$. If $a \leq b$ and $(a, b) \in \mathcal{L} \cup \mathcal{R}$, then $a=b$.

1.2 On the semigroup of binary relations

Let X be a set. From the definition of $\mathscr{B}(X)$, we have

$$
\mathscr{B}(X)=\{\alpha \mid \alpha \subseteq X \times X\}
$$

and for $\alpha, \beta \in \mathscr{B}(X)$,

$$
\alpha \beta=\{(x, y) \in X \times X \mid(x, z) \in \alpha \text { and }(z, y) \in \beta \text { for some } z \in X\} .
$$

Then the empty relation is the zero of $\mathscr{B}(X)$ which is denoted by 0 . For $Y \subseteq X$, let

$$
\Delta_{Y}=\{(y, y) \mid y \in Y\}
$$

and

$$
\nabla_{Y}=\{(x, y) \mid x, y \in Y\}
$$

so Δ_{X} and ∇_{X} are the identity and universal relations on X, respectively.
In particular, for a finite set $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, we can represent a relation $\alpha \in \mathscr{B}(X)$ with the $n \times n$ Boolean matrix A defined by

$$
A_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, a_{j}\right) \in \alpha \\ 0 & \text { otherwise }\end{cases}
$$

For example, if $\alpha=\left\{\left(a_{1}, a_{1}\right),\left(a_{1}, a_{2}\right),\left(a_{2}, a_{1}\right),\left(a_{3}, a_{2}\right),\left(a_{3}, a_{3}\right)\right\} \in \mathscr{B}(X)$ with $X=$ $\left\{a_{1}, a_{2}, a_{3}\right\}$, then

$$
\alpha=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Let $\alpha \in \mathscr{B}(X)$. For $x \in X$, let

$$
x \alpha=\{y \in X \mid(x, y) \in \alpha\}
$$

and

$$
\alpha x=\{y \in X \mid(y, x) \in \alpha\}
$$

and they are called a row and a column of α, respectively. For $A \subseteq X$, set

$$
A \alpha=\bigcup_{x \in A} x \alpha \text { and } \alpha A=\bigcup_{x \in A} \alpha x
$$

Then $\alpha A=A \alpha^{-1}$. Let

$$
V(\alpha)=\{A \alpha \mid A \subseteq X\}
$$

and

$$
W(\alpha)=\{\alpha A \mid A \subseteq X\}
$$

Lemma 1.2. ([8]). Let $\alpha \in \mathscr{B}(X)$. Then $V(\alpha)$ and $W(\alpha)$ are anti-isomorphic lattices.

We say that a relation $\alpha \in \mathscr{B}(X)$ is row reduced if for all $x \in X$ and $A \subseteq X$, $\emptyset \neq x \alpha=A \alpha$ implies that $x \in A$ and column reduced if for all $x \in X$ and $A \subseteq X$, $\emptyset \neq \alpha x=\alpha A$ implies that $x \in A$.

A relation $\alpha \in \mathscr{B}(X)$ is row minimal if for all $x \in X$ and $A \subseteq X, \emptyset \neq x \alpha=A \alpha$ implies that $\{x\}=A$ and column minimal if for all $x \in X$ and $A \subseteq X, \emptyset \neq \alpha x=$ αA implies that $\{x\}=A$. Observe that if α is row [column] minimal, then it is row [column] reduced.

Example 1.3. Let

$$
\alpha=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Then α is column reduced but not column minimal.

Let $\alpha, \beta \in \mathscr{B}(X)$. We say that β is a row descendant of α if there exist $a, b \in X$ with $a \neq b$ and a nonempty subset A of X such that $A \subseteq a \alpha \subseteq b \alpha, b \beta=b \alpha \backslash A$ and $x \alpha=x \beta$ for all $x \neq b$. A column descendant of α is defined in a dual manner. Set

$$
R^{\alpha}=\{\beta \mid \beta \text { is a row descendant of } \alpha\}
$$

and

$$
C^{\alpha}=\{\beta \mid \beta \text { is a column descendant of } \alpha\}
$$

It is easy to see that if α is row [column] minimal, then $R^{\alpha}\left[C^{\alpha}\right]=\emptyset$.

Example 1.4. Let

$$
\alpha=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Then

$$
R^{\alpha}=\left\{\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\right\}
$$

and

$$
C^{\alpha}=\left\{\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]\right\} .
$$

The following lemma is easily shown.
Lemma 1.5. Let $\alpha, \beta, \gamma \in \mathscr{B}(X)$. Then
(1) $\left(\alpha^{\prime}\right)^{\prime}=\alpha$,
(2) $\left(\alpha^{-1}\right)^{-1}=\alpha$ and $(\alpha \beta)^{-1}=\beta^{-1} \alpha^{-1}$,
(3) $\alpha \subseteq \beta$ implies $\gamma \alpha \subseteq \gamma \beta$ and $\alpha \gamma \subseteq \beta \gamma$,
(4) $\alpha \subseteq \beta$ if and only if $\alpha^{-1} \subseteq \beta^{-1}$,
(5) $\alpha \subseteq \beta$ if and only if $\beta^{\prime} \subseteq \alpha^{\prime}$.

Lemma 1.6. ([7]). Let $\alpha, \beta \in \mathscr{B}(X)$ and $A \subseteq X$. Then
(1) $A(\alpha \beta)=(A \alpha) \beta$ and $(\alpha \beta) A=\alpha(\beta A)$,
(2) $V(\alpha \beta) \subseteq V(\beta)$,
(3) $W(\alpha \beta) \subseteq W(\alpha)$,
(4) $\alpha \mathcal{L} \beta$ if and only if $V(\alpha)=V(\beta)$,
(5) $\alpha \mathcal{R} \beta$ if and only if $W(\alpha)=W(\beta)$.

Lemma 1.7. Let $\alpha \in \mathscr{B}(X)$. Then the following statements are equivalent.
(1) $\alpha^{2}=\alpha$.
(2) For every $A \in V(\alpha), A \alpha=A$.
(3) For every $A \in W(\alpha), \alpha A=A$.

Proof. (1) $\Longrightarrow(2)$ Assume that $\alpha^{2}=\alpha$. Let $A \in V(\alpha)$, Then there exists $B \subseteq X$ such that $B \alpha=A$. Thus $A \alpha=B \alpha \alpha=B \alpha=A$.
$(2) \Longrightarrow(1)$ For $x \in X, x \alpha \in V(\alpha)$. By assumption, $x \alpha^{2}=x \alpha \alpha=x \alpha$. Hence $\alpha^{2}=\alpha$.
$(1) \Longleftrightarrow(3)$ can be proved similarly.

Lemma 1.8. Let A and B be nonempty subsets of X such that $A \cap B \neq \emptyset$. Define $\alpha=A \times B$. Then $V(\alpha)=\{\emptyset, B\}$ and $W(\alpha)=\{\emptyset, A\}$, hence α is an idempotent of $\mathscr{B}(X)$.

Proof. By the definition of $\alpha, a \alpha=B$ for all $a \in A$ and $a \alpha=\emptyset$ for all $a \in X \backslash A$. Then $V(\alpha)=\{\emptyset, B\}$. Since $A \cap B \neq \emptyset$, we have

$$
B \alpha=\bigcup_{x \in B} x \alpha=\left(\bigcup_{x \in A \cap B} x \alpha\right) \bigcup\left(\bigcup_{x \in B \backslash A} x \alpha\right)=B \cup \emptyset=B
$$

By Lemma 1.7, α is an idempotent.

2 Main results

2.1 Natural partial orders on $\mathscr{B}(X)$

Regarding elements of $\mathscr{B}(X)$ as subsets of $X \times X, \subseteq$ is a natural partial order of $\mathscr{B}(X)$, that is,

$$
\alpha \subseteq \beta \Longleftrightarrow \text { for every }(x, y) \in X \times X,(x, y) \in \alpha \text { implies }(x, y) \in \beta
$$

The next proposition is evident.
Proposition 2.1. Let $\alpha, \beta \in \mathscr{B}(X)$. Then the following statements are equivalent.
(1) $\alpha \subseteq \beta$.
(2) $\alpha X \subseteq \beta X$ and for every $x \in \alpha X, x \alpha \subseteq x \beta$.
(3) $X \alpha \subseteq X \beta$ and for every $y \in X \alpha, \alpha y \subseteq \beta y$.

From Proposition 2.1, we have
Corollary 2.2. Let $\alpha, \beta \in \mathscr{B}(X)$. Then
(1) $\alpha=\beta$ if and only if $\alpha X=\beta X$ and for every $x \in \alpha X, x \alpha=x \beta$,
(2) $\alpha=\beta$ if and only if $X \alpha=X \beta$ and for every $x \in X \alpha, \alpha x=\beta x$.

Recall that the natural partial order \leq defined on $\mathscr{B}(X)$ is as follows:
$\alpha \leq \beta \Longleftrightarrow \alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$ for some $\lambda, \mu \in \mathscr{B}(X)$.
In this case, we also have $\alpha=\lambda \alpha$.
In the next theorem, we give a characterization when $\alpha, \beta \in \mathscr{B}(X)$ are comparable under \leq.

Theorem 2.3. Let $\alpha, \beta \in \mathscr{B}(X)$. Then the following statements are equivalent:
(1) $\alpha \leq \beta$.
(2) $\alpha^{-1} \leq \beta^{-1}$.
(3) $V(\alpha) \subseteq V(\beta), W(\alpha) \subseteq W(\beta)$ and for all $A, B \in X, A \alpha=B \beta$ implies $A \alpha$ $=B \alpha$ and $\alpha A=\beta B$ implies $\alpha A=\alpha B$.

Proof. (1) $\Longrightarrow(2)$ Assume that $\alpha \leq \beta$. Then there exist $\lambda, \mu \in \mathscr{B}(X)$ such that $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu=\lambda \alpha$. By Lemma 1.5 (2), we have $\alpha^{-1}=\beta^{-1} \lambda^{-1}=$ $\mu^{-1} \beta^{-1}$ and $\alpha^{-1}=\alpha^{-1} \lambda^{-1}$. Hence $\alpha^{-1} \leq \beta^{-1}$.
$(2) \Longrightarrow(3)$ Assume that $\alpha^{-1} \leq \beta^{-1}$. Then there are $\lambda, \mu \in \mathscr{B}(X)$ such that $\alpha^{-1}=\lambda \beta^{-1}=\beta^{-1} \mu$ and $\alpha^{-1}=\alpha^{-1} \mu=\lambda \alpha^{-1}$, so $\alpha=\beta \lambda^{-1}=\mu^{-1} \beta$ and $\alpha=\mu^{-1} \alpha=\alpha \lambda^{-1}$. By Lemma 1.6 (2) and (3), we have

$$
V(\alpha)=V\left(\mu^{-1} \beta\right) \subseteq V(\beta) \text { and } W(\alpha)=W\left(\beta \lambda^{-1}\right) \subseteq W(\beta)
$$

Let $A, B \subseteq X$. If $A \alpha=B \beta$, then $A \alpha=A \alpha \lambda^{-1}=B \beta \lambda^{-1}=B \alpha$. If $\alpha A=\beta B$, then $\alpha A=\mu^{-1} \alpha A=\mu^{-1} \beta B=\alpha B$. Hence (3) holds.
$(3) \Longrightarrow(1)$ Assume that (3) holds. Then for each $x \in X, x \alpha \in V(\alpha) \subseteq V(\beta)$ and $\alpha x \in W(\alpha) \subseteq W(\beta)$. Then there exist $A_{x}, B_{x} \subseteq X$ such that $x \alpha=A_{x} \beta$ and $\alpha x=\beta B_{x}$. By assumption, we have $x \alpha=A_{x} \alpha$ and $\alpha x=\alpha B_{x}$. Define $\lambda, \mu \in \mathscr{B}(X)$ by $x \lambda=A_{x}$ for all $x \in X$ and $\mu x=B_{x}$ for all $x \in X$. Then for every $x \in X$,

$$
\begin{aligned}
& x \lambda \beta=A_{x} \beta=x \alpha \quad \text { and } \\
& \alpha \mu x=\alpha B_{x}=\alpha x=\beta B_{x}=\beta \mu x .
\end{aligned}
$$

This shows that $\alpha=\lambda \beta$ and $\alpha=\alpha \mu=\beta \mu$, so $\alpha \leq \beta$.
The following example shows that \leq and \subseteq are distinct.
Example 2.4. Suppose that $X=\left\{a_{1}, a_{2}, a_{3}\right\}$ and let

$$
\alpha=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \beta=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } \gamma=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Clearly, $\alpha \subseteq \beta$. Since $a_{1} \alpha=\left\{a_{1}\right\} \in V(\alpha)$ and $\left\{a_{1}\right\} \notin V(\beta)$, by Theorem 2.3 $\alpha \nless \beta$. We can check that $\gamma \leq \beta$ but $\gamma \nsubseteq \beta$.

2.2 Maximal and minimal elements

Since 0 and ∇_{X} are the minimum and maximum elements of $(\mathscr{B}(X), \subseteq)$, respectively. The following proposition determines the minimal elements in $\mathscr{B}(X) \backslash\{0\}$ and the maximal element in $\mathscr{B}(X) \backslash\left\{\nabla_{X}\right\}$ with respect to \subseteq and the proof is obvious.

Proposition 2.5. The following statements about $\mathscr{B}(X)$ hold.
(1) For $\alpha \in \mathscr{B}(X) \backslash\{0\}$, α is minimal in $(\mathscr{B}(X) \backslash\{0\}, \subseteq)$ if and only if $|\alpha|=1$.
(2) For $\alpha \in \mathscr{B}(X) \backslash\left\{\nabla_{X}\right\}, \alpha$ is maximal in $\left(\mathscr{B}(X) \backslash\left\{\nabla_{X}\right\}, \subseteq\right)$ if and only if α^{\prime} is minimal in $(\mathscr{B}(X) \backslash\{0\}, \subseteq)$.
(3) For $\alpha \in \mathscr{B}(X) \backslash\left\{\nabla_{X}\right\}, \alpha$ is maximal in $\left(\mathscr{B}(X) \backslash\left\{\nabla_{X}\right\}, \subseteq\right)$ if and only if α^{-1} is maximal in $\left(\mathscr{B}(X) \backslash\left\{\nabla_{X}\right\}, \subseteq\right)$.
(4) For $\alpha \in \mathscr{B}(X) \backslash\{0\}$, α is minimal in $(\mathscr{B}(X) \backslash\{0\}, \subseteq)$ if and only if α^{-1} is minimal in $(\mathscr{B}(X) \backslash\{0\}, \subseteq)$.

To obtain the theorem concerning the maximal elements of $\mathscr{B}(X)$ with respect to \leq, the following series of lemmas will be used.

Lemma 2.6. Let $\alpha, \beta \in \mathscr{B}(X)$. If $\beta \in R^{\alpha} \cap C^{\alpha}$, then the following statements hold.
(1) There exist $a, b, c, d \in X$ with $a \neq b$ and $c \neq d$ such that

$$
\{d\} \subseteq a \alpha \subseteq b \alpha, \quad\{b\} \subseteq \alpha c \subseteq \alpha d \text { and } \beta=\alpha \backslash\{(b, d)\}
$$

(2) $\alpha X=\beta X$ and $X \alpha=X \beta$.

Proof. Assume that $\beta \in R^{\alpha} \cap C^{\alpha}$. Since $\beta \in R^{\alpha}$, there exist $a, b \in X$ with $a \neq b$ and a nonempty subset A of X such that

$$
A \subseteq a \alpha \subseteq b \alpha, b \beta=b \alpha \backslash A \text { and } x \alpha=x \beta \text { for all } x \in X \backslash\{b\}
$$

Claim that $\beta=\alpha \backslash(\{b\} \times A)$. Let $(x, y) \in \beta$. Then $y \in x \beta$.
Case 1: $x=b$. Then $y \in b \beta$. Since $b \beta=b \alpha \backslash A$, we have $y \in b \alpha$ and $y \notin A$. So $(x, y) \in \alpha$, hence $(x, y) \in \alpha \backslash(\{b\} \times A)$.
Case 2: $x \neq b$. Since $x \beta=x \alpha$ for all $x \neq b, y \in x \alpha$. Thus $(x, y) \in \alpha \backslash(\{b\} \times A)$.
Hence $\beta \subseteq \alpha \backslash(\{b\} \times A)$.
For the reverse inclusion, let $(x, y) \in \alpha \backslash(\{b\} \times A)$. Then $y \in x \alpha$ and $(x, y) \notin$ $\{b\} \times A$.

Case 1: $x=b$. Then $y \in b \alpha$ and $y \notin A$, so $y \in b \alpha \backslash A$. Since $b \alpha \backslash A=b \beta, y \in b \beta$. Hence $(x, y) \in \beta$.

Case 2: $x \neq b$. Then $y \in x \alpha=x \beta$, so $(x, y) \in \beta$.
Therefore $\alpha \backslash(\{b\} \times A) \subseteq \beta$. So we have the claim.
Since $\beta \in C^{\alpha}$, there are $c, d \in X$ with $c \neq d$ and a nonempty subset B of X such that

$$
B \subseteq \alpha c \subseteq \alpha d, \beta d=\alpha d \backslash B \text { and } \alpha x=\beta x \text { for all } x \in X \backslash\{d\}
$$

We can prove similarly that $\beta=\alpha \backslash(B \times\{d\})$.
Since $A \subseteq b \alpha$ and $B \subseteq \alpha d,\{b\} \times A \subseteq \alpha$ and $B \times\{d\} \subseteq \alpha$, respectively. But $\beta \subseteq \alpha \backslash(\{b\} \times A)$ and $\beta=\alpha \backslash(B \times\{d\})$, so we have $B=\{b\}$ and $A=\{d\}$. Therefore $\beta=\alpha \backslash\{(b, d)\}$. But $\{b\} \subseteq \alpha d$, so we have $\alpha=\beta \cup\{(b, d)\}$. Since $\{b\}=B \subseteq \alpha c \subseteq \alpha d,\{(b, c),(b, d)\} \subseteq \alpha$. Then $\{(b, c)\} \subseteq \alpha \backslash\{(b, d)\}=\beta$ and so $b \in \beta X$. Thus

$$
\alpha X=(\beta \cup\{(b, d)\}) X=\beta X \cup\{b\}=\beta X
$$

Similarly, we can show that $X \alpha=X \beta$, as required.

Lemma 2.7. Let $\alpha \in \mathscr{B}(X)$. If α is a maximal element with respect to \leq, then $R^{\alpha} \cap C^{\alpha}=\emptyset$.

Proof. Assume that $R^{\alpha} \cap C^{\alpha} \neq \emptyset$. Let $\beta \in R^{\alpha} \cap C^{\alpha}$. From the proof of Lemma 2.6 , there exist $a, b, c, d \in X$ with $a \neq b$ and $c \neq d$ such that $\{d\} \subseteq a \alpha \subseteq b \alpha$, $\{b\} \subseteq \alpha c \subseteq \alpha d, b \beta=b \alpha \backslash\{d\}, \beta d=\alpha d \backslash\{b\}, x \beta=x \alpha$ for all $x \neq b, \beta y=\alpha y$ for all $y \neq d, \beta X=\alpha X$ and $X \beta=X \alpha$. Then

$$
\{a, b\} \beta=a \beta \cup b \beta=a \alpha \cup b \alpha \backslash\{d\}=b \alpha
$$

and

$$
\beta\{c, d\}=\beta c \cup \beta d=\alpha c \cup \alpha d \backslash\{b\}=\alpha d
$$

Define $\lambda, \mu \in \mathscr{B}(X)$ by

$$
u \lambda= \begin{cases}\{a, b\} & \text { if } u=b, \\ u & \text { if } u \in \alpha X \backslash\{b\}\end{cases}
$$

and

$$
\mu v= \begin{cases}\{c, d\} & \text { if } v=d \\ v & \text { if } v \in X \alpha \backslash\{d\}\end{cases}
$$

Then

$$
\beta \mu v=\beta v=\alpha v \quad \text { and } \quad \alpha \mu v=\alpha v \quad \text { for all } v \in X \alpha \backslash d
$$

and

$$
\beta \mu d=\beta\{c, d\}=\alpha d \quad \text { and } \quad \alpha \mu d=\alpha\{c, d\}=\alpha d .
$$

We conclude that $\alpha=\beta \mu=\alpha \mu$. Also, we have that

$$
u \lambda \beta=u \beta=u \alpha \text { for all } u \in \alpha X \backslash b \quad \text { and } \quad b \lambda \beta=\{a, b\} \beta=b \alpha
$$

Thus $\alpha=\lambda \beta$. This proves that $\alpha \leq \beta$. From Lemma 2.6 (1), we have $\alpha \neq \beta$. Hence α is not maximal.

Lemma 2.8. Let $\alpha \in \mathscr{B}(X)$. If α is maximal with respect to \leq, then either α is row reduced and $\alpha X=X$ or α is column reduced and $X \alpha=X$.

Proof. Assume that the converse condition is not true.
Case 1: $\alpha X \varsubsetneqq X$ and $X \alpha \varsubsetneqq X$. Then there exist $a, b \in X$ such that $a \notin \alpha X$ and $b \notin X \alpha$. Define $\beta, \lambda, \mu \in \mathscr{B}(X)$ by $\beta=\alpha \cup\{(a, b)\}, \lambda=\Delta_{\alpha X}$ and $\mu=\Delta_{X \alpha}$. Clearly that $\alpha=\alpha \mu$ and $\alpha \neq \beta$. Since $\beta X=\alpha X \cup\{a\}$ and $X \beta=X \alpha \cup\{b\}$, $\alpha=\Delta_{\alpha X} \beta=\lambda \beta$ and $\alpha=\beta \Delta_{X \alpha}=\beta \mu$. Hence $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$, we deduce that $\alpha<\beta$. Hence α is not maximal.

Case 2: $\alpha X \nsubseteq X$ and α is not column reduced. Then there exist $a, b \in X$ and a nonempty subset B of X such that $a \notin \alpha X, \emptyset \neq \alpha b=\alpha B$ and $b \notin B$. Define
$\beta \in \mathscr{B}(X)$ by $\beta=\alpha \cup\{(a, b)\}$. Then $\beta X=\alpha X \cup\{a\}, X \beta=X \alpha, x \beta=x \alpha$ for all $x \neq a$ and $\beta y=\alpha y$ for all $y \neq b$. Thus $\beta B=\alpha B=\alpha b$.

Define $\lambda, \mu \in \mathscr{B}(X)$ by $\lambda=\Delta_{\alpha X}$ and

$$
\mu y= \begin{cases}B & \text { if } y=b \\ y & \text { if } y \in X \alpha \backslash\{b\}\end{cases}
$$

Then we have

$$
\begin{gathered}
\alpha=\Delta_{\alpha X} \beta=\lambda \beta \\
\beta \mu y=\beta y=\alpha y=\alpha \mu y \quad \text { for all } y \in X \alpha \backslash\{b\}
\end{gathered}
$$

and

$$
\beta \mu b=\beta B=\alpha b=\alpha B=\alpha \mu b .
$$

Thus $\alpha=\lambda \beta=\beta \mu$ and $\alpha=\alpha \mu$. Hence $\alpha<\beta$, so α is not maximal.
Case 3: α is not row reduced and $X \alpha \varsubsetneqq X$. Its proof is similar to the Case 2.
Case 4: α is neither row nor column reduced. Then there are $a, b \in X$ and nonempty subsets A, B of X such that $a \alpha=A \alpha, \alpha b=\alpha B, a \notin A$ and $b \notin B$. Define $\beta \in \mathscr{B}(X)$ by

$$
\beta= \begin{cases}\alpha \cup\{(a, b)\} & \text { if }(a, b) \notin \alpha \\ \alpha \backslash\{(a, b)\} & \text { if }(a, b) \in \alpha .\end{cases}
$$

Then $\beta X=\alpha X, X \beta=X \alpha$ and $\alpha \neq \beta$. By the definition of β, we get that $x \beta=x \alpha$ for all $x \neq a$ and $\beta y=\alpha y$ for all $y \neq b$. Define $\lambda, \mu \in \mathscr{B}(X)$ by

$$
x \lambda= \begin{cases}A & \text { if } x=a \\ x & \text { if } x \in \alpha X \backslash\{a\}\end{cases}
$$

and

$$
\mu y= \begin{cases}B & \text { if } y=b \\ y & \text { if } y \in X \alpha \backslash\{b\} .\end{cases}
$$

If $x \in \alpha X \backslash\{a\}$, then $x \lambda \beta=x \beta=x \alpha$. And $a \lambda \beta=A \beta=A \alpha=a \alpha$. Thus $\alpha=\lambda \beta$. If $y \in X \alpha \backslash\{b\}$, then $\beta \mu y=\beta y=\alpha y=\alpha \mu y$. Since $\beta \mu b=\beta B=\alpha B=\alpha b$ and $\alpha \mu b=\alpha B=\alpha b$, we deduce that $\alpha=\beta \mu=\alpha \mu$. These imply that $\alpha<\beta$, hence α is not maximal.

Therefore the lemma is proved.

Lemma 2.9. Let $\alpha \in \mathscr{B}(X)$. If $R^{\alpha} \cap C^{\alpha}=\emptyset$ and either α is row reduced and $\alpha X=X$ or α is column reduced and $X \alpha=X$, then α is maximal with respect $t o \leq$.

Proof. Let $\beta \in \mathscr{B}(X)$ be such that $\alpha \leq \beta$. To prove that $\beta \subseteq \alpha$, let $x \in X$. First, assume that α is row reduced and $\alpha X=X$. Since $\alpha X=X, x \alpha \neq \emptyset$. By Theorem 2.3, we have $x \alpha \in V(\alpha) \subseteq V(\beta)$. Then $x \alpha=A \beta$ for some $A \subseteq X$. Again by Theorem 2.3, $x \alpha=A \alpha$. Since α is row reduced, we have $x \in A$, and so $x \beta \subseteq A \beta=x \alpha$. Hence $\beta \subseteq \alpha$. If α is column reduced and $X \alpha=X$, we can show similarly that $\beta \subseteq \alpha$.

Next, suppose that $\beta \neq \alpha$. Since $\beta \subseteq \alpha$, there exists $a \in X$ such that $a \beta \nsubseteq a \alpha$. Set $A=a \alpha \backslash a \beta$. Since $a \alpha \in V(\alpha)$, by Theorem $2.3, a \alpha=B \beta$ for some $B \subseteq X$, hence $a \alpha=B \alpha$. Let $c \in A$. Then $c \in a \alpha$, so $c \in b \beta$ for some $b \in B$ since $a \alpha=B \beta$. By $\beta \subseteq \alpha$, we have

$$
c \in b \beta \subseteq b \alpha \subseteq B \alpha=a \alpha
$$

Since $\{a, b\} \subseteq \alpha c$ and $c \notin a \beta, \beta c \nsubseteq \alpha c$. Let $C=\alpha c \backslash \beta c$. Then $\alpha c=\beta D$ for some $D \subseteq X$ since $\alpha c \in W(\alpha) \subseteq W(\beta)$. So $\alpha c=\alpha D$ by Theorem 2.3. Since $a \notin \beta c$, $a \in C$. And since $a \in \alpha c=\beta D, a \in \beta d$ for some $d \in D$. Hence

$$
a \in \beta d \subseteq \alpha d \subseteq \alpha D=\alpha c
$$

Define $\rho=\alpha \backslash\{(a, d)\}$. From the above proof, we have that $\rho \in R^{\alpha} \cap C^{\alpha}$ which is a contradiction. Hence $\beta=\alpha$.

Theorem 2.10. Let $\alpha \in \mathscr{B}(X)$. Then α is maximal with respect to \leq if and only if α satisfies the following two conditions.
(1) α is row reduced and $\alpha X=X$ or α is column reduced and $X \alpha=X$.
(2) $R^{\alpha} \cap C^{\alpha}=\emptyset$.

Proof. It follows directly from Lemma 2.7, Lemma 2.8 and Lemma 2.9.
The following theorem determines the minimal elements of $\mathscr{B}(X)$ with respect to \leq.

Theorem 2.11. Let $\alpha \in \mathscr{B}(X) \backslash\{0\}$. Then α is minimal in $\mathscr{B}(X) \backslash\{0\}$ with respect to \leq if and only if $V(\alpha)=\{\emptyset, X \alpha\}$.

Proof. Assume that $V(\alpha)=\{\emptyset, X \alpha\}$. Let $\beta \in \mathscr{B}(X) \backslash\{0\}$ be such that $\beta \leq \alpha$. By Theorem 2.3(3), $V(\beta) \subseteq V(\alpha)$. Since $\beta \neq 0, V(\beta)=V(\alpha)$. Hence $\alpha=\beta$ by Lemma 1.6(4) and Lemma 1.1.

Conversely, suppose that $|V(\alpha)|>2$. Define $\beta \in \mathscr{B}(X)$ by $\beta=\alpha X \times X \alpha$. Then $0 \neq \beta$ and $V(\beta)=\{\emptyset, X \alpha\}$, so $\alpha \neq \beta$. Define $\lambda, \mu \in \mathscr{B}(X)$ by

$$
\lambda=\alpha X \times \alpha X \text { and } \mu=X \alpha \times X \alpha
$$

Then for each $x \in \alpha X, x \lambda \alpha=(\alpha X) \alpha=X \alpha=x \beta$, so $\lambda \alpha=\beta$, and for each $x \in X \alpha, \alpha \mu x=\alpha(X \alpha)=\alpha X=\beta x$ and $\beta \mu x=\beta(X \alpha)=\alpha X=\beta x$. Hence $\beta=\alpha \mu=\beta \mu$.

Hence $\beta<\alpha$, so α is not minimal.

By Lemma 1.2, we have the following corollary.
Corollary 2.12. Let $\alpha \in \mathscr{B}(X) \backslash\{0\}$. Then α is minimal in $\mathscr{B}(X) \backslash\{0\}$ with respect to \leq if and only if $W(\alpha)=\{\emptyset, \alpha X\}$.

We know that if $\alpha \in \mathscr{B}(X)$ is row [column] minimal, then α is row [column] reduced and $R^{\alpha}\left[C^{\alpha}\right]=\emptyset$. Thus from Theorem 2.10, we have the following corollary.

Corollary 2.13. Let $\alpha \in \mathscr{B}(X)$.
(1) If α is row minimal and $\alpha X=X$, then α is maximal with respect to \leq.
(2) If α is column minimal and $X \alpha=X$, then α is maximal with respect to \leq.

The next corollary is obtained directly from Theorem 2.3.
Corollary 2.14. The following statements about $\mathscr{B}(X)$ hold.
(1) For $\alpha \in \mathscr{B}(X), \alpha$ is maximal with respect to \leq if and only if α^{-1} is maximal with respect to \leq.
(2) For $\alpha \in \mathscr{B}(X) \backslash\{0\}$, α is minimal in $\mathscr{B}(X) \backslash\{0\}$ with respect to \leq if and only if α^{-1} is minimal in $\mathscr{B}(X) \backslash\{0\}$ with respect to \leq.

2.3 Left and right compatible elements

By Lemma $1.5(3)$, we have that every element of $\mathscr{B}(X)$ is both left and right compatible with respect to \subseteq.

In the following two proposition, we provide necessary and sufficient conditions for elements in $\mathscr{B}(X)$ to be left compatible and right compatible with respect to \leq.

Proposition 2.15. Let $\alpha \in \mathscr{B}(X)$. Then α is left compatible with respect to \leq on $\mathscr{B}(X)$ if and only if $V(\alpha)=\mathscr{P}(X)$ where $\mathscr{P}(X)$ is the power set of X.

Proof. Assume that $V(\alpha)=\mathscr{P}(X)$. Since $V\left(\Delta_{X}\right)=\mathscr{P}(X)$, by Lemma 1.6 (4), $\gamma \alpha=\Delta_{X}$ for some $\gamma \in \mathscr{B}(X)$. Let $\sigma, \beta \in \mathscr{B}(X)$ be such that $\sigma \leq \beta$. Then $\sigma=\lambda \beta=\beta \mu$ and $\sigma=\sigma \mu$ for some $\lambda, \mu \in \mathscr{B}(X)$. Thus $\alpha \sigma=(\alpha \beta) \mu, \alpha \sigma=(\alpha \sigma) \mu$ and $\alpha \sigma=\alpha \lambda \beta=\alpha \lambda \Delta_{X} \beta=\alpha \lambda \gamma(\alpha \beta)$ which imply that $\alpha \sigma \leq \alpha \beta$. Hence α is left compatible.

On the other hand, suppose that α is left compatible. To show that $V(\alpha)=$ $\mathscr{P}(X)$, it suffices to prove that $\{a\} \in V(\alpha)$ for all $a \in X$. Let $a \in X$. Define $\sigma \in \mathscr{B}(X)$ by $\sigma=X \times\{a\}$. By Lemma 1.8, σ is an idempotent of $\mathscr{B}(X)$, so $\sigma \leq \Delta_{X}$. By assumption, $\alpha \sigma \leq \alpha \Delta_{X}=\alpha$. Then $\alpha \sigma=\lambda \alpha=\alpha \mu$ and $\alpha \sigma=\alpha \sigma \mu$ for some $\lambda, \mu \in \mathscr{B}(X)$. Since $\alpha \sigma \neq 0$ and $V(\alpha \sigma) \subseteq V(\sigma)=\{\emptyset,\{a\}\}$, $V(\alpha \sigma)=\{\emptyset,\{a\}\}$. But $V(\alpha \sigma)=V(\lambda \alpha) \subseteq V(\alpha)$, thus $\{a\} \in V(\alpha)$.

Proposition 2.16. Let $\alpha \in \mathscr{B}(X)$. Then α is right compatible with respect to \leq on $\mathscr{B}(X)$ if and only if $W(\alpha)=\mathscr{P}(X)$.

Proof. The proof can be given similarly to that of Proposition 2.15.

References

[1] A. H. Clifford and G. H. Preston, The Algebraic Theory of Semigroups, American Mathematical Society : Providence, RI, 1961.
[2] P. M. Higgins, J. M. Howie and N. Ruškuc, Set products in transformation semigroups, Proc. Roy. Soc. Edinburgh, Sec. A. 133(2003), 1121-1135.
[3] J. Konieczny, The semigroup generating by regular boolean matrices, SEA. Bull. Math. 25(2002), 617-622.
[4] G. Kowol and H. Mitsch, Naturally ordered transformation semigroups, Monatsh. Math. 102(1986), 115-138.
[5] M. P. O. Marques-Smith and R. P. Sullivan, Partial orders on transformation semigroups, Monatsh. Math. 140(2003), 103-118.
[6] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 97(1986), 384-388.
[7] R. J. Plemmons and M. T. West, On the semigroup of binary relations, Pacific J. Math. 35(1970), 743-753.
[8] K. A. Zaretskii, The semigroup of binary relations, Mat. Sbornik. 61(1963), 291-305.
(Received 25 May 2006)
C. Namnak and P. Preechasilp

Department of Mathematics
Faculty of Science
Naresuan University
Phitsanuloke 65000, THAILAND.
e-mail : chaiwatn@nu.ac.th

