Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics, 2006) : 39–50

Natural Partial Orders on the Semigroup of Binary Relations

C. Namnak and P. Preechasilp

Abstract: Let $\mathscr{B}(X)$ denote the semigroup of binary relations on a set X under composition. We study two natural partial orders on $\mathscr{B}(X)$ and characterize when two elements of $\mathscr{B}(X)$ are related under these orders. The maximality, minimality, left compatibility and right compatibility of elements are considered with respect to each order.

Keywords : natural partial order, the semigroup of binary relations **2000 Mathematics Subject Classification :** 20M20, 06A06

1 Introduction

In 1986, Mitsch [6] defined the partial order \leq on any semigroup S as follows: for $a, b \in S$,

$$a \leq b \iff a = xb = by$$
 and $a = ay$ for some $x, y \in S^1$,

which is called the *natural partial order* on S.

Next, Kowol and Mitsch [4] studied the natural partial order on $\mathscr{T}(X)$, the semigroup of all transformations of a set X. Marques-Smith and Sullivan [5] extended that work to $\mathscr{PT}(X)$, the semigroup of all partial transformations of X. They also determined when two elements in $\mathscr{PT}(X)$ are related under \leq and compared \leq with another natural partial order \subseteq on $\mathscr{PT}(X)$. Moreover, they described the maximal, minimal, left compatible and right compatible elements of $\mathscr{PT}(X)$ with respect to each order. In this paper, we study two natural partial orders \leq and \subseteq on $\mathscr{P}(X)$, the semigroup of binary relations on a set X under composition and characterize when two elements are related under these two orders. Furthermore, we determine the maximal, minimal, left compatible and right compatible and right compatible elements of $\mathscr{P}(X)$ with respect to each order.

1.1 Preliminaries

Let S be a semigroup and E(S) denote the set of all idempotents of S. The Green's relations \mathcal{L} and \mathcal{R} on a semigroup S are defined by $a\mathcal{L}b \iff S^1a = S^1b$ and $a\mathcal{R}b \iff aS^1 = bS^1$ for all $a, b \in S$.

Let \leq be any partial order on a semigroup S. An element a of S is called *left* [*right*] compatible with respect to \leq on S if for all $x, y \in S, x \leq y$ implies $ax \leq ay$ [$xa \leq ya$].

In the remainder, the relation \leq given on any semigroup S always means the natural partial order on S defined previously, that is, for any $a, b \in S$,

 $a \leq b \iff a = xb = by$ and a = ay for some $x, y \in S^1$.

In this case, we have that a = (xb)y = x(by) = xa.

Lemma 1.1. ([2]). Let S be a semigroup and $a, b \in S$. If $a \leq b$ and $(a, b) \in \mathcal{L} \cup \mathcal{R}$, then a = b.

1.2 On the semigroup of binary relations

Let X be a set. From the definition of $\mathscr{B}(X)$, we have

$$\mathscr{B}(X) = \{ \alpha \mid \alpha \subseteq X \times X \}$$

and for $\alpha, \beta \in \mathscr{B}(X)$,

$$\alpha\beta = \{(x,y) \in X \times X \mid (x,z) \in \alpha \text{ and } (z,y) \in \beta \text{ for some } z \in X\}.$$

Then the empty relation is the zero of $\mathscr{B}(X)$ which is denoted by 0. For $Y \subseteq X$, let

 $\Delta_Y = \{(y, y) \mid y \in Y\}$

and

$$\nabla_Y = \{(x, y) \mid x, y \in Y\},\$$

so Δ_X and ∇_X are the identity and universal relations on X, respectively.

In particular, for a finite set $X = \{a_1, a_2, \ldots, a_n\}$, we can represent a relation $\alpha \in \mathscr{B}(X)$ with the $n \times n$ Boolean matrix A defined by

$$A_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \alpha \\ 0 & \text{otherwise.} \end{cases}$$

For example, if $\alpha = \{(a_1, a_1), (a_1, a_2), (a_2, a_1), (a_3, a_2), (a_3, a_3)\} \in \mathscr{B}(X)$ with $X = \{a_1, a_2, a_3\}$, then

$$\alpha = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right].$$

Let $\alpha \in \mathscr{B}(X)$. For $x \in X$, let

$$x\alpha = \{y \in X \mid (x, y) \in \alpha\}$$

Natural Partial Orders on the Semigroup of Binary Relations

and

$$\alpha x = \{ y \in X \mid (y, x) \in \alpha \}$$

and they are called a row and a column of α , respectively. For $A \subseteq X$, set

$$A\alpha = \bigcup_{x \in A} x\alpha$$
 and $\alpha A = \bigcup_{x \in A} \alpha x$.

Then $\alpha A = A \alpha^{-1}$. Let

$$V(\alpha) = \{A\alpha \mid A \subseteq X\}$$

and

$$W(\alpha) = \{ \alpha A \mid A \subseteq X \}.$$

Lemma 1.2. ([8]). Let $\alpha \in \mathscr{B}(X)$. Then $V(\alpha)$ and $W(\alpha)$ are anti-isomorphic lattices.

We say that a relation $\alpha \in \mathscr{B}(X)$ is row reduced if for all $x \in X$ and $A \subseteq X$, $\emptyset \neq x\alpha = A\alpha$ implies that $x \in A$ and column reduced if for all $x \in X$ and $A \subseteq X$, $\emptyset \neq \alpha x = \alpha A$ implies that $x \in A$.

A relation $\alpha \in \mathscr{B}(X)$ is row minimal if for all $x \in X$ and $A \subseteq X$, $\emptyset \neq x\alpha = A\alpha$ implies that $\{x\} = A$ and column minimal if for all $x \in X$ and $A \subseteq X$, $\emptyset \neq \alpha x = \alpha A$ implies that $\{x\} = A$. Observe that if α is row [column] minimal, then it is row [column] reduced.

Example 1.3. Let

$$\alpha = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Then α is column reduced but not column minimal.

Let $\alpha, \beta \in \mathscr{B}(X)$. We say that β is a row descendant of α if there exist $a, b \in X$ with $a \neq b$ and a nonempty subset A of X such that $A \subseteq a\alpha \subseteq b\alpha, b\beta = b\alpha \setminus A$ and $x\alpha = x\beta$ for all $x \neq b$. A column descendant of α is defined in a dual manner. Set

 $R^{\alpha} = \{ \beta \mid \beta \text{ is a row descendant of } \alpha \}$

and

 $C^{\alpha} = \{ \beta \mid \beta \text{ is a column descendant of } \alpha \}.$

It is easy to see that if α is row [column] minimal, then $R^{\alpha}[C^{\alpha}] = \emptyset$.

Example 1.4. Let

$$\alpha = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

Then

and

$$R^{\alpha} = \left\{ \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \right\}$$

The following lemma is easily shown.

Lemma 1.5. Let $\alpha, \beta, \gamma \in \mathscr{B}(X)$. Then (1) $(\alpha')' = \alpha$, (2) $(\alpha^{-1})^{-1} = \alpha$ and $(\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$, (3) $\alpha \subseteq \beta$ implies $\gamma\alpha \subseteq \gamma\beta$ and $\alpha\gamma \subseteq \beta\gamma$, (4) $\alpha \subseteq \beta$ if and only if $\alpha^{-1} \subseteq \beta^{-1}$, (5) $\alpha \subseteq \beta$ if and only if $\beta' \subseteq \alpha'$.

Lemma 1.6. ([7]). Let $\alpha, \beta \in \mathscr{B}(X)$ and $A \subseteq X$. Then (1) $A(\alpha\beta) = (A\alpha)\beta$ and $(\alpha\beta)A = \alpha(\beta A)$, (2) $V(\alpha\beta) \subseteq V(\beta)$, (3) $W(\alpha\beta) \subseteq W(\alpha)$, (4) $\alpha\mathcal{L}\beta$ if and only if $V(\alpha) = V(\beta)$, (5) $\alpha\mathcal{R}\beta$ if and only if $W(\alpha) = W(\beta)$.

Lemma 1.7. Let $\alpha \in \mathscr{B}(X)$. Then the following statements are equivalent. (1) $\alpha^2 = \alpha$.

(2) For every $A \in V(\alpha)$, $A\alpha = A$.

(3) For every $A \in W(\alpha)$, $\alpha A = A$.

Proof. (1) \Longrightarrow (2) Assume that $\alpha^2 = \alpha$. Let $A \in V(\alpha)$, Then there exists $B \subseteq X$ such that $B\alpha = A$. Thus $A\alpha = B\alpha\alpha = B\alpha = A$.

(2) \implies (1) For $x \in X$, $x\alpha \in V(\alpha)$. By assumption, $x\alpha^2 = x\alpha\alpha = x\alpha$. Hence $\alpha^2 = \alpha$.

 $(1) \iff (3)$ can be proved similarly.

Lemma 1.8. Let A and B be nonempty subsets of X such that $A \cap B \neq \emptyset$. Define $\alpha = A \times B$. Then $V(\alpha) = \{\emptyset, B\}$ and $W(\alpha) = \{\emptyset, A\}$, hence α is an idempotent of $\mathscr{B}(X)$.

Proof. By the definition of α , $a\alpha = B$ for all $a \in A$ and $a\alpha = \emptyset$ for all $a \in X \setminus A$. Then $V(\alpha) = \{\emptyset, B\}$. Since $A \cap B \neq \emptyset$, we have

$$B\alpha = \bigcup_{x \in B} x\alpha = \left(\bigcup_{x \in A \cap B} x\alpha\right) \bigcup \left(\bigcup_{x \in B \setminus A} x\alpha\right) = B \cup \emptyset = B.$$

By Lemma 1.7, α is an idempotent.

2 Main results

2.1 Natural partial orders on $\mathscr{B}(X)$

Regarding elements of $\mathscr{B}(X)$ as subsets of $X \times X$, \subseteq is a natural partial order of $\mathscr{B}(X)$, that is,

$$\alpha \subseteq \beta \iff$$
 for every $(x, y) \in X \times X, (x, y) \in \alpha$ implies $(x, y) \in \beta$.

The next proposition is evident.

Proposition 2.1. Let $\alpha, \beta \in \mathscr{B}(X)$. Then the following statements are equivalent.

(1) $\alpha \subseteq \beta$.

- (2) $\alpha X \subseteq \beta X$ and for every $x \in \alpha X$, $x \alpha \subseteq x \beta$.
- (3) $X\alpha \subseteq X\beta$ and for every $y \in X\alpha$, $\alpha y \subseteq \beta y$.

From Proposition 2.1, we have

Corollary 2.2. Let $\alpha, \beta \in \mathscr{B}(X)$. Then (1) $\alpha = \beta$ if and only if $\alpha X = \beta X$ and for every $x \in \alpha X$, $x\alpha = x\beta$, (2) $\alpha = \beta$ if and only if $X\alpha = X\beta$ and for every $x \in X\alpha$, $\alpha x = \beta x$.

Recall that the natural partial order \leq defined on $\mathscr{B}(X)$ is as follows:

 $\alpha \leq \beta \iff \alpha = \lambda \beta = \beta \mu$ and $\alpha = \alpha \mu$ for some $\lambda, \mu \in \mathscr{B}(X)$.

In this case, we also have $\alpha = \lambda \alpha$.

In the next theorem, we give a characterization when $\alpha, \beta \in \mathscr{B}(X)$ are comparable under \leq .

Theorem 2.3. Let $\alpha, \beta \in \mathscr{B}(X)$. Then the following statements are equivalent:

- (1) $\alpha \leq \beta$. (2) $\alpha^{-1} \leq \beta^{-1}$.
- (3) $V(\alpha) \subseteq V(\beta), W(\alpha) \subseteq W(\beta)$ and for all $A, B \in X, A\alpha = B\beta$ implies $A\alpha = B\alpha$ and $\alpha A = \beta B$ implies $\alpha A = \alpha B$.

Proof. (1) \Longrightarrow (2) Assume that $\alpha \leq \beta$. Then there exist $\lambda, \mu \in \mathscr{B}(X)$ such that $\alpha = \lambda\beta = \beta\mu$ and $\alpha = \alpha\mu = \lambda\alpha$. By Lemma 1.5 (2), we have $\alpha^{-1} = \beta^{-1}\lambda^{-1} = \mu^{-1}\beta^{-1}$ and $\alpha^{-1} = \alpha^{-1}\lambda^{-1}$. Hence $\alpha^{-1} \leq \beta^{-1}$.

(2) \Longrightarrow (3) Assume that $\alpha^{-1} \leq \beta^{-1}$. Then there are $\lambda, \mu \in \mathscr{B}(X)$ such that $\alpha^{-1} = \lambda \beta^{-1} = \beta^{-1} \mu$ and $\alpha^{-1} = \alpha^{-1} \mu = \lambda \alpha^{-1}$, so $\alpha = \beta \lambda^{-1} = \mu^{-1} \beta$ and $\alpha = \mu^{-1} \alpha = \alpha \lambda^{-1}$. By Lemma 1.6 (2) and (3), we have

$$V(\alpha) = V(\mu^{-1}\beta) \subseteq V(\beta) \text{ and } W(\alpha) = W(\beta\lambda^{-1}) \subseteq W(\beta).$$

Let $A, B \subseteq X$. If $A\alpha = B\beta$, then $A\alpha = A\alpha\lambda^{-1} = B\beta\lambda^{-1} = B\alpha$. If $\alpha A = \beta B$, then $\alpha A = \mu^{-1}\alpha A = \mu^{-1}\beta B = \alpha B$. Hence (3) holds.

(3) \Longrightarrow (1) Assume that (3) holds. Then for each $x \in X, x\alpha \in V(\alpha) \subseteq V(\beta)$ and $\alpha x \in W(\alpha) \subseteq W(\beta)$. Then there exist $A_x, B_x \subseteq X$ such that $x\alpha = A_x\beta$ and $\alpha x = \beta B_x$. By assumption, we have $x\alpha = A_x\alpha$ and $\alpha x = \alpha B_x$. Define $\lambda, \mu \in \mathscr{B}(X)$ by $x\lambda = A_x$ for all $x \in X$ and $\mu x = B_x$ for all $x \in X$. Then for every $x \in X$,

$$x\lambda\beta = A_x\beta = x\alpha$$
 and
 $\alpha\mu x = \alpha B_x = \alpha x = \beta B_x = \beta\mu x.$

This shows that $\alpha = \lambda \beta$ and $\alpha = \alpha \mu = \beta \mu$, so $\alpha \leq \beta$.

The following example shows that \leq and \subseteq are distinct.

Example 2.4. Suppose that $X = \{a_1, a_2, a_3\}$ and let

$$\alpha = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \beta = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } \gamma = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Clearly, $\alpha \subseteq \beta$. Since $a_1 \alpha = \{a_1\} \in V(\alpha)$ and $\{a_1\} \notin V(\beta)$, by Theorem 2.3 $\alpha \notin \beta$. We can check that $\gamma \leq \beta$ but $\gamma \notin \beta$.

2.2 Maximal and minimal elements

Since 0 and ∇_X are the minimum and maximum elements of $(\mathscr{B}(X), \subseteq)$, respectively. The following proposition determines the minimal elements in $\mathscr{B}(X) \setminus \{0\}$ and the maximal element in $\mathscr{B}(X) \setminus \{\nabla_X\}$ with respect to \subseteq and the proof is obvious.

Proposition 2.5. The following statements about $\mathscr{B}(X)$ hold.

- (1) For $\alpha \in \mathscr{B}(X) \setminus \{0\}$, α is minimal in $(\mathscr{B}(X) \setminus \{0\}, \subseteq)$ if and only if $|\alpha| = 1$.
- (2) For $\alpha \in \mathscr{B}(X) \setminus \{\nabla_X\}$, α is maximal in $(\mathscr{B}(X) \setminus \{\nabla_X\}, \subseteq)$ if and only if α' is minimal in $(\mathscr{B}(X) \setminus \{0\}, \subseteq)$.
- (3) For $\alpha \in \mathscr{B}(X) \setminus \{\nabla_X\}$, α is maximal in $(\mathscr{B}(X) \setminus \{\nabla_X\}, \subseteq)$ if and only if α^{-1} is maximal in $(\mathscr{B}(X) \setminus \{\nabla_X\}, \subseteq)$.
- (4) For $\alpha \in \mathscr{B}(X) \setminus \{0\}$, α is minimal in $(\mathscr{B}(X) \setminus \{0\}, \subseteq)$ if and only if α^{-1} is minimal in $(\mathscr{B}(X) \setminus \{0\}, \subseteq)$.

To obtain the theorem concerning the maximal elements of $\mathscr{B}(X)$ with respect to \leq , the following series of lemmas will be used.

Lemma 2.6. Let $\alpha, \beta \in \mathscr{B}(X)$. If $\beta \in R^{\alpha} \cap C^{\alpha}$, then the following statements hold.

(1) There exist $a, b, c, d \in X$ with $a \neq b$ and $c \neq d$ such that

 $\{d\} \subseteq a\alpha \subseteq b\alpha, \ \{b\} \subseteq \alpha c \subseteq \alpha d \ and \ \beta = \alpha \setminus \{(b,d)\}.$

(2) $\alpha X = \beta X$ and $X \alpha = X \beta$.

Proof. Assume that $\beta \in R^{\alpha} \cap C^{\alpha}$. Since $\beta \in R^{\alpha}$, there exist $a, b \in X$ with $a \neq b$ and a nonempty subset A of X such that

$$A \subseteq a\alpha \subseteq b\alpha, \ b\beta = b\alpha \setminus A \text{ and } x\alpha = x\beta \text{ for all } x \in X \setminus \{b\}.$$

Claim that $\beta = \alpha \setminus (\{b\} \times A)$. Let $(x, y) \in \beta$. Then $y \in x\beta$.

Case 1: x = b. Then $y \in b\beta$. Since $b\beta = b\alpha \setminus A$, we have $y \in b\alpha$ and $y \notin A$. So $(x, y) \in \alpha$, hence $(x, y) \in \alpha \setminus (\{b\} \times A)$.

Case 2: $x \neq b$. Since $x\beta = x\alpha$ for all $x \neq b$, $y \in x\alpha$. Thus $(x, y) \in \alpha \setminus (\{b\} \times A)$.

Hence $\beta \subseteq \alpha \setminus (\{b\} \times A)$.

For the reverse inclusion, let $(x, y) \in \alpha \setminus (\{b\} \times A)$. Then $y \in x\alpha$ and $(x, y) \notin \{b\} \times A$.

Case 1: x = b. Then $y \in b\alpha$ and $y \notin A$, so $y \in b\alpha \setminus A$. Since $b\alpha \setminus A = b\beta$, $y \in b\beta$. Hence $(x, y) \in \beta$.

Case 2: $x \neq b$. Then $y \in x\alpha = x\beta$, so $(x, y) \in \beta$.

Therefore $\alpha \setminus (\{b\} \times A) \subseteq \beta$. So we have the claim.

Since $\beta \in C^{\alpha}$, there are $c, d \in X$ with $c \neq d$ and a nonempty subset B of X such that

$$B \subseteq \alpha c \subseteq \alpha d, \ \beta d = \alpha d \setminus B \text{ and } \alpha x = \beta x \text{ for all } x \in X \setminus \{d\}$$

We can prove similarly that $\beta = \alpha \setminus (B \times \{d\})$.

Since $A \subseteq b\alpha$ and $B \subseteq \alpha d$, $\{b\} \times A \subseteq \alpha$ and $B \times \{d\} \subseteq \alpha$, respectively. But $\beta \subseteq \alpha \setminus (\{b\} \times A)$ and $\beta = \alpha \setminus (B \times \{d\})$, so we have $B = \{b\}$ and $A = \{d\}$. Therefore $\beta = \alpha \setminus \{(b,d)\}$. But $\{b\} \subseteq \alpha d$, so we have $\alpha = \beta \cup \{(b,d)\}$. Since $\{b\} = B \subseteq \alpha c \subseteq \alpha d$, $\{(b,c), (b,d)\} \subseteq \alpha$. Then $\{(b,c)\} \subseteq \alpha \setminus \{(b,d)\} = \beta$ and so $b \in \beta X$. Thus

$$\alpha X = (\beta \cup \{(b,d)\})X = \beta X \cup \{b\} = \beta X.$$

Similarly, we can show that $X\alpha = X\beta$, as required.

45

Lemma 2.7. Let $\alpha \in \mathscr{B}(X)$. If α is a maximal element with respect to \leq , then $R^{\alpha} \cap C^{\alpha} = \emptyset$.

Proof. Assume that $R^{\alpha} \cap C^{\alpha} \neq \emptyset$. Let $\beta \in R^{\alpha} \cap C^{\alpha}$. From the proof of Lemma 2.6, there exist $a, b, c, d \in X$ with $a \neq b$ and $c \neq d$ such that $\{d\} \subseteq a\alpha \subseteq b\alpha$, $\{b\} \subseteq \alpha c \subseteq \alpha d, b\beta = b\alpha \setminus \{d\}, \beta d = \alpha d \setminus \{b\}, x\beta = x\alpha$ for all $x \neq b, \beta y = \alpha y$ for all $y \neq d, \beta X = \alpha X$ and $X\beta = X\alpha$. Then

$$\{a,b\}\beta = a\beta \cup b\beta = a\alpha \cup b\alpha \backslash \{d\} = b\alpha$$

and

$$\beta\{c,d\} = \beta c \cup \beta d = \alpha c \cup \alpha d \setminus \{b\} = \alpha d.$$

Define $\lambda, \mu \in \mathscr{B}(X)$ by

$$u\lambda = \begin{cases} \{a,b\} & \text{if } u = b, \\ u & \text{if } u \in \alpha X \setminus \{b\} \end{cases}$$

and

$$\mu v = \begin{cases} \{c, d\} & \text{if } v = d, \\ v & \text{if } v \in X\alpha \backslash \{d\} \end{cases}$$

Then

$$\beta \mu v = \beta v = \alpha v$$
 and $\alpha \mu v = \alpha v$ for all $v \in X \alpha \setminus d$

and

$$\beta \mu d = \beta \{c, d\} = \alpha d$$
 and $\alpha \mu d = \alpha \{c, d\} = \alpha d.$

We conclude that $\alpha = \beta \mu = \alpha \mu$. Also, we have that

$$u\lambda\beta = u\beta = u\alpha$$
 for all $u \in \alpha X \setminus b$ and $b\lambda\beta = \{a, b\}\beta = b\alpha$.

Thus $\alpha = \lambda \beta$. This proves that $\alpha \leq \beta$. From Lemma 2.6 (1), we have $\alpha \neq \beta$. Hence α is not maximal.

Lemma 2.8. Let $\alpha \in \mathscr{B}(X)$. If α is maximal with respect to \leq , then either α is row reduced and $\alpha X = X$ or α is column reduced and $X\alpha = X$.

Proof. Assume that the converse condition is not true.

Case 1: $\alpha X \subsetneq X$ and $X \alpha \subsetneq X$. Then there exist $a, b \in X$ such that $a \notin \alpha X$ and $b \notin X \alpha$. Define $\beta, \lambda, \mu \in \mathscr{B}(X)$ by $\beta = \alpha \cup \{(a, b)\}, \lambda = \Delta_{\alpha X}$ and $\mu = \Delta_{X \alpha}$. Clearly that $\alpha = \alpha \mu$ and $\alpha \neq \beta$. Since $\beta X = \alpha X \cup \{a\}$ and $X\beta = X\alpha \cup \{b\}, \alpha = \Delta_{\alpha X}\beta = \lambda\beta$ and $\alpha = \beta \Delta_{X\alpha} = \beta\mu$. Hence $\alpha = \lambda\beta = \beta\mu$ and $\alpha = \alpha\mu$, we deduce that $\alpha < \beta$. Hence α is not maximal.

Case 2: $\alpha X \subsetneq X$ and α is not column reduced. Then there exist $a, b \in X$ and a nonempty subset B of X such that $a \notin \alpha X$, $\emptyset \neq \alpha b = \alpha B$ and $b \notin B$. Define

 $\beta \in \mathscr{B}(X)$ by $\beta = \alpha \cup \{(a, b)\}$. Then $\beta X = \alpha X \cup \{a\}, X\beta = X\alpha, x\beta = x\alpha$ for all $x \neq a$ and $\beta y = \alpha y$ for all $y \neq b$. Thus $\beta B = \alpha B = \alpha b$. Define $\lambda, \mu \in \mathscr{B}(X)$ by $\lambda = \Delta_{\alpha X}$ and

$$\mu y = \begin{cases} B & \text{if } y = b, \\ y & \text{if } y \in X\alpha \setminus \{b\}. \end{cases}$$

Then we have

$$\alpha = \Delta_{\alpha X} \beta = \lambda \beta,$$

$$\beta \mu y = \beta y = \alpha y = \alpha \mu y$$
 for all $y \in X \alpha \setminus \{b\}$

and

$$\beta \mu b = \beta B = \alpha b = \alpha B = \alpha \mu b.$$

Thus $\alpha = \lambda \beta = \beta \mu$ and $\alpha = \alpha \mu$. Hence $\alpha < \beta$, so α is not maximal.

Case 3: α is not row reduced and $X\alpha \subsetneq X$. Its proof is similar to the Case 2.

Case 4: α is neither row nor column reduced. Then there are $a, b \in X$ and nonempty subsets A, B of X such that $a\alpha = A\alpha, \alpha b = \alpha B, a \notin A$ and $b \notin B$. Define $\beta \in \mathscr{B}(X)$ by

$$\beta = \begin{cases} \alpha \cup \{(a,b)\} & \text{ if } (a,b) \notin \alpha, \\ \alpha \setminus \{(a,b)\} & \text{ if } (a,b) \in \alpha. \end{cases}$$

Then $\beta X = \alpha X$, $X\beta = X\alpha$ and $\alpha \neq \beta$. By the definition of β , we get that $x\beta = x\alpha$ for all $x \neq a$ and $\beta y = \alpha y$ for all $y \neq b$. Define $\lambda, \mu \in \mathscr{B}(X)$ by

$$x\lambda = \begin{cases} A & \text{if } x = a, \\ x & \text{if } x \in \alpha X \setminus \{a\} \end{cases}$$

and

$$\mu y = \begin{cases} B & \text{if } y = b, \\ y & \text{if } y \in X\alpha \backslash \{b\} \end{cases}$$

If $x \in \alpha X \setminus \{a\}$, then $x \lambda \beta = x \beta = x \alpha$. And $a \lambda \beta = A \beta = A \alpha = a \alpha$. Thus $\alpha = \lambda \beta$. If $y \in X\alpha \setminus \{b\}$, then $\beta \mu y = \beta y = \alpha y = \alpha \mu y$. Since $\beta \mu b = \beta B = \alpha B = \alpha b$ and $\alpha\mu b = \alpha B = \alpha b$, we deduce that $\alpha = \beta\mu = \alpha\mu$. These imply that $\alpha < \beta$, hence α is not maximal.

Therefore the lemma is proved.

Lemma 2.9. Let $\alpha \in \mathscr{B}(X)$. If $R^{\alpha} \cap C^{\alpha} = \emptyset$ and either α is row reduced and $\alpha X = X$ or α is column reduced and $X\alpha = X$, then α is maximal with respect $to \leq .$

Proof. Let $\beta \in \mathscr{B}(X)$ be such that $\alpha \leq \beta$. To prove that $\beta \subseteq \alpha$, let $x \in X$. First, assume that α is row reduced and $\alpha X = X$. Since $\alpha X = X$, $x\alpha \neq \emptyset$. By Theorem 2.3, we have $x\alpha \in V(\alpha) \subseteq V(\beta)$. Then $x\alpha = A\beta$ for some $A \subseteq X$. Again by Theorem 2.3, $x\alpha = A\alpha$. Since α is row reduced, we have $x \in A$, and so $x\beta \subseteq A\beta = x\alpha$. Hence $\beta \subseteq \alpha$. If α is column reduced and $X\alpha = X$, we can show similarly that $\beta \subseteq \alpha$.

Next, suppose that $\beta \neq \alpha$. Since $\beta \subseteq \alpha$, there exists $a \in X$ such that $a\beta \subsetneq a\alpha$. Set $A = a\alpha \setminus a\beta$. Since $a\alpha \in V(\alpha)$, by Theorem 2.3, $a\alpha = B\beta$ for some $B \subseteq X$, hence $a\alpha = B\alpha$. Let $c \in A$. Then $c \in a\alpha$, so $c \in b\beta$ for some $b \in B$ since $a\alpha = B\beta$. By $\beta \subseteq \alpha$, we have

$$c \in b\beta \subseteq b\alpha \subseteq B\alpha = a\alpha.$$

Since $\{a, b\} \subseteq \alpha c$ and $c \notin a\beta$, $\beta c \subsetneq \alpha c$. Let $C = \alpha c \setminus \beta c$. Then $\alpha c = \beta D$ for some $D \subseteq X$ since $\alpha c \in W(\alpha) \subseteq W(\beta)$. So $\alpha c = \alpha D$ by Theorem 2.3. Since $a \notin \beta c$, $a \in C$. And since $a \in \alpha c = \beta D$, $a \in \beta d$ for some $d \in D$. Hence

$$a \in \beta d \subseteq \alpha d \subseteq \alpha D = \alpha c.$$

Define $\rho = \alpha \setminus \{(a, d)\}$. From the above proof, we have that $\rho \in R^{\alpha} \cap C^{\alpha}$ which is a contradiction. Hence $\beta = \alpha$.

Theorem 2.10. Let $\alpha \in \mathscr{B}(X)$. Then α is maximal with respect to \leq if and only if α satisfies the following two conditions.

(1) α is row reduced and $\alpha X = X$ or α is column reduced and $X\alpha = X$. (2) $R^{\alpha} \cap C^{\alpha} = \emptyset$.

Proof. It follows directly from Lemma 2.7, Lemma 2.8 and Lemma 2.9.

The following theorem determines the minimal elements of $\mathscr{B}(X)$ with respect to \leq .

Theorem 2.11. Let $\alpha \in \mathscr{B}(X) \setminus \{0\}$. Then α is minimal in $\mathscr{B}(X) \setminus \{0\}$ with respect to \leq if and only if $V(\alpha) = \{\emptyset, X\alpha\}$.

Proof. Assume that $V(\alpha) = \{\emptyset, X\alpha\}$. Let $\beta \in \mathscr{B}(X) \setminus \{0\}$ be such that $\beta \leq \alpha$. By Theorem 2.3(3), $V(\beta) \subseteq V(\alpha)$. Since $\beta \neq 0$, $V(\beta) = V(\alpha)$. Hence $\alpha = \beta$ by Lemma 1.6(4) and Lemma 1.1.

Conversely, suppose that $|V(\alpha)| > 2$. Define $\beta \in \mathscr{B}(X)$ by $\beta = \alpha X \times X \alpha$. Then $0 \neq \beta$ and $V(\beta) = \{\emptyset, X\alpha\}$, so $\alpha \neq \beta$. Define $\lambda, \mu \in \mathscr{B}(X)$ by

$$\lambda = \alpha X \times \alpha X$$
 and $\mu = X \alpha \times X \alpha$.

Then for each $x \in \alpha X$, $x\lambda\alpha = (\alpha X)\alpha = X\alpha = x\beta$, so $\lambda\alpha = \beta$, and for each $x \in X\alpha$, $\alpha\mu x = \alpha(X\alpha) = \alpha X = \beta x$ and $\beta\mu x = \beta(X\alpha) = \alpha X = \beta x$. Hence $\beta = \alpha\mu = \beta\mu$.

Hence $\beta < \alpha$, so α is not minimal.

By Lemma 1.2, we have the following corollary.

Corollary 2.12. Let $\alpha \in \mathscr{B}(X) \setminus \{0\}$. Then α is minimal in $\mathscr{B}(X) \setminus \{0\}$ with respect to \leq if and only if $W(\alpha) = \{\emptyset, \alpha X\}$.

We know that if $\alpha \in \mathscr{B}(X)$ is row [column] minimal, then α is row [column] reduced and $R^{\alpha}[C^{\alpha}] = \emptyset$. Thus from Theorem 2.10, we have the following corollary.

Corollary 2.13. Let $\alpha \in \mathscr{B}(X)$.

- (1) If α is row minimal and $\alpha X = X$, then α is maximal with respect to \leq .
- (2) If α is column minimal and $X\alpha = X$, then α is maximal with respect to \leq .

The next corollary is obtained directly from Theorem 2.3.

Corollary 2.14. The following statements about $\mathscr{B}(X)$ hold.

- (1) For $\alpha \in \mathscr{B}(X)$, α is maximal with respect to \leq if and only if α^{-1} is maximal with respect to \leq .
- (2) For $\alpha \in \mathscr{B}(X) \setminus \{0\}$, α is minimal in $\mathscr{B}(X) \setminus \{0\}$ with respect to \leq if and only if α^{-1} is minimal in $\mathscr{B}(X) \setminus \{0\}$ with respect to \leq .

2.3 Left and right compatible elements

By Lemma 1.5(3), we have that every element of $\mathscr{B}(X)$ is both left and right compatible with respect to \subseteq .

In the following two proposition, we provide necessary and sufficient conditions for elements in $\mathscr{B}(X)$ to be left compatible and right compatible with respect to \leq .

Proposition 2.15. Let $\alpha \in \mathscr{B}(X)$. Then α is left compatible with respect to \leq on $\mathscr{B}(X)$ if and only if $V(\alpha) = \mathscr{P}(X)$ where $\mathscr{P}(X)$ is the power set of X.

Proof. Assume that $V(\alpha) = \mathscr{P}(X)$. Since $V(\Delta_X) = \mathscr{P}(X)$, by Lemma 1.6 (4), $\gamma \alpha = \Delta_X$ for some $\gamma \in \mathscr{B}(X)$. Let $\sigma, \beta \in \mathscr{B}(X)$ be such that $\sigma \leq \beta$. Then $\sigma = \lambda \beta = \beta \mu$ and $\sigma = \sigma \mu$ for some $\lambda, \mu \in \mathscr{B}(X)$. Thus $\alpha \sigma = (\alpha \beta)\mu, \alpha \sigma = (\alpha \sigma)\mu$ and $\alpha \sigma = \alpha \lambda \beta = \alpha \lambda \Delta_X \beta = \alpha \lambda \gamma(\alpha \beta)$ which imply that $\alpha \sigma \leq \alpha \beta$. Hence α is left compatible.

On the other hand, suppose that α is left compatible. To show that $V(\alpha) = \mathscr{P}(X)$, it suffices to prove that $\{a\} \in V(\alpha)$ for all $a \in X$. Let $a \in X$. Define $\sigma \in \mathscr{B}(X)$ by $\sigma = X \times \{a\}$. By Lemma 1.8, σ is an idempotent of $\mathscr{B}(X)$, so $\sigma \leq \Delta_X$. By assumption, $\alpha\sigma \leq \alpha\Delta_X = \alpha$. Then $\alpha\sigma = \lambda\alpha = \alpha\mu$ and $\alpha\sigma = \alpha\sigma\mu$ for some $\lambda, \mu \in \mathscr{B}(X)$. Since $\alpha\sigma \neq 0$ and $V(\alpha\sigma) \subseteq V(\sigma) = \{\emptyset, \{a\}\}$, $V(\alpha\sigma) = \{\emptyset, \{a\}\}$. But $V(\alpha\sigma) = V(\lambda\alpha) \subseteq V(\alpha)$, thus $\{a\} \in V(\alpha)$.

Proposition 2.16. Let $\alpha \in \mathscr{B}(X)$. Then α is right compatible with respect to \leq on $\mathscr{B}(X)$ if and only if $W(\alpha) = \mathscr{P}(X)$.

Proof. The proof can be given similarly to that of Proposition 2.15.

References

- A. H. Clifford and G. H. Preston, *The Algebraic Theory of Semigroups*, American Mathematical Society : Providence, RI, 1961.
- [2] P. M. Higgins, J. M. Howie and N. Ruškuc, Set products in transformation semigroups, Proc. Roy. Soc. Edinburgh, Sec. A. 133(2003), 1121-1135.
- [3] J. Konieczny, The semigroup generating by regular boolean matrices, SEA. Bull. Math. 25(2002), 617-622.
- [4] G. Kowol and H. Mitsch, Naturally ordered transformation semigroups, Monatsh. Math. 102(1986), 115-138.
- [5] M. P. O. Marques-Smith and R. P. Sullivan, Partial orders on transformation semigroups, *Monatsh. Math.* 140(2003), 103-118.
- [6] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 97(1986), 384-388.
- [7] R. J. Plemmons and M. T. West, On the semigroup of binary relations, *Pacific J. Math.* 35(1970), 743-753.
- [8] K. A. Zaretskii, The semigroup of binary relations, *Mat. Sbornik.* 61(1963), 291-305.

(Received 25 May 2006)

C. Namnak and P. Preechasilp Department of Mathematics Faculty of Science Naresuan University Phitsanuloke 65000, THAILAND. e-mail : chaiwatn@nu.ac.th