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1 Introduction

In these latest years, the study of the Kirchhoff equation and of Kirchhoff
systems has been considered in the case involving the p− Laplacian operator (see
[1, 2, 3]). Recently, Autuori, Pucci and Salvatori [1] have investigated the Kirchhoff
type equation involving the p(x)−Laplacian of the form

utt −M(

∫

Ω

1

p(x)
| ∇u |p(x) dx)∆p(x)u+Q(t, x, u, ut) + f(x, u) = 0.

They have introduced the asymptotic stability, as time tends to infinity. Now, the
study of the stationary version of Kirchhoff type problems has also been the object
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of considerable study; see e.g. [4, 5, 6]. The operator ∆p(x)u = div(| ∇u |p(x)−2

∇u) is called p(x)−Laplacian. Here we point out that the p(x)−Laplacian operator
possesses more complicated nonlinearities than p−Laplacian, for example, it is
inhomogeneous and usually it does not have the so- called first eigenvalue, since
the infimum of its principle eigenvalue is zero.

The problem studied in the present work involves a nonconstant exponent and
thereby the Lebesgue and Sobolev spaces with variable exponents are suitable
contexts in which problem (1.1) below can be studied. Many authors have studied
p(x)−Kirchhoff type equations with Dirichlet boundary value problems e.g. we
refer to Fan [7] and Chung [8].

The p(x)−Kirchhoff type equations with Neumann boundary value problems
have been studied by several authors. One of the first result in this direction
was obtained by Dai and Ma in [9], wherein they prove several properties of the
p(x)−Kirchhoff-Laplace operator. Guo and Zhao [10] presented several sufficient
conditions for the existence of solutions for a general problem by using Ambrosetti-
Rabinowitz condition. In [11], Chung studied a class of nonlocal p(x)−Laplacian
Neumann problem by assuming that a : R+ → R+ is a continuous function and
verifies

a(t) ≥ a0|t|
α−1, for t ≥ 0,

where a0 > 0 and α > 1. Using Ekeland variational principle, Yucedag et al in [12]
showed the existence of a weak solution for a p(x)−Kirchhoff system.

In this paper, we are concerned with the elliptic problems:

a(I1(u))(−∆p(x)u+ µ | u |p(x)−2 u) = f(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R
N , ν is the outward normal vector on

∂Ω, 1 < p− = infx∈Ω p(x) ≤ p(x) ≤ supx∈Ω p(x) = p+ < +∞, p ∈ C(Ω), µ ≥ 0,
I1(u) =

∫
Ω

1
p(x) (| ∇u |p(x) +µ | u |p(x))dx, a(t) is a real valued, continuous function

and f : Ω× R → R, is a Carathéodory function with F (x, t) =
∫ t

0 f(x, s)ds.
(a1) a :]0,+∞[→]0,+∞[ continuous and a0 = inf

s>0
a(s) > 0.

(f1) There exist two positives constants C1, C2 such that

| f(x, t) |≤ C1 + C2 | t |q(x)−1, (x, t) ∈ Ω× R, q ∈ C(Ω), 1 < q(x) < p∗(x),

with

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

(a2) There is a positive constant α such that lim supt→0+
â(t)
tα

< +∞, with

â(t) =
∫ t

0 a(s)ds.

(f2) lim inf t→0
F (x,t)
|t|r1 > 0 uniformly for a.e x ∈ Ω, where r1 is a positive

constant such that r1 < αp−.



On a Class of Nonlocal p(x)-Laplacian Neumann Problems 93

(f3) lim|t|→+∞[F (x, t) − a0λ1
|t|p

−

p(x) ] = −∞, uniformly for almost every x ∈ Ω,

where

λ1 = inf
W 1,p(x)(Ω)\{0}

∫
Ω

1
p(x)(| ∇u |p(x) + | u |p(x))dx

∫
Ω

|u|p(x)

p(x) dx
> 0,

which is different from the first eigenvalue of the p−Laplace.
Hereinafter, we report the main results.

Theorem 1.1. Assume that the conditions (f1), (f2), (f3) and (a1), (a2) with µ =
1 hold. Then (1.1) has a weak solution.

Theorem 1.2. Whether µ = 0. Suppose (f1), (a1) and the following assumptions:

(a3) p
+â(t) ≤ p−a(t)t for t > 0 , with â(t) =

∫ t

0 a(s)ds.
(f4) lim|t|→+∞[f(x, t)t− p+F (x, t)] = −∞.

(f5) lim|t|→+∞
F (x,t)

|t|p−
= 0.

(f6) f(x, t)t > 0, for all t 6= 0.
Then (1.1) has at least one weak solution.

Theorem 1.3. Suppose (a1) and (f1) with p+ < q−, µ = 1 hold and a(t) is
bounded for t > 0. Assume the following hypotheses,

(f7) The following limit hold uniformly for a.e x ∈ Ω

lim
|t|→∞

f(x, t)t

| t |p+ = +∞.

(f8) f(x, t) = o(tp(x)−1) as t→ 0 uniformly for x in Ω.
(f9) There exist two positive constants c1 and c2 such that

ψ1(x, t) ≤ c1ψ1(x, s) ≤ c2ψ2(x, s), for all 0 ≤ t ≤ s.

Where,
ψ1(x, t) = f(x, t)t− p−F (x, t),

ψ2(x, t) = f(x, t)t− p+F (x, t).

Then, (1.1) admits at least one solution in W 1,p(x)(Ω).

Remark 1.4. An example of functions satisfying the assumption of Theorem 1.3
f(x, t) =| t |α(x)−2 t, where p+ < α− ≤ α(x) ≤ α+ < p∗(x),
then

F (x, t) =
| t |α(x)

α(x)
, f(x, t)t =| t |α(x),

so we obtain

ψ1(x, t) = (1−
p−

α(x)
) | t |α(x)

and

ψ2(x, t) = (1−
p+

α(x)
) | t |α(x),
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what means that (f9) is satisfied since we have ψ1(x, t) is nondecreasing in t ≥ 0
and then ψ1(x, t) ≤ ψ1(x, s) when 0 ≤ t ≤ s, so we take c1 = 1. Accordingly, the
fact that ψ1, ψ2 ≥ 0 it follows that,

ψ1(x, t)

ψ2(x, t)
≤
α+ − p−

α− − p+
= c2.

Obviously the other assumptions are held.
For the assumptions of Theorem 1.2, we can see that f(x, t) = arctan(t)+ t

1+t2

clearly verifies the hypotheses.

The purpose of this work is to improve the results of the above-mentioned
papers and many others. Without assuming the Ambrosetti-Rabinowitz type con-
ditions (A-R), we prove the existence of solutions.

(A-R) there exist θ > p+,M > 0 such that for any x ∈ Ω and t ≥M we have

0 ≤ θF (x, t) ≤ f(x, t)t.

For instance, it is known that (f9) is much weaker than the (A-R) condition in
the constant exponent case. In addition, the classical conditions of the coercivity
of the energy functional φ associated to problem (1.1) are omitted here, so we
extend them to the best.

This article is organized as follows. In Section 2, we give the necessary nota-
tions, we also include some useful results involving the variable exponent Lebesgue
and Sobolev spaces in order to facilitate the reading of the paper. Finally, in Sec-
tion 3, we prove the existence of nontrivial solution.

2 Preliminaries

We introduce the setting of our problem with some auxiliary results. For
convenience, we only recall some basic facts which will be used later, we refer to
[13] for more details. Set C+(Ω) = {h : h ∈ C(Ω), h(x) > 1for all x ∈ Ω}. Define
the variable exponent Lebesgue space Lp(x)(Ω),
Lp(x)(Ω) = {u : Ω → R mesurable :

∫
Ω
| u |p(x) dx <∞} then Lp(x)(Ω) endowed

with the norm

| u |p(x)= inf{λ > 0 :

∫

Ω

|
u

λ
|p(x) dx ≤ 1}

becomes a Banach space separable and reflexive space.
Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ Lp(x)(Ω)}.

The space W 1,p(x)(Ω) with the norm ‖ u ‖=| u |p(x) + | ∇u |p(x) is a Banach
separable and reflexive space.

Let X =W 1,p(x)(Ω),
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Definition 2.1. We say that u ∈ W 1,p(x)(Ω) is a weak solution of (1.1), if

a(I1(u))

∫

Ω

(| ∇u |p(x)−2 ∇u.∇v + µ | u |p(x)−2 uv)dx −

∫

Ω

f(x, u)vdx = 0,

∀v ∈ W 1,p(x)(Ω).

Proposition 2.2. Set, ρ(u) =
∫
Ω
| u |p(x) dx, if u ∈ L1,p(x)(Ω) we have

(1) ‖ u ‖≥ 1 ⇒ | u |
p−

p(x) ≤ ρ(u) ≤ | u |
p+

p(x).

(2) | u |≤ 1 ⇒ | u |p(x)
p+

≤ ρ(u) ≤ | u |p(x)
p−

.

(3) For un, u ∈ Lp(x)(Ω),

| un |p(x)→ 0 ⇔ ρ(un) → 0 as n→ +∞.

| un |p(x)→ +∞ ⇔ ρ(un) → +∞ as n→ +∞.

Proposition 2.3. For any u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω), we have

|

∫

Ω

uv dx |≤ 2 | u |p(x)| v |p′(x),

with
1

p(x)
+

1

p′(x)
= 1.

Proposition 2.4. Set, ̺(u) =
∫
Ω | ∇u |p(x) + | u |p(x) dx, if u ∈ W 1,p(x)(Ω) we

have
(1) ‖ u ‖≥ 1 ⇒ ‖ u ‖

p−

≤ ̺(u) ≤ ‖ u ‖
p+

.

(2) ‖ u ‖≤ 1 ⇒ ‖ u ‖
p+

≤ ̺(u) ≤ ‖ u ‖
p−

.

(3) For un, u ∈W 1,p(x)(Ω),

‖ un ‖→ 0 ⇔ ̺(un) → 0 as n→ +∞.

‖ un ‖→ +∞ ⇔ ̺(un) → +∞ as n→ +∞.

Proposition 2.5. If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the
imbedding from W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous.

Definition 2.6. We say that φ ∈ (X,R) satisfies the Cerami condition (denoted
by (C)) if any sequence (un)n ⊂ X for which φ(un) is bounded and
(1+ ‖ un ‖)φ′(un) → 0 as n→ ∞, possesses a convergent subsequence.

Remark 2.7. In Theorems 1.1 and 1.3, we can suppose that the parameter µ > 0,
whith

λ1 = inf
W 1,p(x)(Ω)\{0}

∫
Ω

1
p(x)(| ∇u |p(x) +µ | u |p(x))dx

∫
Ω

|u|p(x)

p(x) dx
> 0,

since W 1,p(x)(Ω) with the norm

inf{ν > 0 :

∫

Ω

(|
∇u

ν
|p(x) + µ|

u

ν
|p(x))dx ≤ 1}

is a separable and reflexive Banach space. For the sake of simplicity, we take
µ = 1.
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3 Proof of the Main Results

By means of a direct variational approach, we establish the existence of critical
point of φ, where

φ(u) = â(I1(u))−

∫

Ω

F (x, u)dx

and

I1(u) =

∫

Ω

1

p(x)
(| ∇u |p(x) +µ | u |p(x))dx.

So we need some results in form of some lemmas. Denote by C,Ci, i = 1... positive
constants which the exact value may change from line to line.

Lemma 3.1. i) â ∈ C1([0,+∞[), â(0) = 0, â′(t) = a(t) for any t > 0.
ii) â(I1(u)) is sequentially weakly lower semi-continuous and φ′ is bounded and

S+ type.

The proof of lemma can be obtained easily in view of [7].

Proof of Theorem 1.1: For simplicity, we set H(x, t) = F (x, t)−a0
λ1

p(x) | t |
p−

.

Then, according to (f3) we can conclude that, for every M > 0, there is RM > 0
such that

H(x, t) ≤ −M, ∀ | t |≥ RM , almost every x ∈ Ω. (3.1)

We claim that φ is coercive, otherwise, there exist K ∈ R and (u)n ⊂ X such that

‖ un ‖→ ∞ and φ(un) ≤ K.

Putting vn = un

‖un‖
i.e ‖ vn ‖= 1. Then for a subsequence, we may assume that

for v ∈ X , we have vn ⇀ v in X , vn → v strongly in Lp(x)(Ω), vn(x) → v(x) for
almost every x ∈ Ω. Now, using (3.1), we obtain

K ≥ φ(un) ≥

∫

Ω

a0

p(x)
(| ∇un |p(x) + | un |p(x))dx −

∫

Ω

F (x, un)dx.

≥

∫

Ω

a0

p(x)
[| ∇un |p(x) + | un |p(x)]dx− λ1

∫

Ω

a0

p(x)
| un |p

−

dx

−

∫

Ω

H(x, un)dx

≥
a0

p+
‖ un ‖p

−

−a0λ1

∫

Ω

1

p(x)
| un |p

−

dx+M1, (3.2)

where M1 ∈ R. Dividing (3.2) by ‖ un ‖p
−

and passing to the limit, we conclude
that

a0

p+
− a0λ1

∫

Ω

| v |p
−

dx ≤ 0,
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hence, v 6≡ 0. Therefore | Ω8 |> 0 with Ω8 = {x ∈ Ω \ v(x) 6= 0}, then
| un(x) |→ +∞ for almost every x ∈ Ω8. On the other hand,

λ1

∫

[|u|≥1]

| u |p
−

p(x)
dx ≤ λ1

∫

[|u|≥1]

| u |p(x)

p(x)
dx

≤ λ1

∫

Ω

| u |p(x)

p(x)
dx

≤

∫

Ω

1

p(x)
[| ∇u |p(x) + | u |p(x)]dx, (3.3)

where,

[| u |≥ 1] = {x ∈ Ω \ | u |≥ 1} ; [| u |< 1] = {x ∈ Ω\ | u |< 1}.

It is clear that
∫
[|un|<1]

1
p(x) | un |p(x) dx is bounded. From (f3) and the above

inequalities (3.3) we deduce

K ≥

∫

Ω

a0

p(x)
[| ∇un |p(x) + | un |p(x)]dx−

∫

Ω

F (x, un)dx

=

∫

Ω

a0

p(x)
[| ∇un |p(x) + | un |p(x)]dx− a0λ1

∫

Ω

| un |p
−

p(x)
dx−

∫

Ω

H(x, un)dx

=

∫

Ω

a0

p(x)
[| ∇un |p(x) + | un |p(x)]dx− a0λ1

∫

[|un|≥1]

| un |p
−

p(x)
dx

− a0λ1

∫

[|un|<1]

| un |p
−

p(x)
dx−

∫

Ω

H(x, un)dx

≥ −a0λ1

∫

[|un|<1]

| un |p
−

p(x)
dx−

∫

Ω

H(x, un)dx

= −a0λ1

∫

[|un|<1]

| un |p
−

p(x)
dx−

∫

[|un|≤R1]

H(x, un)dx

−

∫

[|un|>R1]

H(x, un)dx→ +∞,

with R1 is large enough, which is a contradiction. Hence φ is coercive and has a
global minimizer. Indeed, for t > 0 is small enough,

φ(tv0) = â(I1(tv0))−

∫

Ω

F (x, tv0)dx

≤ C1(

∫

Ω

tp(x)

p(x)
| v0 |p(x) dx)α − C2

∫

Ω

tr1vr10 dx

≤ C3t
αp−

− C4t
r1 < 0,

because r1 < αp−.
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Proof of Theorem 1.2: Here, it assumed that µ = 0, then

I1(u) =

∫

Ω

1

p(x)
|∇u|p(x)dx.

Our proof is based on the following result

Theorem 3.2. [14] Let X = X1 ⊕ X2, where X is a real Banach space and
X2 6= {0}, and is finite dimensional. Suppose φ ∈ C1(X,R) satisfies Cerami
condition (C) with the following assertions:

(i) There is a constant a and a bounded neighborhood D of 0 in X2 such that
J |∂D ≤ α,

(ii) There is a constant β > α such that J |X1 ≥ β,

then φ possesses a critical value c ≥ β, moreover, c can be characterized as

c = inf
h∈Γ

max
u∈D

φ(h(u)),

where Γ = {h ∈ C(D,X)|h = id on ∂D}.

We recall an important inequality ([11, 12]), which will be used later:

Lemma 3.3. (Poincaré-Wirtingers inequality) There exists a positive constant C0

such that for any u ∈ W0 we have

|u|p(x) ≤ |∇u|p(x).

Lemma 3.4. Assume the conditions (a1), (a3) and (f1), (f4) and (f5) are satisfied.
Then, φ verifies the Cerami condition (C)c.

Proof. Let K ∈ R such that

|φ(un)| ≤ K

and

(1+ ‖ un ‖)φ′(un) → 0 in X∗. (3.4)

Assume that ‖ un ‖→ +∞ as n→ +∞.

Putting vn = un

‖un‖
, so, vn ⇀ v in X. Thus, vn(x) → v(x) a.e x ∈ Ω and

vn → v in Lp(x)(Ω).

Let h ∈ X. It follows from (3.4) that,

| a(I1(un))(

∫

Ω

| ∇un |p(x)−2 ∇un.∇hdx)−

∫

Ω

f(x, un)hdx |

≤
εn ‖ h ‖

1+ ‖ un ‖
. (3.5)
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Dividing (3.5) by ‖ un ‖p
−−1 we get

| a(I1(un))(

∫

Ω

[| ∇un |p(x)−2 ∇un.∇h]

‖ un ‖p−−1
dx) −

∫

Ω

f(x, un)

‖ un ‖p−−1
hdx |

≤
εn

‖ un ‖p−−1

‖ h ‖

1+ ‖ un ‖
≤

εn ‖ h ‖

1+ ‖ un ‖
. (3.6)

On the other side, as ‖ un ‖p(x)−1≥‖ un ‖p
−−1> 1, we get

| a(I1(un))(

∫

Ω

| ∇un |p(x)−2 ∇un.∇h

‖ un ‖p−−1
dx)−

∫

Ω

f(x, un)

‖ un ‖p−−1
hdx |

≥| a(I1(un))(

∫

Ω

| ∇un |p(x)−2 ∇un.∇h

‖ un ‖p−−1
dx) | − |

∫

Ω

f(x, un)h

‖ un ‖p−−1
dx|

≥ |a(I1(un))(

∫

Ω

| ∇vn |p(x)−2 ∇vn.∇hdx)|− |

∫

Ω

f(x, un)h

‖ un ‖p−−1
dx|.

Consequently,

| a(I1(un))(

∫

Ω

| ∇vn |p(x)−2 ∇vn.∇hdx) | − |

∫
Ω f(x, un)

‖ un ‖p−−1
hdx |≤

εn ‖ h ‖

1+ ‖ un ‖
, (3.7)

with εn → 0 and h ∈ X.

By (f1), (f4) and (f5) we entail that
f(x,un)

‖un‖p−−1
is bounded in (Lp−

(Ω))∗ which is

separable and reflexive space, then up to a subsequence denoted also ( f(x,un)

‖un‖p−−1
)n,

we have f(x,un)

‖un‖p−−1
⇀ f̃, in (Lp−

(Ω))∗. Since f(x,un)

‖un‖p−−1
→ 0 a.e x ∈ Ω (which yields

from (f5)), hence
f(x, un)

‖ un ‖p−−1
⇀ 0, in (Lp−

(Ω))∗.

Therefore, taking h = vn − v ∈ X, in (3.7),
∫

Ω

| ∇vn |p(x)−2 ∇vn∇(vn − v)dx → 0.

By S+ type of φ′ we have vn → v in X, so v 6≡ 0. Since |φ(un)| ≤ K, we obtain

p+â(I1(un))− p+
∫

Ω

F (x, un)dx ≥ −p+K. (3.8)

Taking h = un, in (3.5) we obtain

−a(I1(un))

∫

Ω

(| ∇un |p(x) +

∫

Ω

f(x, un)undx ≥ −εn,

as p(x) ≥ p− then we have

−p−a(I1(un))

∫

Ω

1

p(x)
| ∇un |p(x) dx +

∫

Ω

f(x, un)undx ≥ −εn. (3.9)
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Adding (3.8) to (3.9), then we get

∫

Ω

f(x, un)undx− p+
∫

Ω

F (x, un)dx ≥ K1. (3.10)

Obviously, this is a contradiction and then we have the compactness condition of
the Theorem 3.2 is satisfied.

Next, we borrow the same idea from Chung [11], we may split W 1,p(x)(Ω) as
follows.

Define W0 = {u ∈ W 1,p(x)(Ω) :
∫
Ω udx = 0}. For u ∈ W 1,p(x)(Ω), denote,

u = 1
Ω

∫
Ω udx and ũ = u − u. Then, u = u + ũ, where ũ ∈ R, and ũ ∈ W0. So

W 1,p(x)(Ω) = W0 ⊕ R. Noting that W0 is a closed linear subspace of W 1,p(x)(Ω)
with codimension 1.

Lemma 3.5. Under the conditions (f4) and (f6) the functional φ|R is anti-
coercive.(i.e φ(t) → −∞ when |t| → ∞).

Proof. From (f4), for all K > 0 there exists R > 0 such that p+F (x, u) ≥
f(x, u)u ≥ K, for a.e x ∈ Ω, |u| > R, by (f6) it yields p+F (x, u) ≥ K − c,

for a.e x ∈ Ω, u ∈ R, and thus for all u ∈ R,

∫

Ω

F (x, u)dx ≥
1

p+
K|Ω|+−c|Ω|,

which implies that

∫

Ω

F (x, u)dx → ∞ when |u| → ∞,

because K is arbitrary. Hence

φ(u) = −

∫

Ω

F (x, u)dx→ −∞, when |u| → ∞.

Lemma 3.6. If (f5) holds, then inf
W0

φ > −∞.

Proof. Let u ∈W0 with ‖ u ‖> 1, using the Proposition 2.1 we get

∫

Ω

1
p(x) |∇u|

p(x)

p(x)
dx ≥

1

p+
|∇u|p

i

p(x),

in view of the Lemma 3.3, there is C5 > 0 such that

∫

Ω

1
p(x) |∇u|

p(x)

p(x)
dx ≥ C5 ‖ u ‖p

i

dx,
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with i = ±, if |∇u|p(x) ≤ 1 we have i = + and i = − when |∇u|p(x) > 1. By the
continuous embeddings, there is C6 > 0 such that

∫

Ω

|u|p
−

dx ≤ C6 ‖ u ‖p
−

.

By virtue of the hypothesis (f6), for 0 < ε < C5

C6
a0, we may find K(ǫ) > 0 such

that F (x, u) ≤ ε|t|p
−

+K(ε), for a.e x ∈ Ω and for all u ∈ R. Hence,
∫

Ω

F (x, u)dx ≤ ε

∫

Ω

|u|p
−

+K(ε)|Ω|

≤ C6ε ‖ u ‖p
−

+K(ε)|Ω|, (3.11)

where C6 > 0. Thus,

φ(u)
∣∣
u∈W0

= â(

∫

Ω

1

p(x)
|∇|p(x)dx) −

∫

Ω

F (x, u)dx

≥ a0C5 ‖ u ‖p
i

−εC6 ‖ u ‖p
−

−K(ε)|Ω|

≥ −K(ε)|Ω|, (3.12)

so we infer that inf
W0

φ > −∞.

By the Lemmas 3.6, 3.5 and 3.4, we see that the assumptions of the Theorem
3.2 are hold. Therefore, problem (1.1) has at least a solution in X .

Proof of Theorem 1.3: Now, we consider the case when the energy functional
φ possesses the Mountain Pass geometry and compactness condition [15], we check
theses assumptions in form as the following lemmas.

Lemma 3.7. Suppose that (a1), (a3) and (f1), (f7)− (f9) hold. If c ∈ R, then any
sequence of Cerami (C)c of φ is bounded.

Proof. Let (un)n be a (C)c sequence of φ. We claim that (un)n is bounded, oth-
erwise, up to a subsequence we may assume that

φ(un) → c, ‖ un ‖→ +∞, φ′(un) → 0.

Putting ωn = un

‖un‖
, up to a subsequence we have ωn ⇀ ω in X, ωn → ω in

Lp(x)(Ω), ωn(x) → w(x), a.e. x ∈ Ω.
Here, two cases appear, if ω 6≡ 0. Since φ′(un)un = 0, that is,

a(I1(un))(

∫

Ω

| ∇un |p(x) + | un |p(x) dx)−

∫

Ω

f(x, un)undx = 0. (3.13)

As we know that a is bounded, dividing (3.13) by ‖ un ‖p
+

, so

∫

Ω

f(x, un)un
‖ un ‖p+ <∞,
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however, using (f7) and lemma of Fatou we obtain

∫

Ω

f(x, un)un
‖ un ‖p+ =

∫

Ω

f(x, un)un | ω |p
+

| un |p+ → ∞.

Which is contradictory.
In the case when ω ≡ 0, we choose a sequence tn ∈ [0, 1] satisfying φ(tnun) =

maxtn∈[0,1] φ(tun). If w ≡ 0, since wn → 0 in Lq(x)(Ω) and |F (x, t)| ≤ C(1+|t|q(x)),
by the continuity of the Nemitskii operator, we see that F (., wn) → 0 in L1(Ω) as
n→ +∞, therefore

lim
n→∞

∫

Ω

F (x,wn)dx = 0. (3.14)

Given m > 0, since for n large enough we have ‖un‖
−1(2mp+)

1

p− ∈ (0, 1),

using (3.14) with R = (2mp+)
1

p− , it follows that

φ(tnun) ≥ φ(
R

‖un‖
un) = φ(Rwn)

≥ a0

∫

Ω

Rp(x)

p(x)
(|∇wn|

p(x) + |wn|
p(x))dx−

∫

Ω

F (x,Rwn)dx

≥ a0
Rp−

p+
−

∫

Ω

F (x,Rwn)dx ≥ m.

Thereby, φ(tnun) → +∞, on the other hand, we know that φ(0) = 0, φ(un) → c,
so we can deduce that tn ∈]0, 1[ and < φ′(tnun), tnun >= tn

d
dt
|t=tnφ(tun) = 0.

Which yields,

φ(tnun)−
1

p−
φ′(tnun)(tnun) → +∞.

Therefore,
| a |∞

∫
Ω(

1
p(x) −

1
p− )(| tn∇un |p(x) + | tnun |p(x) +

∫
Ω

1
p− f(x, tnun)(tnun) −

F (x, tnun)dx→ +∞,

so we get, ∫

Ω

1

p−
f(x, tnun)(tnun)− F (x, tnun)dx→ +∞.

Moreover,

φ(un) = φ(un)−
1

p+
φ′(un)(un)

≥ a0

∫

Ω

(
1

p(x)
−

1

p+
)(| ∇un |p(x)

+ | un |p(x))dx +

∫

Ω

1

p+
(f(x, un)un − F (x, un)dx

≥

∫

Ω

1

p+
(f(x, un)un − F (x, un)dx.
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From (f9) we have

φ(un) ≥

∫

Ω

1

p+
(f(x, un)un − F (x, un)dx

≥ c1

∫

Ω

1

p−
f(x, un)(un)− F (x, un)dx

≥ c1c2

∫

Ω

1

p−
f(x, tnun)(tnun)− F (x, tnun)dx. (3.15)

Hence, φ(un) → +∞ which is impossible.

Lemma 3.8. Under the condition of Theorem 1.3, φ verifies the following:

(a) There exist ρ > 0 and β > 0 such that φ(u) > β when ‖ u ‖= ρ.

(b) There exists v ∈ X such that ‖ v ‖< ρ and φ(v) < 0.

Proof. In view of (f1) and (f8), there exists C1 > 0 such that

|F (x, t)| ≤
a0

2p+
|t|p(x) + C1|t|

q(x), for (x, t) ∈ Ω× R.

Therefore, for ‖u‖ ≤ 1 we have

φ(u) ≥
a0

p+

∫

Ω

(|∇u|p(x) + |u|p(x))dx −
a0

2p+

∫

Ω

|u|p(x)dx− C1

∫

Ω

|u|q(x)dx

≥
a0

2p+

∫

Ω

(|∇u|p(x) + |u|p(x))dx− C1

∫

Ω

|u|q(x)dx

≥
a0

2p+
‖u‖p

+

− C2‖u‖
q−

≥ ‖u‖p
+

(
a0

2p+
− C2‖u‖

q−−p+

).

Since p+ < q−, the function t 7→ ( 1
2p+ − C2t

q−−p+

) is strictly positive in a
neighborhood of zero. It follows that there exist ρ > 0 and β > 0 such that
φ(u) ≥ β, ∀u ∈ X : ‖u‖ = ρ.

To apply the Mountain Pass Theorem, it suffices to show that

φ(tu) → −∞ as t→ +∞,

for a certain u ∈ X .

Let u ∈ X\{0}, by (f7), we may choose a constantA >

∫
Ω

|a|∞
p(x)

[|∇u|p(x)+|u|p(x)]dx
∫
Ω
|u|p+dx

,

such that

F (x, t) ≥ A|t|p
+

uniformly in x ∈ Ω.
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Let t > 1 large enough, we have

φ(tu) ≤| a |∞

∫

Ω

tp(x)

p(x)
[|∇u|p(x) + |u|p(x)]dx−

∫

Ω

F (x, tu)dx

≤| a |∞ tp
+

∫

Ω

1

p(x)
[|∇u|p(x) + |u|p(x)]dx−

∫

|tu|>CA

F (x, tu)dx

−

∫

|tu|≤CA

F (x, tu)dx

≤| a |∞ tp
+

∫

Ω

1

p(x)
[|∇u|p(x) + |u|p(x)]dx−Atp

+

∫

Ω

|u|p
+

dx

−

∫

|tu|≤CA

F (x, tu)dx+ Atp
+

∫

|tu|≤CA

|u|p
+

dx

≤| a |∞ tp
+

∫

Ω

1

p(x)
[|∇u|p(x) + |u|p(x)]dx−Atp

+

∫

Ω

|u|p
+

dx+ C1,

where C1 > 0 is a constant, which implies that φ(tu) → −∞as t→ +∞.
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