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1 Introduction

In these latest years, the study of the Kirchhoff equation and of Kirchhoff
systems has been considered in the case involving the p— Laplacian operator (see
[ 2L13]). Recently, Autuori, Pucci and Salvatori [1] have investigated the Kirchhoff
type equation involving the p(z)—Laplacian of the form

1
U — M(/ —— | Vu [P@ dx) Apyu+ Q(t, x,u, us) + f(x,u) = 0.
o p(z)

They have introduced the asymptotic stability, as time tends to infinity. Now, the
study of the stationary version of Kirchhoff type problems has also been the object
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of considerable study; see e.g. [4, [5, [6]. The operator Ap,yu = div(| Vu |p(z) =2
Vu) is called p(z)—Laplacian. Here we point out that the p(z)—Laplacian operator
possesses more complicated nonlinearities than p—Laplacian, for example, it is
inhomogeneous and usually it does not have the so- called first eigenvalue, since
the infimum of its principle eigenvalue is zero.

The problem studied in the present work involves a nonconstant exponent and
thereby the Lebesgue and Sobolev spaces with variable exponents are suitable
contexts in which problem (1.1) below can be studied. Many authors have studied
p(z)—Kirchhoff type equations with Dirichlet boundary value problems e.g. we
refer to Fan [7] and Chung [§].

The p(z)—Kirchhoff type equations with Neumann boundary value problems
have been studied by several authors. One of the first result in this direction
was obtained by Dai and Ma in [9], wherein they prove several properties of the
p(z)—Kirchhoff-Laplace operator. Guo and Zhao [10] presented several sufficient
conditions for the existence of solutions for a general problem by using Ambrosetti-
Rabinowitz condition. In [IT], Chung studied a class of nonlocal p(x)—Laplacian
Neumann problem by assuming that a : Ry — R, is a continuous function and
verifies

a(t) > aolt|*™*, fort >0,

where ag > 0 and « > 1. Using Ekeland variational principle, Yucedag et al in [12]
showed the existence of a weak solution for a p(z)—Kirchhoff system.
In this paper, we are concerned with the elliptic problems:

a(Il(u))(_Ap(x)u +p | u |p(1‘)—2 u) = f(ac,u) mn Q,
du (1.1)

5:0 on 0f),

where Q is a smooth bounded domain in RY, v is the outward normal vector on
0Q, 1 < p~ =infeqp(zr) < p(r) < sup,eqp(z) = p* < +oo,p € C(Q), p >0,
Ii(u) = [, ﬁﬂ Vu [P®) 4| u [P®))dz, a(t) is a real valued, continuous function

and f:Q xR — R, is a Carathéodory function with F(z,t) = fot Sz, s)ds.
(a1) a :]0,400[—]0, +00[ continuous and ag = %I;foa(s) > 0.

(f1) There exist two positives constants C7,Cy such that
| f(,t) [SC14+Ca | |77 (2,1) € 2 xR, g € C(Q),1 < g(x) < p*(a),

with

p(z) =

FZ if p(x) < N,
+o0 if p(x) > N.

(a2) There is a positive constant a such that limsup,_,q+ % < 400, with
a(t) = [ a(s)ds.
(f2) liminf; .o % > 0 uniformly for a.e x € €2, where ry is a positive

constant such that v < ap™.
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[t]”

(f3) limyy 4 oo [F (2, 1) — agA1 57y ] = —o0, uniformly for almost every = € €,
where )
ol g da(Ter puphe
e |u[P ’
W) (9)\{0} Joo 2

which is different from the first eigenvalue of the p—Laplace.
Hereinafter, we report the main results.

Theorem 1.1. Assume that the conditions (f1), (f2), (f3) and (a1), (a2) with p =
1 hold. Then (1.1) has a weak solution.

Theorem 1.2. Whether p = 0. Suppose (f1),(a1) and the following assumptions:
(az) pta(t) < p-a(t)t fort >0, witha(t) = [; a(s)ds.
(f4) hmlt\ﬂJrOO[f(ma t)t —p+F($, t)] = —00.
(f5) limpg— 400 Tt(ff,f) =0.

(fo) fz,t)t >0, for all t # 0.

Then (1.1) has at least one weak solution.

Theorem 1.3. Suppose (a1) and (f1) with pt < ¢ ,u = 1 hold and a(t) is
bounded for t > 0. Assume the following hypotheses,
(f7) The following limit hold uniformly for a.e x €

flz, )t

P | t [P+

(fs) f(x,t) = o(tP@) =1 as t — O uniformly for x in Q.
(fo) There exist two positive constants ¢1 and co such that

P1(x,t) < gy (x, ) < catha(x, s), for all 0 <t < s.
Where,
1(z,t) = f(x, )t — p~ F(x,t),
Ua(z,t) = f(a,t)t = p* F(a,1).
Then, (1.1) admits at least one solution in WP (Q).

Remark 1.4. An example of functions satisfying the assumption of Theorem 1.8
fx,t) =t [*@=2 ¢ where pt <o~ < a(z) < ot <p*(a),
then
Flae.t) = | ¢ |*®)
(z,t) = @)

, fla )t =[],

so we obtain

(e, t) = (1— %) |t o)
and N
Yol t) = (1 - %) | £ ]°),
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what means that (fg) is satisfied since we have ¥1(x,t) is nondecreasing in t > 0
and then 1 (z,t) < ¥1(x,s) when 0 <t < s, so we take ¢ = 1. Accordingly, the
fact that 11,09 > 0 it follows that,

t t—p
¢1($7)§04 p = co.

1/12 (l’, t) o — er
Obuviously the other assumptions are held.

For the assumptions of Theorem 1.2, we can see that f(x,t) = arctan(t)+
clearly verifies the hypotheses.

—t
1+12

The purpose of this work is to improve the results of the above-mentioned
papers and many others. Without assuming the Ambrosetti-Rabinowitz type con-
ditions (A-R), we prove the existence of solutions.

(A-R) there exist § > p™, M > 0 such that for any x € Q and ¢ > M we have

0 < OF(z,t) < f(x,t)t.

For instance, it is known that (fy) is much weaker than the (A-R) condition in
the constant exponent case. In addition, the classical conditions of the coercivity
of the energy functional ¢ associated to problem (1.1) are omitted here, so we
extend them to the best.

This article is organized as follows. In Section 2, we give the necessary nota-
tions, we also include some useful results involving the variable exponent Lebesgue
and Sobolev spaces in order to facilitate the reading of the paper. Finally, in Sec-
tion 3, we prove the existence of nontrivial solution.

2 Preliminaries

We introduce the setting of our problem with some auxiliary results. For
convenience, we only recall some basic facts which will be used later, we refer to
[13] for more details. Set C(Q) = {h: h € C(Q),h(x) > 1for all x € Q}. Define
the variable exponent Lebesgue space LP(*)(Q),

LP@)(Q) = {u: Q@ — R mesurable : [, | u|P(*) dz < oo} then LP(*)(Q) endowed
with the norm

=it >0 5 [ 5P dr<)
Q

becomes a Banach space separable and reflexive space.
Define the variable exponent Sobolev space W1?(*)(Q) by

WhPE)(Q) = {u € LP@(Q) : Vu € LP@ (Q)}.

The space W1P@)(Q) with the norm || u ||=| u |p) + | VU [p) is a Banach
separable and reflexive space.
Let X = WhrE)(Q),
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Definition 2.1. We say that « € W'P(®)(Q) is a weak solution of (1.1), if
a(I1(u)) / (| Vu [PD2VuVo + plu|P®2uw)de f/ f(z,u)vde =0,
Q Q

Yo € WhrE)(Q).
Proposition 2.2. Set, p(u) = [, | u |P™®) dz, if u € L'?®)(Q) we have
- +
(D uwlz1=u |Z(m)+§ plu) <[ u [ i
() ulsl=lulyw” < plu) < |ulpe” -
(3) For w,,u € LP®)(Q),

| Un |p@)— 0 p(un) — 0 as n — +oo.
| un |p(z)_> +00 & p(uy) = +00 as n — +oo.

Proposition 2.3. For any u € LP®)(Q), v € LP'®)(Q), we have

| /qu dz |< 2| u @) vy @),

with
1 1

— 4
p(z) =~ p'(z)
Proposition 2.4. Set, o(u) = [, | Vu [P®) + | u [P@) dz, if u € WHPE)(Q) we
have - N
(D lullz1=ul’ <elw<ful’.
@) lull<l=llul” <o(w)<|ul”.
(8) For up,u € WhHP@)(Q),

I wn | 0 < o(un) — 0 as n — +o0.

| wn || = +00 < o(un) = +00 as n — +o0.

Proposition 2.5. If ¢ € C.(Q) and q(x) < p*(z) for any x € Q, then the
imbedding from W1P@)(Q) to LI)(Q) is compact and continuous.

Definition 2.6. We say that ¢ € (X,R) satisfies the Cerami condition (denoted
by (C)) if any sequence (uy ), C X for which ¢(uy) is bounded and
(1+ || un ||)¢' (un) — 0 as m — oo, possesses a convergent subsequence.

Remark 2.7. In Theorems 1.1 and 1.3, we can suppose that the parameter u > 0,
whith ) . .
a1 TP | e

Lo PR
WLe @) ()\ {0} I dz

p(w)
since WP (Q) with the norm

inf{y >0 : /Q(|

is a separable and reflexive Banach space. For the sake of simplicity, we take
pn=1.

A =

>0,

Vu

@) 4 ) L@y e < 13
14 14
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3 Proof of the Main Results

By means of a direct variational approach, we establish the existence of critical
point of ¢, where

d(u) =a(l1(u)) — / F(z,u)dx

Q

and

1
I (u) = / (1 P PO

So we need some results in form of some lemmas. Denote by C, C;,7 = 1... positive

constants which the exact value may change from line to line.

Lemma 3.1. i) a € C'([0, +o0[),a(0) = 0,@(t) = a(t) for any t > 0.
it) a(I1(u)) is sequentially weakly lower semi-continuous and ¢ is bounded and
Sy type.

The proof of lemma can be obtained easily in view of [7].

Proof of Theorem 1.1: For simplicity, we set H(z,t) = F(x,t) faop)(‘;) [t]P .

Then, according to (f3) we can conclude that, for every M > 0, there is Ry > 0
such that
H(z,t) <—-M, V|t|> Rum, almost every x €. (3.1)

We claim that ¢ is coercive, otherwise, there exist K € R and (u), C X such that
| tn = 00 and ¢(un) < K.

Putting v, = g le || v ||= 1. Then for a subsequence, we may assume that

for v € X, we have v, — v in X, v,, — v strongly in LP®)(Q), v, (z) — v(x) for
almost every = € Q. Now, using ([B.1]), we obtain

K > d(un) 2/ 90 Ty, PO 4 |y, |”(”))d:v—/F(x,un)dx.
Q

o p(z)
ao . ao —
> [ [ Vg, [P 4 | uy, [P®)de — X /— up [P do
Vo P Pl 5
—/H(x,un)dx
Q
ag - 1 _
> 20 P = — un P M, 3.2
> 20 |7 a0 | o det My (32)

where M; € R. Dividing 3:2)) by || un [P and passing to the limit, we conclude

that

a—JOr—ao)\l/ |v [P dx <0,
p Q
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hence, v # 0. Therefore | @' |> 0 with Q' = {z € Q@ \ ov(z) # 0}, then
| un(z) |— 400 for almost every x € Q'. On the other hand,

P p(x)
fui>1 P(2) fuizy  P(2)

p(z)
§>\1/ [ " s
o px)

1
< [ —[| Vu |P® + | u [P®)da, 3.3
[ il P ) (33)

where,
fulz1l]={ze@ \ [ulxz1}; [ul<l]={zecQ\|u|<1}.

It is clear that f‘
[Jun|<1]
inequalities (B3]) we deduce

Kz/

(11,) | un [P dz is bounded. From (f3) and the above

)[| YV, [P + | w, [P®)dz —/ F(x,uy)dx
Q

I
D\\
>

p(z
C(l_H YV, |p(:c)+|u |”(”)]d:n—a0)\1/ |“n| /qun
Q

\_/

0 Yy [P@ 1 |y, [P@]dz — ao>\1/ M
) [lun|>1] p(x)

| un [P
— agy de — | H(z,uy,)dx
[lun |<1] p(x) Q
| un [P
—ap; de — | H(x,up)dx
[lun|<1] p(x) Q

| un |p7
= —ag\1 dx — H(z,uy)dx
fJunl<1)  P(2) [[un|<R1)

- / H(x,u,)dx — 400,
Huw|>R1]

dzr

v

with R; is large enough, which is a contradiction. Hence ¢ is coercive and has a
global minimizer. Indeed, for ¢ > 0 is small enough,

@(tvg) = a(I1(tvg)) 7/F(£L’,t’00)dl‘
Q
C(/tp(w)l |p()d) C/ p
< — | v |P**) dx)* — t"ugtdr
= apl) “Jo 0

< O3t — Out™ <0,

because r; < ap~. O
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Proof of Theorem 1.2: Here, it assumed that p = 0, then
Ii(u) = / L|Vu|p(3")clac.
o p(x)

Our proof is based on the following result

Theorem 3.2. [14] Let X = X1 @ X3, where X is a real Banach space and
Xy # {0}, and is finite dimensional. Suppose ¢ € C*(X,R) satisfies Cerami
condition (C) with the following assertions:

(1) There is a constant a and a bounded neighborhood D of 0 in Xy such that
J|0D < a,

(14) There is a constant B > « such that J| X1 > j,

then ¢ possesses a critical value ¢ > [, moreover, ¢ can be characterized as

= inf h
c ;Lrelrzne%sb( (u)),

where T' = {h € C(D,X)|h=id on OD}.
We recall an important inequality ([IT], [12]), which will be used later:

Lemma 3.3. (Poincaré-Wirtingers inequality) There exists a positive constant Co
such that for any u € Wy we have

ulp(z) < [Vlp(a)-

Lemma 3.4. Assume the conditions (a1), (as) and (f1), (fa) and (f5) are satisfied.
Then, ¢ verifies the Cerami condition (C)e.

Proof. Let K € R such that
|¢(un)| < K

and
(1+ || un )9 (un) — 0 in X*. (3.4)

Assume that || u, || +o0 as n — +oo.

Putting vy, = g2y, s0, vp — v in X. Thus, vp(x) = v(r) aex € Q and
vp — v in LP(®)(Q).

Let h € X. It follows from (B4 that,

|a(Il(un))(/Q|Vun |p(=)=2 Vun.Vhd:c)f/Qf(:c,un)hdx|

en |l Rl

< . (3.5)
1+ | ua |
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Dividing B.3) by || un ||P ! we get

[| Vuy, [P®)~2 Vu,.Vh] Iz, up)
a(li(uy, / — dx) — ——— " hdx
| ( 1( ))( o H Un, ||p -1 ) Q H Uy, ||p -1 |
En A en || 1]
S - < . 3.6
T 7T T T 1= T | (30
On the other side, as || u, [[P®) 71> u, [P 71> 1, we get
Yu, [P®~2 Yy, . Vh T
) ([ P TR gy [ Tn) g
o [ un | o[l un |
| Va,, [P*)=2 Vu,,.Vh / f(zyun)h
> a(l (un / - dr) | — ————dx
R A T T I N I
> |a(11(un))(/ | Vo, [P0 =2 Vo, Vhdz)|— | Mdﬂ.
o ol un [P
Consequently,
_ fQ f(w,up) En H h H
|a(11(un))(/ | Vo, [P®)=2 Yy, Vhdz) | — | S hde |[< 20— (3.7)
Q Il P71 I+ [ un |

with ¢,, — 0 and h € X.
By (f1), (f1) and (f5) we entail that &%) is hounded in (LP~ (2))* which is

lunllP™ =1

separable and reflexive space, then up to a subsequence denoted also (”Z(Tlipiﬂzl)n,
we have L&t F ip (LP7(Q))*. Since L&) 0 a.e 2 € Q (which yields

flon IP7

from (f5)), hence

lun|?™ =1
f(I,Un)
| un [P~

Therefore, taking h = v, —v € X, in (1),

—0, in (L7 (Q))*.

/Q | Vo, |P®)~2 V0,V (v, —v)dz — 0.
By S5 type of ¢’ we have v, — v in X, so v # 0. Since |¢(u,)| < K, we obtain
pra(l(u,)) —p* /Q F(z,un)dz > —pTK. (3.8)
Taking h = u,, in B3] we obtain
—a(Bu) [ (9, P9+ [ floununde = e,
as p(x) > p~ then we have

~ra(h(w,) |

1

Yu, p(x) dx+/ flz, up)updr > —e,. 3.9
p(z) | | Q (o un) o
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Adding BE8) to B3], then we get
/ f(z,up)updx prr/ F(z,up)dx > K. (3.10)
Q Q

Obviously, this is a contradiction and then we have the compactness condition of
the Theorem B.2] is satisfied. O

Next, we borrow the same idea from Chung [T1], we may split WP (Q) as
follows.

Define Wy = {u € WP@(Q) : [ udz = 0}. For u € WP (Q), denote,
= %fgudm and w = u — u. Then, v = @+ w, where u € R, and u € Wy. So
Whr@)(Q) = Wy @ R. Noting that Wy is a closed linear subspace of W1P(®)(Q)
with codimension 1.

Lemma 3.5. Under the conditions (fa) and (fs) the functional ¢|R is anti-
coercive. (i.e p(t) — —oo when |t| = 00).

Proof. From (fy), for all K > 0 there exists R > 0 such that p*F(z,u) >
flz,w)u > K, for a.e z € Q, |u| > R, by (fs) it yields pTF(z,u) > K — ¢,
for a.e z € Q,u € R, and thus for all u© € R,
[ P> o KI9) + o)
r,u)dr > — —c|Q],
Q pr
which implies that
/ F(z,u)dx — co when |u] — oo,
Q

because K is arbitrary. Hence

P(u) = —/ F(z,u)dr — —oco, when |u| — oo.
Q

Lemma 3.6. If (f5) holds, then iVI‘}fcé > —00.
0

Proof. Let u € Wy with || u ||> 1, using the Proposition 2.1 we get
L vy[p) 1 ;
/ 2 je> — |Vl
o p(z) pt p(z)
in view of the Lemma [3.3] there is C5 > 0 such that

T 1-
/ s —da > G [ u | da,
Q
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with 4 = £, if [Vul,) < 1 we have ¢ = + and ¢ = — when |[Vu|,,) > 1. By the
continuous embeddings, there is Cg > 0 such that

/Q P dz < C || u ||

By virtue of the hypothesis (fg), for 0 < e < ° 2ag, we may find K (e) > 0 such
that F(z,u) <e[t|P + K(e), for a.e z € Q and for all v € R. Hence,

/ F(z,u)dr < 5/ lulP + K(g)|9]
Q Q
<Cee || ulP +K()Q, (3.11)

where Cs > 0. Thus,

1
U =a( | —|V|P®dz —/Fx,udx
00w, = | = IVPa) = [ Flaa)
> aoCs =G [ u P —K(e)|Q
> —K(e)[Q], (3.12)
so we infer that ivr[}fqb > —o00. O

By the Lemmas [3.6], and [3.4] we see that the assumptions of the Theorem
are hold. Therefore, problem (1.1) has at least a solution in X. O

Proof of Theorem 1.3: Now, we consider the case when the energy functional
¢ possesses the Mountain Pass geometry and compactness condition [15], we check
theses assumptions in form as the following lemmas.

Lemma 3.7. Suppose that (a1), (a3) and (f1), (f7) — (fo) hold. If c € R, then any
sequence of Cerami (C). of ¢ is bounded.

Proof. Let (un)n be a (C), sequence of ¢. We claim that (uy,), is bounded, oth-
erwise, up to a subsequence we may assume that

d(un) = ¢, || un |[|= +o0, ¢'(u,) — 0.

Up

Putting w, = T

Lp(x)(Q)a Wn(x) — w(Jc)7 a.e. ¢ € ).
Here, two cases appear, if w # 0. Since ¢ (u,)u, = 0, that is,

, up to a subsequence we have w, — w in X, w, — w in

a(Il(un))(/Q|Vun P@ 4 | u, |P@ dac)f/ﬂf(x,un)und:c:(). (3.13)

As we know that a is bounded, dividing @I3) by || un [P, so

f Z, Un Un
o lun 77
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however, using (f7) and lemma of Fatou we obtain

f:cunun f:cunun|w|p

— 0.
o llua 7" | [P*

Which is contradictory.

In the case when w = 0, we choose a sequence t,, € [0, 1] satisfying ¢(t,u,) =
maxy, e[o,1] $(tun). If w = 0, since w, — 0in L9 (Q) and |F(z,t)| < C(1+][t[1®)),
by the continuity of the Nemitskii operator, we see that F(.,w,) — 0 in L}(Q) as
n — 400, therefore

lim | F(x,w,)dz =0. (3.14)

n—oo o)
1
Given m > 0, since for n large enough we have ||u,|~t(2mp*)»~ € (0,1),

using (BI4) with R = (2mp™)»~ = , it follows that

B )= 6(Rw,)

lluny

Rp(z)
Zao/ (IVw, [P@ 4 |, |P@)) dm—/ F(z, Rwy)dx
Q p( ) Q

RP™
> a0—— — / F(x, Rwy)dz > m.
p Q

P(tnun) = ¢(—

Thereby, ¢(t,u,) — 400, on the other hand, we know that ¢(0) = 0, ¢(u,) — ¢,
so we can deduce that ¢, €]0,1[ and < ¢'(tnup), tpu, >= tn%h:tm(mn) =0.
Which yields,

d(tnun) — p—l_qb’(tnun)(tnun) — +00.

Therefore,

| a |oo fQ(Wlm) - p%)(l tn Vi, |p(x) + | tpun |p(x) +fQ p%f(xvtnun)(tnun) -
F(z,thup)de — 400,
so we get,

—_

/ — f(z, thun) (tnun) — F(x, thu, )de — 4o00.
Qb

Moreover,

LY

a2 = L v @
> o [ (o= ) Y |

1
+ | uy [P dz +/ — (f (@, un)un — F(z, un)dz
Qb

1
> /QF(f(:c,un)un — F(z,u,)dz.
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From (fy) we have

1
o) = [ = Fauan = F(oun)do
Q
1
> o1 [ o))~ Pl )do
Qb
1
> 0102/ Ff(x,tnun)(tnun) — F(x,tyuy)d. (3.15)
Q
Hence, ¢(u,) — 400 which is impossible. O
Lemma 3.8. Under the condition of Theorem 1.3, ¢ verifies the following:
(a) There exist p > 0 and B > 0 such that ¢(u) > B when || u ||= p.
(b) There exists v € X such that || v ||< p and ¢(v) < 0.
Proof. In view of (f1) and (fs), there exists C; > 0 such that

|F(z,1)] < ;—0+|t|p(””) + O™, for (z,t) € O xR,
14

Therefore, for ||u|| <1 we have

ag ao
u) > — VulP® + |uP@ dmf—/ ulP®dz — C / u| 7 dy;
olu) 2 3 Q(I | [ul)de = 5% Q|| 1Q||
ao
S 0 P(@) 4 1y [P oy — / a(@) g
2 ot Q(IVUI + [ulP)de — Cy QIUI @
ap + -
2 gt 1l = Colull®
+, 4o —_pt
> ull” (5 = Callul® ).

2pt
Since pt < ¢~, the function t — (21)% — Oyt P is strictly positive in a
neighborhood of zero. It follows that there exist p > 0 and g > 0 such that
b(u) > B,Vu € X : |lul] = p. O

To apply the Mountain Pass Theorem, it suffices to show that
o(tu) —» —oc0  as t — 400,

for a certain u € X.
Jo BES IVulP @ +u?™]de
Ja |u\P+d1' ’

Let v € X\{0}, by (f7), we may choose a constant A >
such that
F(xz,t) > A|1f|”+ uniformly in  x € Q.
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Let £ > 1 large enough, we have

p(z)
T

otu) <lal [
o p(z)
1
§|a|ootp*/ —[|Vu|p(z)+|u|p(””)]d:c7/ F(x, tu)dx
o p(z) [tu|>Ca
7/ F(z,tu)dzx
[tu|<Ca

1
§|a|oot”+/ —[|W|p<x>+|u|p<x>]dx—Atp*/ " da
o p(x) Q

- / F(x,tu)dx + At?" / |u|p+dac
|tu|§CA ‘tu‘SCA

1
<lale tp*/ L 1VulP® 4 @) de —Atp*/ P de + O,
o p(x) Q

[|Vul|P®) + |uP@)]de — / F(x, tu)dx
Q

where Cy > 0 is a constant, which implies that ¢(tu) — —ooas t — +oo. O
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