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1 Introduction and Preliminaries

Let C be the set of all finite complex numbers and f be entire defined in the

open complex plane C. The maximum term µ (r, f) of f =
∞
∑

n=0
anz

n on |z| = r

is defined by µ (r, f) = max (|an| r
n) and the maximum modulus M (r, f) of f =

∞
∑

n=0
anz

n on |z| = r is defined by M (r, f) = max
|z|=r

|f (z)| . We use the standard

notations and definitions in the theory of entire functions which are available in
[1]. In the sequel the following notation is used:

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, ... and log[0] x = x.

To start our paper we just recall the following definition:

Definition 1.1 ([1]). The order ρf and lower order λf of an entire function f

are defined as

ρf = lim sup
r→∞

log[2]M(r, f)

log r
and λf = lim inf

r→∞

log[2] M(r, f)

log r
.

Definition 1.2 ([1]). The type σf of an entire function f is defined as

σf = lim sup
r→∞

logM (r, f)

rρf
, 0 < ρf < ∞.

Sato [2] defined the generalised order and generalised lower order of an entire
function as follows:

Definition 1.3 ([2]). Let m be an integer such that m ≥ 2. The generalised order

ρ
[m]
f and generalised lower order λ

[m]
f of an entire function f are defined as

ρ
[m]
f = lim sup

r→∞

log[m] M (r, f)

log r
and λ

[m]
f = lim inf

r→∞

log[m]M (r, f)

log r
respectively.

For m = 2, Definition 1.2 reduces to Definition 1.1.
If ρf < ∞ then f is of finite order. Also ρf = 0 means that f is of order zero.

In this connection Datta and Biswas [3] gave the following definition:

Definition 1.4 ([3]). Let f be an entire function of order zero. The quantities ρ∗∗f
and λ∗∗

f of f are defined by:

ρ∗∗f = lim sup
r→∞

logM (r, f)

log r
and λ∗∗

f = lim inf
r→∞

logM (r, f)

log r
.

Let L ≡ L (r) be a positive continuous function increasing slowly, i.e., L (ar) ∼
L (r) as r → ∞ for every positive constant a. Somasundaram and Thamizharasi [4]
introduced the notions of L-order and L-type for entire function where L ≡ L (r) is
a positive continuous function increasing slowly, i.e., L (ar) ∼ L (r) as r → ∞ for
every positive constant ‘a’. The more generalised concept for L-order and L-type
for entire function are L∗-order and L∗-type. Their definitions are as follows:
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Definition 1.5 ([4]). The L∗-order ρL
∗

f and the L∗-lower order λL∗

f of an entire
function f are defined as

ρL
∗

f = lim sup
r→∞

log[2] M (r, f)

log
[

reL(r)
] and λL∗

f = lim inf
r→∞

log[2] M (r, f)

log
[

reL(r)
] .

Definition 1.6. The L∗-type σL∗

f of an entire function f is defined as

σL∗

f = lim sup
r→∞

logM (r, f)
[

reL(r)
]ρL∗

f

, 0 < ρL
∗

f < ∞.

In the line of Sato [2], Datta and Biswas [3] one can define the generalised

L∗-order ρ
[m]L∗

f and generalised L∗-lower orderλ
[m]L∗

f of an entire function f in
the following manner:

Definition 1.7. Let m be an integer such that m ≥ 1. The generalised L∗-order

ρ
[m]L∗

f and generalised L∗-lower order λ
[m]L∗

f of an entire function f are defined
as

ρ
[m]L∗

f = lim sup
r→∞

log[m] M (r, f)

log
[

reL(r)
] and λ

[m]L∗

f = lim inf
r→∞

log[m]M (r, f)

log
[

reL(r)
] respectively.

Using the inequality µ (r, f) ≤ M (r, f) ≤ R
R−r

µ (R, f) {cf. [5]} one can easily
verify that

ρ
[m]L∗

f = lim sup
r→∞

log[m] µ (r, f)

log
[

reL(r)
] and λ

[m]L∗

f = lim inf
r→∞

log[m] µ (r, f)

log
[

reL(r)
] .

Similarly, in the line of Somasundaram and Thamizharasi [4] for any positive

integer m ≥ 2 one may define the generalised L∗-type σ
[m−1]L∗

f in the following
manner:

Definition 1.8. The generalised L∗-type σ
[m−1]L∗

f for m ≥ 2 of an entire function
f is defined as follows:

σ
[m−1]L∗

f = lim sup
r→∞

log[m] M (r, f)
[

reL(r)
]ρ

[m]L∗

f

, 0 < ρ
[m]L∗

f < ∞.

Lakshminarasimhan [6] introduced the idea of the functions of L-bounded in-
dex. Later Lahiri and Bhattacharjee [7] worked on entire functions of L-bounded
index and of non uniform L-bounded index. In the paper we study some growth
properties related to the maximum terms and maximummoduli of composite entire
functions using generalised L∗-order and generalised L∗-lower order as compared
to the growths of their corresponding left and right factors.

Now, we present some lemmas which will be needed in the sequel.
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Lemma 1.9 ([8]). Let f and g be any two entire functions with g(0) = 0. Then
for all sufficiently large values of r,

µ (r, f ◦ g) ≥
1

2
µ

(

1

8
µ
(r

4
, g
)

− |g(0)| , f

)

.

Lemma 1.10 ([9]). If f and g are two entire functions then for all sufficiently

large values of r,

M

(

1

8
M
( r

2
, g
)

− |g(0)| , f

)

≤ M(r, f ◦ g) ≤ M (M (r, g) , f) .

2 Main Results

In this section we present the main results of the paper.

Theorem 2.1. Let f and g be any two entire functions such that ρ
[m]L∗

f and ρL
∗

g

are both finite and positive where m ≥ 1. Then for each α ∈ (−∞,∞) ,

lim inf
r→∞

{

log[m] µ (r, f ◦ g) + log[m] µ (r, f)
}1+α

log[m] µ (exp (rβ) , f)
= 0 and

lim inf
r→∞

{

log[m] µ (r, f ◦ g) + log[m] µ (r, f)
}1+α

log[2] µ (exp (rβ) , g)
= 0 where β > (1 + α) ρL

∗

g .

Proof. If 1 + α < 0, then the theorem is trivial. So we take 1 + α > 0. Now in
view of Lemma 1.10 and the inequality µ (r, f) ≤ M (r, f) {cf. [5]} , we have for
all sufficiently large values of r that

µ(r, f ◦ g) ≤ M(r, f ◦ g) ≤ M (M (r, g) , f)

i.e., log[m] µ(r, f ◦ g) ≤ log[m] M (M (r, g) , f)

i.e., log[m] µ(r, f ◦ g) ≤
(

ρ
[m]L∗

f + ε
) [

logM (r, g) eL(M(r,g))
]

i.e., log[m] µ(r, f ◦ g)

≤
(

ρ
[m]L∗

f + ε
) [

reL(r)
]

(

ρL∗

g +ε
)

+
(

ρ
[m]L∗

f + ε
)

L (M (r, g)) . (2.1)

Again in view of the inequality µ (r, f) ≤ M (r, f) {cf. [5]} , it follows for all
sufficiently large values of r that

log[m] µ(r, f) ≤ log[m] M (r, f) ≤
(

ρ
[m]L∗

f + ε
)

log
[

reL(r)
]

. (2.2)

Further we get for a sequence of r tending to infinity and for ε(> 0) that

log[m] µ
(

exp
(

rβ
)

, f
)

≥
(

ρ
[m]L∗

f − ε
)

log
[

exp
(

rβ
)

exp
{

L
(

exp
(

rβ
))}]
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i.e., log[m] µ
(

exp
(

rβ
))

, f) ≥
(

ρ
[m]L∗

f − ε
)

[

rβ + L
(

exp
(

rβ
))]

. (2.3)

Now from (2.1) and (2.2) we obtain for for all sufficiently large values of r that

{

log[m] µ (r, f ◦ g) + log[m] µ(r, f)
}1+α

≤

[

[

reL(r)
]

(

ρL∗

g +ε
)

(

ρ
[m]L∗

f + ε
)

(

ρ
[m]L∗

f + ε
)(

L (M (r, g)) + log
[

reL(r)
])]1+α

.

So from above and (2.3) we obtain for a sequence of r tending to infinity that

{

log[m] µ (r, f ◦ g) + log[m] µ(r, f)
}1+α

log[m] µ (exp (rβ) , f)

≤

[

(

ρ
[m]L∗

f + ε
)

[

[

reL(r)
]

(

ρL∗

g +ε
)

+
(

L (M (r, g)) + log
[

reL(r)
])

]]1+α

(

ρ
[m]L∗

f − ε
)

[rβ + L (exp (rβ))]
. (2.4)

Let

[

eL(r)
]

(

ρL∗

g +ε
)

(

ρ
[m]L∗

f + ε
)

= k1,
(

ρ
[m]L∗

f + ε
)

L (M (r, g)) = k2,
(

ρ
[m]L∗

f + ε
)

log
[

reL(r)
]

= k3,
(

ρ
[m]L∗

f − ε
)

= k4,
(

ρ
[m]L∗

f − ε
)

L
(

exp
(

rβ
))

= k5.

Then from (2.4) we obtain for a sequence of r tending to infinity that

{

log[m] µ (r, f ◦ g) + log[m] µ(r, f)
}1+α

log[m] µ (exp (rβ) , f)
≤

[

r

(

ρL∗

g +ε
)

k1 + k2 + k3

]1+α

k4rβ + k5

i.e.,

{

log[m]µ (r, f ◦ g)+log[m] µ(r, f)
}1+α

log[m] µ (exp (rβ) , f)
≤

r

(

ρL∗

g +ε
)

(1+α)
[

k1+
k2+k3

r
(ρL∗

g +ε)

]

1+α

k4rβ + k5

where k1, k2,k3 and k4 are finite.
Since

(

ρL
∗

g + ε
)

(1 + α) < β, therefore

lim inf
r→∞

{

log[m] µ (r, f ◦ g) + log[m] µ(r, f)
}1+α

log[m] µ (exp (rβ) , f)
= 0

where we choose ε(> 0) such that

0 < ε < min

{

ρ
[m]L∗

f ,
β

1 + α
− ρL

∗

g

}

,
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which proves the first part of the theorem.
Similarly, the second part of the theorem follows from the following inequality

in place of (2.3)

log[2] µ
(

exp
(

rβ
))

, g) ≥
(

ρL
∗

g − ε
)

[

rβ + L
(

exp
(

rβ
))]

for a sequence of values of r tending to infinity. This proves the theorem.

Remark 2.2. In Theorem 2.1 if we take the condition “ 0 < λ
[m]L∗

f ≤ ρ
[m]L∗

f < ∞

and 0 < λL∗

g ≤ ρL
∗

g < ∞ ” in place of “ ρ
[m]L∗

f and ρL
∗

g are both finite and positive

” then the theorem remains true with “ lim ” replaced by “ lim inf ”.

In the line of Theorem 2.1, the following theorem can be proved:

Theorem 2.3. Let f and g be any two entire functions with finite and positive

ρ
[m]L∗

f and ρL
∗

g where m ≥ 1.Then for each α ∈ (−∞,∞) ,

lim inf
r→∞

{

log[m] M (r, f ◦ g) + log[m]M (r, f)
}1+α

log[m] M (exp (rβ) , f)
= 0 and

lim inf
r→∞

{

log[m]M (r, f ◦ g) + log[m]M (r, f)
}1+α

log[2]M (exp (rβ) , g)
= 0 where β > (1 + α) ρL

∗

g .

Remark 2.4. Also in Theorem 2.3 if we take the condition “ 0 < λ
[m]L∗

f ≤

ρ
[m]L∗

f < ∞ and 0 < λL∗

g ≤ ρL
∗

g < ∞ ” inplace of “ ρ
[m]L∗

f and ρL
∗

g are both finite

and positive ” then the theorem remains true with “ lim ” replaced by “lim inf”.

Theorem 2.5. Let f and g be any two entire functions with 0 < λ
[m]L∗

f ≤ ρ
[m]L∗

f <

∞ where m is any positive integer and 0 < λL∗

g ≤ ρL
∗

g < ∞. Then

lim sup
r→∞

log[m+1] µ (r, f ◦ g)

log[m] µ (r, f) + log[3] µ (r, g) + L
(

1
8µ
(

r
4 , g
)

− |g(0)|
)
≥

ρL
∗

g

ρ
[m]L∗

f

.

Proof. In view of Lemma 1.9, we have for all sufficiently large values of r

log[m] µ (r, f ◦ g) ≥ o (1) + log[m] µ

(

1

8
µ
(r

4
, g
)

− |g(0)| , f

)

. (2.5)

i.e., log[m] µ (r, f ◦ g) ≥ o (1) +

(

λ
[m]L∗

f − ε
)

log

{

1

8
µ
(r

4
, g
)

− |g(0)|

}

+ L

(

1

8
µ
( r

4
, g
)

− |g(0)|

)

(2.6)
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i.e., log[m] µ (r, f ◦ g) ≥ o (1) +
(

λ
[m]L∗

f − ε
)

[

log

{

1

8
µ
(r

4
, g
)

(

1−
|g(0)|

1
8µ
(

r
4 , g
)

)}

+ L

(

1

8
µ
(r

4
, g
)

− |g(0)|

)

]

i.e., log[m] µ (r, f ◦ g) ≥
(

λ
[m]L∗

f − ε
)

logµ
(r

4
, g
)

.















logµ
(

r
4 , g
)

+ log

(

1− |g(0)|
1
8µ(

r
4 ,g)

)

+ L
(

1
8µ
(

r
4 , g
)

− |g(0)|
)

logµ
(

r
4 , g
)















i.e., log[m+1] µ (r, f ◦ g) ≥ log[2] µ
(r

4
, g
)

+

(

λL∗

g − ε

ρ
[m]L∗

f + ε

)

L

(

1

8
µ
( r

4
, g
)

− |g(0)|

)

− log

[

exp

{(

λL∗

g − ε

ρ
[m]L∗

f + ε

)

L

(

1

8
µ
(r

4
, g
)

− |g(0)|

)

}]

+ log

{

[

logµ
(

r
4 , g
)

+ L
(

1
8µ
(

r
4 , g
)

− |g(0)|
)]

+ o (1)

logµ
(

r
4 , g
)

}

i.e., log[m+1] µ (r, f ◦ g) ≥ log[2] µ
(r

4
, g
)

+

(

λL∗

g − ε

ρ
[m]L∗

f + ε

)

L

(

1

8
µ
( r

4
, g
)

− |g(0)|

)

+ log















[

logµ
(

r
4 , g
)

+ L
(

1
8µ
(

r
4 , g
)

− |g(0)|
)]

+ o (1)

exp

{(

λL∗

g −ε

ρ
[m]L∗

f
+ε

)

L
(

1
8µ
(

r
4 , g
)

− |g(0)|
)

}

logµ
(

r
4 , g
)















i.e., log[m+1] µ (r, f ◦ g)≥ log[2] µ
(

r
4 , g
)

+

(

λL∗

g −ε

ρ
[m]L∗

f
+ε

)

L

(

1

8
µ
(

r
4 , g
)

−|g(0)|

)

. (2.7)

Now from (2.7) it follows for a sequence of values of r tending to infinity that

log[m+1] µ (r, f ◦ g) ≥
(

ρL
∗

g − ε
)

log
{r

4
eL(

r
4 )
}

+

(

ρL
∗

g − ε

ρ
[m]L∗

f + ε

)

L

(

1

8
µ
( r

4
, g
)

− |g(0)|

)

. (2.8)
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Now we get for all sufficiently large values of r that

log[m] µ (r, f) ≤
(

ρ
[m]L∗

f + ε
)

log
{

reL(r)
}

i.e., log[m] µ (r, f) ≤
(

ρ
[m]L∗

f + ε
)

log
{r

4
eL(

r
4 )
}

+ log 4. (2.9)

Further it follows for all sufficiently large values of r that

log[2] µ (r, g) ≤
(

ρL
∗

g + ε
)

log
{

reL(r)
}

i.e., log[3] µ (r, g) ≤ log[2]
{

reL(r)
}

+O(1). (2.10)

Therefore from (2.9) and (2.10) , we obtain for all sufficiently large values of r that

log[m] µ (r, f) + log[3] µ (r, g) ≤
(

ρ
[m]L∗

f + ε
)

log
{r

4
eL(

r
4 )
}

+

log 4 + log[2]
{

reL(r)
}

+O(1). (2.11)

Hence from (2.8) and (2.11) it follows for all sufficiently large values of r that

log[m+1] µ (r, f ◦ g) ≥

(

ρL
∗

g −ε

ρ
[m]L∗

f
+ε

)

(

log[m] µ (r, f)+log[3] µ (r, g)−log 4−log[2]
{

reL(r)
}

−O(1)
)

+

(

ρL
∗

g −ε

ρ
[m]L∗

f
+ε

)

L

(

1

8
µ
( r

4
, g
)

− |g(0)|

)

i.e., log[m+1] µ (r, f ◦ g) ≥

(

ρL
∗

g −ε

ρ
[m]L∗

f
+ε

)

[

log[m] µ (r, f)+log[3] µ (r, g) + L
(

1
8
µ
(

r
4
, g
)

−|g(0)|
)

]

−





ρL
∗

g − ε

ρ
[m]L∗

f
+ ε





(

log 4 + log[2]
{

reL(r)
}

+ O(1)
)

i.e.,
log[m+1] µ (r, f ◦ g)

log[m] µ (r, f) + log[3] µ (r, g) + L
(

1
8
µ
(

r
4
, g
)

− |g(0)|
) ≥

(

ρL
∗

g −ε

ρ
[m]L∗

f
+ε

)

−

(

ρL
∗

g −ε

ρ
[m]L∗

f
+ε

)

(

log 4 + log[2]
{

reL(r)
}

+O(1)
)

log[m] µ (r, f) + L
(

1
8
µ
(

r
4
, g
)

− |g(0)|
)

.

(2.12)

Since ε (> 0) is arbitrary, it follows from (2.12) that

lim sup
r→∞

log[m+1] µ (r, f ◦ g)

log[m] µ (r, f) + log[3] µ (r, g) + L
(

1
8µ
(

r
4 , g
)

− |g(0)|
)
≥

ρL
∗

g

ρ
[m]L∗

f

.

Thus the theorem is established.
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In the line of Theorem 2.5, the following theorem can be proved:

Theorem 2.6. Let f and g be any two entire functions with 0 < λ
[m]L∗

f ≤ ρ
[m]L∗

f <

∞ where m ≥ 1 and 0 < λL∗

g ≤ ρL
∗

g < ∞. Then

lim inf
r→∞

log[m+1] µ (r, f ◦ g)

log[m] µ (r, f) + log[3] µ (r, g) + L
(

1
8µ
(

r
4 , g
)

− |g(0)|
)
≥

λL∗

g

ρ
[m]L∗

f

.

The proof is omitted.

Theorem 2.7. Let f and g be any two entire functions with 0 < λ
[m]L∗

f ≤ ρ
[m]L∗

f <

∞ where m is any positive integer and 0 < λL∗

g ≤ ρL
∗

g < ∞. Then

lim sup
r→∞

log[m+1] M (r, f ◦ g)

log[m] M (r, f) + log[3] M (r, g) + L
(

1
8M

(

r
2 , g
)

− |g(0)|
)
≥

ρL
∗

g

ρ
[m]L∗

f

.

Theorem 2.8. Let f and g be any two entire functions such that 0 < λ
[m]L∗

f ≤

ρ
[m]L∗

f < ∞ where m ≥ 1 and 0 < λL∗

g ≤ ρL
∗

g < ∞. Then

lim inf
r→∞

log[m+1] M (r, f ◦ g)

log[m] M (r, f) + log[3] M (r, g) + L
(

1
8M

(

r
2 , g
)

− |g(0)|
)
≥

λL∗

g

ρ
[m]L∗

f

.

We omit the proofs of Theorem 2.7 and Theorem 2.8 because those can be
carried out in the line of Theorem 2.5 and Theorem 2.6 respectively and with the
help of Lemma 1.10

Theorem 2.9. Let f and g be any two entire functions with ρ
[n]L∗

f < ∞, ρ
[p]L∗

g <

∞ and λ
[m]L∗

f◦g = ∞ where m,n and p are positive integers. Then

lim
r→∞

log[m] µ(r, f ◦ g)

log[n] µ(r, f) + log[p] µ(r, g)
= ∞.

Proof. Let us suppose that the conclusion of the theorem do not hold. Then we
can find a constant β > 0 such that for a sequence of values of r tending to infinity

log[m] µ(r, f ◦ g) ≤ β
[

log[n] µ(r, f) + log[p] µ(r, g)
]

. (2.13)

Again from the definition of ρ
[n]L∗

f , it follows that for all sufficiently large values
of r that

log[n] µ(r, f) ≤
(

ρ
[n]L∗

f + ε
)

log
(

reL(r)
)

, (2.14)

and from the definition of ρ
[p]L∗

g , it follows that for all sufficiently large values of
r that

log[p] µ(r, g) ≤
(

ρ[p]L
∗

g + ε
)

log
(

reL(r)
)

. (2.15)
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Thus from (2.13), (2.14) and (2.15) we have for a sequence of values of r tending
to infinity that

log[m] µ(r, f ◦ g) ≤ β
[(

ρ
[n]L∗

f + ε
)

log
(

reL(r)
)

+
(

ρ[p]L
∗

g + ε
)

log
(

reL(r)
)]

i.e.,
log[m] µ(r, f ◦ g)

log
(

reL(r)
) ≤

β
[(

ρ
[n]L∗

f + ε
)

+
(

ρ
[p]L∗

g + ε
)]

log
(

reL(r)
)

log
(

reL(r)
)

i.e., lim inf
r→∞

log[m] µ(r, f ◦ g)

log
(

reL(r)
) = λ

[m]L∗

f◦g < ∞.

This is a contradiction. Thus the theorem follows.

In the line of Theorem 2.9, the following theorem may also be proved:

Remark 2.10. Theorem 2.9 is also valid with “limit superior” instead of “limit”

if λ
[m]L∗

f◦g = ∞ is replaced by ρ
[m]L∗

f◦g = ∞ and the other conditions remaining the

same.

Theorem 2.11. Let f and g be any two entire functions with ρ
[n]L∗

f < ∞, ρ
[p]L∗

g <

∞ and λ
[m]L∗

f◦g = ∞ where m,n and p are positive integers. Then

lim
r→∞

log[m] M(r, f ◦ g)

log[n] M(r, f) + log[p] M(r, g)
= ∞.

Further if ρ
[m]L∗

f◦g = ∞ instead of λ
[m]L∗

f◦g = ∞ then

lim inf
r→∞

log[m] M(r, f ◦ g)

log[n] M(r, f) + log[p] M(r, g)
= ∞.

Corollary 2.12. Under the assumptions of Theorem 2.9 or Remark 2.10 and

Theorem 2.11,

lim
r→∞

log[m−1] µ(r, f ◦ g)

log[n−1] µ(r, f) · log[p−1] µ(r, g)
= ∞

and

lim
r→∞

log[m−1] M(r, f ◦ g)

log[n−1] M(r, f) · log[p−1] M(r, g)
= ∞.

Proof. By Theorem 2.9 or Remark 2.10 we obtain for all sufficiently large values
of r and for K > 1 that

log[m] µ(r, f ◦ g) > K
[

log[n] µ(r, f) + log[p] µ(r, g)
]

i.e., log[m−1] µ(r, f ◦ g) >
[

log[n−1] µ(r, f) · log[p−1] µ(r, g)
]K

,

from which the first part of the corollary follows.
Similary, from Theorem 2.11 the second part of the corollary is established.
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Theorem 2.13. If f and g be any two entire functions such that (i) 0 < ρ
[n]L∗

f <

∞, (ii) 0 < σ
[n−1]L∗

f < ∞, (iii) ρ
[m]L∗

f◦g = ρ
[n]L∗

f and (iv) σ
[m−1]L∗

f◦g < ∞. Then

for any β > 1,

lim inf
r→∞

log[m−1] µ (r, f ◦ g) + log[n] µ(r, f)

log[n−1] µ (r, f)
≤

βρ
[n]L∗

f σ
[m−1]L∗

f◦g

σ
[n−1]L∗

f

and

σ
[m−1]L∗

f◦g

βρ
[m]L∗

f◦g σ
[n−1]L∗

f

≤ lim sup
r→∞

log[m−1]µ(r, f ◦ g)

log[n−1]µ (r, f)+log[n]µ(r, f)
.

Proof. From the definition of generalised L∗-type and in view of the inequality
µ (r, f) ≤ M (r, f) {cf. [5]} , we obtain for all sufficiently large values of r that

log[m−1] µ (r, f ◦ g) ≤ log[m−1] M (r, f ◦ g)

≤
(

σ
[m−1]L∗

f◦g + ε
){

reL(r)
}ρ

[m]L∗

f◦g

(2.16)

and

log[n−1] µ (r, f) ≤
(

σ
[n−1]L∗

f + ε
){

reL(r)
}ρ

[n]L∗

f

. (2.17)

Also taking R = βr in the inequality M (r, f) ≤ R
R−r

µ (R, f) {cf. [5]} we obtain
for a sequence of values of r tending to infinity that

log[m−1] µ (r, f ◦ g) ≥ log[m−1] M

(

r

β
, f ◦ g

)

+O(1)

≥
(

σ
[m−1]L∗

f◦g − ε
)

{(

r

β

)

eL(
r
β )
}ρ

[m]L∗

f◦g

i.e., log[m−1] µ (r, f ◦ g) ≥

(

σ
[m−1]L∗

f◦g − ε
)

βρ
[m]L∗

f◦g

{

reL(r)
}ρ

[m]L∗

f◦g

+O(1) (2.18)

and

log[n−1] µ (r, f) ≥ log[n−1] M

(

r

β
, f

)

+O(1)

≥
(

σ
[n−1]L∗

f − ε
)

{(

r

β

)

eL(
r
β )
}ρ

[n]L∗

f

i.e., log[n−1] µ (r, f) ≥

(

σ
[n−1]L∗

f − ε
)

βρ
[n]L∗

f

{

reL(r)
}ρ

[n]L∗

f

+O(1). (2.19)
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Now from (2.14), (2.16) and (2.19) it follows for a sequence of values of r tending
to infinity that

log[m−1] µ (r, f ◦ g) + log[n] µ(r, f)

log[n−1] µ (r, f)
≤

βρ
[n]L∗

f

(

σ
[m−1]L∗

f◦g + ε
)

{

reL(r)
}ρ

[m]L∗

f◦g +
(

ρ
[n]L∗

f + ε
)

log
(

reL(r)
)

(

σ
[n−1]L∗

f − ε
)

{

reL(r)
}ρ

[n]L∗

f +O(1)
. (2.20)

In view of the condition (iii) we get from (2.20) that

lim inf
r→∞

log[m−1] µ (r, f ◦ g) + log[n] µ(r, f)

log[n−1] µ (r, f)
≤

βρ
[n]L∗

f

(

σ
[m−1]L∗

f◦g + ε
)

(

σ
[n−1]L∗

f − ε
) .

As ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

log[m−1] µ (r, f ◦ g) + log[n] µ(r, f)

log[n−1] µ (r, f)
≤

βρ
[n]L∗

f · σ
[m−1]L∗

f◦g

σ
[n−1]L∗

f

. (2.21)

Again from (2.14), (2.17) and (2.18) we get for a sequence of values of r tending
to infinity that

log[m−1] µ (r, f ◦ g)

log[n−1] µ (r, f) + log[n] µ(r, f)
≥

(

σ
[m−1]L∗

f◦g − ε
)

{

reL(r)
}ρ

[m]L∗

f◦g +O(1)

βρ
[m]L∗

f◦g

(

σ
[n−1]L∗

f + ε
)

{

reL(r)
}ρ

[n]L∗

f +
(

ρ
[n]L∗

f + ε
)

log
(

reL(r)
)

. (2.22)

Since ρ
[m]L∗

f◦g = ρ
[n]L∗

f , we obtain from (2.22) that

lim sup
r→∞

log[m−1] µ (r, f ◦ g)

log[n−1] µ (r, f) + log[n] µ(r, f)
≥

(

σ
[m−1]L∗

f◦g − ε
)

βρ
[m]L∗

f◦g

(

σ
[n−1]L∗

f + ε
)

(

1 +

(

ρ
[n]L∗

f
+ε

)

log(reL(r))

β
ρ
[m]L∗

f◦g

(

σ
[n−1]L∗

f
+ε

)

{reL(r)}
ρ
[n]L∗

f

) .

As ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log[m−1] µ (r, f ◦ g)

log[n−1] µ (r, f) + log[n] µ(r, f)
≥

σ
[m−1]L∗

f◦g

βρ
[m]L∗

f◦g · σ
[n−1]L∗

f

. (2.23)

Thus the theorem follows from (2.21) and (2.23).
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In the line of Theorem 2.13, we may state the following theorem without proof:

Theorem 2.14. If f and g be any two entire functions with (i) 0 < ρ
[n]L∗

g <

∞, (ii) 0 < σ
[n−1]L∗

g < ∞, (iii) ρ
[m]L∗

f◦g = ρ
[n]L∗

g and (iv) σ
[m−1]L∗

f◦g < ∞. Then

for any β > 1,

lim inf
r→∞

log[m−1] µ (r, f ◦ g) + log[n] µ(r, g)

log[n−1] µ (r, g)
≤

βρ[n]L∗

g σ
[m−1]L∗

f◦g

σ
[n−1]L∗

g

and

σ
[m−1]L∗

f◦g

βρ
[m]L∗

f◦g σ
[n−1]L∗

g

≤ lim sup
r→∞

log[m−1]µ (r, f ◦ g)

log[n−1] µ(r, g)+log[n]µ(r, g)
.

Theorem 2.15. If f and g be any two entire functions such that (i) 0 < ρ
[n]L∗

f <

∞, (ii) 0 < σ
[n−1]L∗

f < ∞, (iii) ρ
[m]L∗

f◦g = ρ
[n]L∗

f and (iv) σ
[m−1]L∗

f◦g < ∞. Then

lim inf
r→∞

log[m−1] M (r, f ◦ g) + log[n] µ(r, f)

log[n−1] M (r, f)
≤

(

σ
[m−1]L∗

f◦g

σ
[n−1]L∗

f

)

≤ lim sup
r→∞

log[m−1]M (r, f ◦ g)

log[n−1] M (r, f) + log[n] µ(r, f)
.

Theorem 2.16. If f and g be any two entire fucntions such that (i) 0 < ρ
[n]L∗

g <

∞, (ii) 0 < σ
[n−1]L∗

g < ∞, (iii) ρ
[m]L∗

f◦g = ρ
[n]L∗

g and (iv) σ
[m−1]L∗

f◦g < ∞. Then

lim inf
r→∞

log[m−1] M (r, f ◦ g) + log[n] µ(r, g)

log[n−1] M (r, g)
≤

(

σ
[m−1]L∗

f◦g

σ
[n−1]L∗

g

)

≤ lim sup
r→∞

log[m−1]M (r, f ◦ g)

log[n−1] M (r, g) + log[n] µ(r, g)
.

The proof of Theorem 2.15 and Theorem 2.16 are omitted because those can
be carried out in the line of Theorem 2.13 and Theorem 2.14 respectively.
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