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Abstract : In his celebrated article [1], V. Jones introduced Index theory of
subfactors, which is called Jones Index theory to his honor. In this article, he
showed that to any type Π1 subfactors, A ⊂ B corresponds a number [A : B],
which is independent from the Hilbert space on which the above subfactors act
upon. He proved that for values of [A : B] less than 4 the values of index are given
by the following set of numbers, 4 cos2(π/n), n = 1, 2, ....

For a given subfactors B1 ⊂ B2, Jones introduced a construction in term
of extending the above inclusion into the tower of subfactors, B1 ⊂ B2 ⊂ ... ⊂
Bk ⊂ ... ⊂ B∞, which is called Jones tower. One of the main tools to construct
subfactors is called commuting square. A commuting square consists of four finite
dimensional C∗ algebras that satisfy the following geometry,

B2,1 ⊂ B2,2
⋃ ⋃

B1,1 ⊂ B1,2

If the commuting square is non-degenerate and equipped with Markov trace
then we can extend it vertically using Jones construction to get type Π1 limiting
algebras B1 ⊂ B2. Now using Jones construction on the subfactors B1 ⊂ B2, we
get the tower B1 ⊂ B2 ⊂ ... ⊂ Bk ⊂ ... ⊂ B∞. Next let us define the following
algebras, Di = (Bi)

′
⋂

B∞ = (x ∈ B∞, x commute with Bi), i = 1, 2. then we say
that the graph of the inclusion B1 ⊂ B2 is Ergodic if the algebras D1 and D2 are
factors, i.e., have trivial centers. We say that the inclusion B1 ⊂ B2 is strongly
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amenable if the exist a von Neumann algebra isomorphism taking the subfactors
B1 ⊂ B2 onto the subfactors D2 ⊂ D1. Also usually we represent D1 by M st and
D2 by Nst. Note that in any case we always have, [D2 : D1]=[B1 : B2]. Now
keeping the same notations as in the above, given a non-degenerate commuting
square, we are going to show that the corresponding induced Π1 subfactors B2 ⊃
B1, have Ergodic principal and dual graphs. Furthermore, in [2] we showed that
if the induced subfactors index fall within certain interval then their inclusion is
either strongly amenable or the inclusion of corresponding derived subalgebras
D2 ⊂ D1 is isomorphic to Jones subfactors. In the later case we show that the
corresponding graphs to the higher relative commutants of the above inclusion,
ΓB1,B2

, have norms equal to 2. This extends the results of U. Haagerup in [3], Scott
Morrison and Noah Snyder in [4], stating that the only infinite depth principal
graphs corresponding to subfactors with their indices located in the interval (4, 5)
are A∞ graphs.

In this article we are going to introduce certain class of commuting squares
such that their corresponding limiting subfactors are strongly amenable. This class
contains the set of all symmetric commuting squares. In particular in Corolary
2.14 we prove that the set of strongly amenable subfactors is very large. Finally
in this article we introduce new and simple methods to solve some interesting
problems of Jones index theory.

Keywords : subfactors, von Neumann algebras, Jones index, lattice, relative
commutants.

2010 Mathematics Subject Classification : 46L37.

1 Introduction and Preliminaries

In [5] and [6], V. Jones used results from index theory to find new polynomial
invariant for Link and knots. Later on Edward Witten in [7] applied Jones poly-
nomials to Quantum field theory and introduced polynomial invariant for three
manifold.

In [8] A. Ocneanu shows that there has been link from subfactors to Coxter
ADE graphs, Lie algebras, Lie groups and quantum Lie groups. He explain that
the study of group like invariants of finite depth subfactors and quantum groups is
now in situation similar to the study of simple Lie algebras a century ago. Further
study of these structures is motivated from physics of quantum field theory and
quantum gravity and application to quantum physics.

Since the advances of Jones Index theory motivated the need to answer un-
known questions regarding irreducible subfactors of finite index. For example
finding the set IRRH of values of index for hyperfinite irreducible subfactors,
with index larger than 4 is still and open problem. In Corollary 4.5 [9], S. Popa
showed that IRRH contains a gap between 4 to 4.026. In [10], the authors prove
that IRRH ⊃ [37.0037]. Scope of this field of research is immense and at this
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article we try to answer few of the open problems.
As we mentioned in the above one of the main tools to analyze and to construct a
pair of irreducible type Π1 subfactors is called commuting square. They were first
introduced by S. Popa in [11]. In this article we are going to use commuting squares
to show some important properties of the corresponding induced subfactors.

Suppose we are Given a following non-degenerate commuting square

B2,1 ⊂ B2,2
⋃ ⋃

B1,1 ⊂ B1,2.
(1)

For a given inclusion of finite dimensional C∗ algebrasA ⊂ B, let TB
A , be the matrix

representation of the above inclusion with ‖TB
A ‖, the norm of the linear operator

TB
A . Then the fact that (1) is non-degenerate implies that matrices T = T

B2,1

B1,1
,

S = T
B1,2

B1,1
, G = T

B2,2

B1,2
, L = T

B2,2

B2,1
, are indecomposable with ‖T ‖ = ‖G‖ and

‖S‖ = ‖L‖. Throughout this article the unique normal faithful normalized trace on
a type Π1 factor M is represented by trM . In particular if M is a limiting algebra
corresponding to periodic tower of finite dimensional algebras, (Bi ⊂ Bi+1)

∞

i=1

with TB2

B1
indecomposable, then trM is the The Markov trace corresponding to the

inclusion B1 ⊂ B2. For the definitions of commuting square, Markov trace, Jones
tower, and other preliminaries see for instance [1, 12–15]. Now by the standard
arguments in [13]. We can extend (1), upward using the basic construction on the
pair B1,1 ⊂ B2,1, to get the following tower of commuting squares

B1 ⊂ B2
⋃ ⋃

...
...

⋃ ⋃

Bk,1 ⊂ Bk,2
⋃ ⋃

...
...

⋃ ⋃

B3,1 ⊂ B3,2
⋃ ⋃

B2,1 ⊂ B2,2
⋃ ⋃

B1,1 ⊂ B1,2

(2)

with B3,2 = < B2,2, eB2,2
>, B3,1 = < B2,1, eB2,2

> proceeding inductively, for
any integer k larger than 3, set, Bk,2 = < Bk−1,2, eBk−2,2

>, Bk,1 = < Bk−1,1,
eBk−2,2

>, where eBk−2,2
is the projection corresponding to the action of Bk−2,2

on L2
(Bk−1,2,trB2

). Let us set new and more convenient names for the Jones pro-

jections in the above, f1 = eB1,2
, f2 = eB2,2

, ..., fk = eBk,2
, then we have Bk,2

=< Bk−1,2, fk−2 > for each integer k that is equal or larger than 3. Also note that
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B1 and B2 are the limiting algebras of the towers {Bk,1} and {Bk,2} respectively.
Next we can extend the inclusion B1 ⊂ B2 right ward using the basic construction
to get the tower,

B1 ⊂ B2 ⊂ B3 =< B2, eB1
>⊂ . . . ⊂< Bk, eBk−1

>= Bk+1 ⊂ . . . ⊂ B∞

where B∞ is the limiting algebra of the above tower. Furthermore for each n ≥ 1,
we have the following tower of finite dimensional algebras.

Bn,1 ⊂ Bn,2 ⊂ Bn,3 =< Bn,2, eB1
>⊂ . . . ⊂ Bn,k =< Bn−1,k, eBk−2

>⊂ . . . ⊂ Bn

with Bn the limiting algebra of the above tower, which is isomorphic to the Jones
tower induced from the finite algebras inclusion Bn,1 ⊂ Bn,2 by standard ar-
guments. Now in order to facilitate our notations, we rename the above Jones
projections as in the following,

e1 = eB1
, e2 = eB2

, ..., ek = eBk
, ....

The above construction will provide us with the following Jones system of com-
muting squares i.e., each of the horizontal and vertical towers are isomorphic to
Jones tower.

Therefore we get the following tower of commuting squares

B1 ⊂ B2 ⊂ . . . ⊂ Bk ⊂ . . . ⊂ B∞

⋃ ⋃ ⋃ ⋃

...
...

...
...

⋃ ⋃ ⋃ ⋃

Bn,1 ⊂ Bn,2 ⊂ . . . ⊂ Bn,k ⊂ . . . ⊂ Bn

⋃ ⋃ ⋃ ⋃

...
...

...
...

⋃ ⋃ ⋃ ⋃

B2,1 ⊂ B2,2 ⊂ . . . ⊂ B2,k ⊂ . . . ⊂ B2
⋃ ⋃ ⋃ ⋃

B1,1 ⊂ B1,2 ⊂ . . . ⊂ B1,k ⊂ . . . ⊂ B1

(3)

In particular B1 is the limiting algebra of the tower, B1,1 ⊂ B1,2 ⊂ . . . B1,k ⊂
. . .⊂ B1.

Finally, we have Bk,2 =< Bk−1,2, fk−2 > and Bn,k =< Bn,k−1, ek−2 > In
the process of writing this article we use perturbation technics frequently. These
technics are mainly based on the results of E. Christensen [14], A. Ocneanu [16].
In the last section of this work some open problems have been addressed, with
partial solution provided. The that we use here are simple based on S. Popa’s
work.
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2 On Certain Properties of Commuting Squares

In this section we show some basic properties of non-degenerate commuting
squares. In Lemma 2.2 we prove that if the commuting square satisfies certain
conditions, the we can perform downward construction on the above commuting
square. Next we will define a concept of symmetric and semi semi-symmetric
commuting squares. We will show that for a given non-degenerate commuting
square and we can construct a corresponding semi-symmetric commuting square.

Definition 2.1. Set T = T
B2,1

B1,1
, S = T

B1,2

B1,1
. We call a commuting square in

diagram (1) symmetric if after certain permutation of vertices of B2,1 or B1,2. We
get S = T . We call it semi-symmetric if the norm of S is equal the norm of T .

Lemma 2.2. Considering the diagram (3), suppose for some k0 ≥ 1, B1,k0
con-

tains a subalgebra B0,k0
, such that T

B1,k0

B0,k0
= T ∗. Then there exists a projection f

in B2,k0
, with EB1,k0

(f) = λ = 1
[B2:B1] . Furthermore if B0,k = {f}′ ∩ B1,k, with

k ≥ k0, then the Tower {B0,k}
∞

k=k0
is a periodic Jones tower.

Proof. Suppose B1,k0
is acting on H = L2

(Bk−1,2,tr)
, where tr is the canonical trace

acting on B∞. Let eB0,k0
be the projection onto the the subspace of H that is

generated by B0,k0
. But the inclusions, < B1,k, eB0,k >⊃ B1,k and B2,k0

⊃ B1,k0

have the same Bratteli diagram. Therefore once we equip < B1,k, eB0,k >, with the
Markov trace corresponding to the inclusion, < B1,k, eB0,k >⊃ B1,k the arguments
in [13] and [1] imply the existence of trace preserving isomorphism taking B2,k onto
< B1,k, eB0,k >. Hence there exists a projection f in B2,k0

such that EB1,k0
(f) = λ

and B0,k = {f}′ ∩B1,k. Now set B0 = {f}′ ∩B1, then by Corollary 1.8 [12], B0,
is a result of downward construction on the pair B2 ⊃ B1. Hence it is easy to see
that the following diagram,

B2,k ⊂ B2
⋃ ⋃

B1,k ⊂ B1
⋃ ⋃

B0,k ⊂ B0

(4)

is a system of commuting square for each k ≥ k0. But, ‖T ∗‖2 = [B2 : B1]. This
implies that the following system

B2,k0
⊂ . . . ⊂ B2,k ⊂ . . . ⊂ B2

⋃ ⋃ ⋃

B1,k0
⊂ . . . ⊂ B1,k ⊂ . . . ⊂ B1

⋃ ⋃ ⋃

B0,k0
⊂ . . . ⊂ B0,k ⊂ . . . ⊂ B0

(5)

is a periodic tower of commuting squares. Finally by Ocneanu’s (5.7) [16], B0,k

contains eBk−2
, for k ≥ k0 + 2, which implies that system (5) is a periodic Jones

Tower.
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Lemma 2.3. Without loss of generality we can assume that any non-degenerate
system of commuting square is semi-symmetric.

Proof. Consider the following graph

B2,1

⊗

B1,3 ⊂ B2,2

⊗

B2,3
⋃ ⋃

B1,1

⊗

B1,2 ⊂ B1,2

⊗

B2,2

(6)

Let tr be the canonocal trace on B∞ let Tr = tr
⊗

tr be the canonical trace
acting on B∞

⊗

B∞ then with respect to Tr, (6) becomes a commuting square
and Tr, a normalized Markov trace acting on the commuting square. But it is
easy to see that the inclusion matrix L of B1,1

⊗

B1,2 ⊂ B1,2

⊗

B2,2 has the same
norm as the inclusion matrix Q of B1,1

⊗

B1,2 ⊂ B2,1

⊗

B1,3, which is equal to
multiplication of the norms of S and T . This implies that the commuting square (6)
is non-degenerate semi-symmetric commuting square. Extending the commuting
square (6), upward and rightward using Jones basic construction, we get a Jones
system of commuting square analog to system (3). It is easy to check that the
k′th horizontal limiting algebra(respectively, k′th vertical limiting algebra) will be
equal to Bk

⊗

Bk(respectively will be equal to Bk

⊗

Bk).

Extending the commuting square (6) upward and rightward by Jones basic

construction,we can assume without loss of generality that T = T
B2,1

B1,1
is symmetric

and is equal to T
B2,2

B1,2
, and S = T

B1,2

B1,1
= T

B2,2

B2,1
.

Lemma 2.4. Keeping the same notations as in the above.Any commuting square
that satisfies the above properties will associates to a symmetric commuting square.

Proof. Let B3,3 be as in diagram (3). Then B3,3

⊗

B3,3 contains all algebras of
diagram (6). Let H = L2(B3,3

⊗

B3,3, T r) with tr as defined in the above. And
suppose B3,3 acts standardly on H . Let h in H , be acyclic and separating vector
for the algebra B3,3

⊗

B3,3 acting on H . Let us define an equivalence relation EQ
on H as in the following. For x, y in B3,3, we identify (x

⊗

y)h with (y
⊗

x)h. Let
K = H/EQ be a Banach space constructed using standard arguments. It is easy
to check that K becomes a Hilbert space with the inner product inherited from
H . Let us denote, L1,1 = B1,1

⊗

B1,2, L1,2 = B1,2

⊗

B2,2, L2,1 = B2,1

⊗

B1,3

and L2,2 = B2,2

⊗

B2,3. Then the following commuting square,

L2,1 ⊂ L2,2
⋃ ⋃

L1,1 ⊂ L1,2

(7)

equipped with tr1 = Tr/EQ is a non-degenerate symmetric commuting square.
In particular it is easy to check the following properties, tr1 is a Markov trace
on the commuting square (7) and furthermore tr1 is a perron Frobenius vector
for T ∗T , with the eigenvalue equal to (λ1)

−1(λ2)
−1, where λ−1

1 = [B2 : B1] and
λ−1
2 = [B2 : B1].
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Now let L1 ⊂ L2 and L1 ⊂ L2 be the limiting algebras corresponding to
the commuting square (7). Then the fact that the limiting algebras inclusions
corresponding to commuting square (1) are irreducible so are the limiting alge-
bras inclusions corresponding to the commuting square (7). We get the following
corollary.

Corollary 2.5. Keeping the same notations as in the above the inclusions L1 ⊂ L2

and L1 ⊂ L2 are irreducible with [L2 : L1] = [L2 : L1] = (λ1)
−1(λ2)

−1.

To proceed we need to state the following definition.

Definition 2.6. The commuting square (1) is called the source for the system of
commuting squares (3).

Now consider the system (3) and the corresponding limiting algebras B2 ⊃ B1.
then by the results of (3.1.9) [1], there exists a projection e0 in B2 such that
e0 induces the expectation of B1 onto B0 = (e0)

′ ⋂

B1. Now using Ocneanu’s
compactness it is easy to show that there exists an integer k0 such that for k > k0,
e0 will be a member of B2,1.

Definition 2.7. Given two vectors

X =











x1

x2

...
xn











and Y =











x1

x2

...
xn











set X ≥ Y if xi ≥ yi, for all 1 ≥ i ≥ n. As in Section (3.2) [1] we identify each

finite dimensional C∗-algebra, C with an s-dimensional vector, ~C, where s is equal
to the dimension of the center of C. We have the following equalities. We get our
limiting.

Definition 2.8. Consider the commuting square at diagram (1). Let T be the
inclusion matrix of B1,1 into B1,2 and S be the inclusion matrix of B1,1 into B2,1.
Suppose S and T are symmetric and all the corresponding C∗ algebras in diagram
(1) have s dimensional center. We say that the commuting square given by diagram
(1) is lower expandable if we are given V ∈ Rs, with positive entries such that for
each positive integer n, there exists a positive integer, mn and an integer valued
vector, Yn ∈ Rs with the following properties

(i) Yn ≤ V

(ii) ~B1,n = Sn · ~B1,1 = Tmn · Yn.

In particular the conditions of Definition 2.8 hold if there are two integers r1
and r2, such that T r1 = Sr2 . We say that the commuting square given by diagram
(1) is left lower expandable if we are given V ∈ Rs, with positive entries such
that for each positive integer n, There exists a positive integer, mn and an integer
valued vector, Yn ∈ Rs with the following properties
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(i) Yn ≤ V

(ii) ~Bn,1 = T n · ~B1,1 = Smn · Yn.

In particular the conditions of Definition 2.6 hold if there are two integers r1
and r2, such that T r1 = Sr2 .

Let Yn also represent the corresponding sub algebra, Yn ⊆ B1,n, Yn ⊆ Bn,1.

Remark 2.1. In particular if the commuting square given by Diagram
(1) is lower expandable(respectively left lower expandable) then there exists
δ > 0, such that the trace of any minimal projection in Yn is larger than δ.

Corollary 2.9. Following the same notations as in Definition 2.8. Sup-
pose the commuting square in Diagram (1)is lower expandable and let the
system of commuting squares in Diagram (3) to have the commuting square
represented by (1) as its source. The there exists a choice of tunnel with re-
spect to the inclusion B2 ⊃ B1, i.e., B2 ⊃ B1 ⊃ B3 ⊃ . . . ⊃ Bk ⊃ . . .
that satisfies the following conditions. For each integer k, there exists
an integer mk and a Jones sequence of finite dimensional C∗ algebras,
B−k,mk

⊂ B−k,mk+1
⊂ B−k,mk+2

⊂ . . . ⊂ B−k,mk+n
⊂ . . . ⊂ B−k. converg-

ing to B−k, where B−k,mk+n = B−k ∩B1,mk+n and ~B−k,mk
≤ V .

Proof. The proof is an outcome of using induction on the results of Lemma
2.2 and the assumption that the commuting square at Diagram (1) is lower
expandable.

The follwing lemma is an immidiate result of the above definitions.

Lemma 2.10. Keeping the same notations as in Definition 2.8, suppose
that the following conditions hold. Then there exists a number r > 0, such
that for every integer n there exists an integer mn and a integer valued
vector Yn in Rs such that,

(i) ~B1,n = Sn · ~B1,1 = Tmn · Yn

(ii) ‖Yn‖/‖ ~B1,n‖ ≤ r.

Then for the commuting square (1) to satisfy the above conditions is eqquiv-
alent to being lower expandable.

As a result of Corollary 2.9, it is clear that if the source of the System
(3) is lower expandable, then all the commuting squares in System (3) are
lower expandable too. It is an interesting problem to find necessary and
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sufficient conditions for non-degenerate commuting square to be lower ex-
pandable. It is also clear that by choosing an appropriate finite dimensional
C∗ algebra ~Bn,m in Diagram (3) and reducing the System (3) by appropri-

ate projections of ~Bn,m, we can assume without loss of generality for ~B1,1

to be any integer valued vector in Rs. Suppose the System (3) is lower
expandable.Then by the results of Corollary 2.9, there exist an infinite of
integer couples (ni,mi)

∞

i=1 with, n1 < n2 < n3 < ... < nk < ... < ∞ and

such that ~B−nk,mk
< V for all integers k < ∞. Furthermore for each inte-

ger k < ∞ the following sequence, B−nk,mk
⊂ B−nk,mk+1 ⊂ ... ⊂ B−nk is a

Jones sequence. This implies that we have extended System (3) downward
and got the new version of System (3) which is still a Jones system.

Theorem 2.11. Suppose the System (3) is lower expandable. Let C be
the intersection of all the algebras Bnk

,∞ > nk < −∞. Then C is finite
dimensional.

Proof. If C is infinite dimensional, then there exists an infinite dimensional
sequence of orthogonal projections G = (fi)

∞

i=1, with their sum equal to the
identity. Note that all the commuting squares in System (3) are equipped
with Markov trace. This and the fact that for each integer k, the dimension
of B−nk,mk

is less than dimension of V implies the existence of a real positive
number δ such that the trace of each of the minimal projections in B−nk,mk

is larger than δ. For a given projection fi in G, let us choose ǫi very
small positive number. Let us choose any one of the limiting algebras
say, B−ni,mi

. Since it contains fi, there exists a finite dimensional algebra
B−ni,mi

belonging to the System (3) and a positive operator fi,ǫi which is
the expectation of fi, in B−ni,mi

, where fi,ǫi is ǫi close to fi in trace norm.
By the fact that System (3) is a Jones system for k > i, fi,ǫi is in B−nk,mk

.
Using the arguments in [2], for ǫi small enough, fi,ǫi can be assumed to be a
projection. Hence its trace will be larger than δ and this is a contradiction
because by the assumption the trace of fi can be taken to be arbitrary
small.

In the following theorem we prove an important property of the limiting
albebras corresponding to the commuting square (1).

Theorem 2.12. Considering the the tower of commuting squares in dia-
gram (3), and set C to be the commutant of B1 we are going to show that
the algebra C

⋂

B∞ is a factor, hence the graph of the inclusion B1 ⊂ B2

is Ergodic.
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Proof. Let the sequence of Jones projections (ek)
∞

k=1
be as in the arguments

in connection to diagram (3). Then using downward construction on the
couple B1 ⊂ B2 we get the sequence of Jones projections (ek)

∞

−∞
as in

the above. In according to the results of S. Popa in [17], to complete the
proof of Theorem 2.12, we only have to prove that C

⋂

B∞ is a factor.
Let Let p be a projection in the center C

⋂

B∞. For a given small ε > 0,
using the arguments in the Proposition 2.3 [14], we can choose, an integer
n large enough depending on ε such that, pn = EBn

(p), the expectation
of p onto Bn be a positive operator with, ‖EBn

(p) − p‖2 < ε. Also note
that pn ∈ C

⋂

Bn, hence using Ocneanu’s compactness theorem in [16],
pn ∈ Bn,1. Furthermore by Lemma 2.1 [13], pn is a positive operator, with
‖pn‖ close enough to identity. Now consider the projection

e= en ·en−1 · · · e3 and a positive operator pn, Since p commutes with all
the projections (ei) for i larger or equal to 3, we have, tr(p·e) = tr(p)tr(e) =
tr(pn · e) By Proposition 3.1.5 [14], there exists a positive central operator
rn in B1,1 such that pn · e = rn · e. So tr(p · e) = tr(rn · e). Since rn
commutes with all set of projections (ei), for i larger or equal to 3, we have
tr(rn ·e) = tr(rn) · tr(e). This implies that tr(rn) = tr(p). Note that by the
arguments in the proof of Proposition 2.3 [14] there exists a number β > 1,
which is close enough to one such that (β)pn is larger than an spectral
projection corresponding to pn. This implies that ‖pne‖ is close to identity.
Hence ‖rn‖ is close to identity. Therefore without loss of generality we can
assume that rn dominate a central projection in B1,1. This implies that
the center of C

⋂

B∞ is finite dimensional. Thus by the results of S. Popa
in (1.4) [17], C

⋂

B∞ is a factor.

Theorem 2.13. Suppose that the commuting square given by diagram (1)
is left lower expandable. then the inclusion B2 ⊆ B1 is strongly amenable.

Proof. Let us set Cl = (Bl)′
⋂

B∞, 1 < l ≤ l. Let pl be a projection,
pl ∈ (Cl−1)

′
⋂

Cl. Denote p = p2p3 · · · pk Using the fact that the above
commuting square is left lower expandable and by the remark at the end of
Definition 2.6, there exist a fix number δ > 0, independent from k, negative
integer nk, and a C∗ algebra Bk,nk

which is a sub algebra of Bk,1, with
T nkBk,nk

= Bk,1, where the trace of each minimal projection in Bk,nk
is

larger than δ. Now for given ǫ > 0 small enough using Proposition 2.3 [14]
there exists an integer n, such that the positive operator h = EBn(p) is
close enough to p in trace norm. Set e = enen−2 · · · ek+2. As in the proof
of Theorem 2.12, using Proposition 2.3 [14] and Ocneanu’s compactness
in [16], there exists a positive operator r ∈ Bk,nk

majoring a projection in
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Bk,nk
such that he = re and tr(r) = tr(p). Hence for ǫ small enough we

can assume that tr(p) ≥ δ. But this is a contradiction because taking k
large enough tr(p) tends to zero.

Note that the Theorem 2.12 is valid if we replace B1 by Bn for any
integer n ∈ N . Let us denote the set of all the indices of irreducible
subfactors corresponding to the limiting subfactors of commuting squares
by IRC.

Corollary 2.14. As a result of Theorem 2.13 and Lemma 2.4 we get that
if s1 and s2 are members of the set IRC, the s1s2 correspond to index
of a pair of strongly amenable subfactors. This and the fact that limiting
subfactors of symmetric commuting squares are strongly amenable implies
that the set of strongly amenable subfactors is very large.

3 On Certain Properties of Limiting Algebras

In this section we represents some limiting algebras corresponding to
a commuting square. Some of their properties are demonstrated and the
calculation of indices are left as an exercise to the readers.

Lemma 3.1. Let us set M =<
⋃

n(Bn∈N )′
⋂

B∞ >. Then M is a factor.

Proof. By Theorem 2.12, for each n ∈ N , (Bn)
′
⋂

B∞ is a factor hence the
union of the above sets is a factor which implies that their closer that means
the Von Neumann algebra generated by the union is a factor too.

Now consider the tower (Bn), n = 1, 2, ..., as defined in section 1. Then
by the results of Theorem 4.1.2 [17], if for some integer n, (Bn

⋂

B∞)′
⋂

B∞

= Bn, then the inclusion B1 ⊂ B2 is strongly amenable. Let us set as before,

M =<
∞
⋃

n=−∞

((Bn)
′
⋂

B∞) > .

Let C be as defined in Theorem 2.11.

Lemma 3.2. Suppose the inclusion B1 ⊂ B2 is strongly amenable then
(M)′

⋂

B∞ = C.

Proof. Suppose x ∈ (M)′
⋂

B∞. Then x ∈ ((Bn)
′
⋂

B∞)′ for each integer
n. This implies that x is an element of B∞ and is in the intersection of all
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the sets ((Bn)
′
⋂

B∞)′ for all integers n ∈ N . But

(
⋂

n∈N

((Bn)
′
⋂

B∞)′)
⋂

B∞ =
⋂

n∈N

(((Bn)
′
⋂

B∞)′)
⋂

B∞)

=
⋂

n∈N

Bn = C.

This implies that (M)′
⋂

B∞ is subset of C. On the other hand if x ∈ C,
then by the assumption of the inclusion being strongly amenable, for each
integer n, x ∈ ((Bn)

′
⋂

B∞)′
⋂

B∞, hence x ∈
⋂

n∈N ((Bn)
′
⋂

B∞)′
⋂

B∞,
Thus x ∈ (M)′

⋂

B∞.

Given a commuting square with corresponding diagram as given by (1).
Let G be the general index corresponding to the above commuting square as
defined in Definition 2.3 [18]. One can calculate the the value of [B∞ : M ]
using usual techniques and find out that if the commuting square induces
subfactors of finite depth then [B∞ : M ] can be formulated in terms of G
and [B2 : B1], otherwise [B∞ : M ] = ∞.

For each integer n, let us define the following Von Neumann alge-
bras Gn =< Bn, (Bn)

′
⋂

B∞ >, Gn =< Bn, (Bn)′
⋂

B∞ >, and Qn =<
Bn, (Bn+1)

′
⋂

B∞ >. It is clear that the relative commutant of Gn and Gn

with respect to B∞ is trivial. Let us define Qn =< Bn, (Bn+1)
′
⋂

B∞ >.
Note that EGn+1

(Gn) = Qn. Therefore the four Π1 sub factorsGn, B∞, Gn+1

and Qn form a commuting square. Furthermore [Gn : Qn] = [Gn+1 : Qn] =
[B2 : B1]. Also it is easy to see that < Gn, en+1 >= B∞. The next question
is whether [B∞ : Gn] is a finite number and to calculate it. First of all, it
is easy to show that the above number is independent from n. In the case
that B1 ⊂ B2 is of finite depth one can show this value is finite and can be
formulated in term of G and [B2 : B1]. Otherwise the value of [B∞ : Gn]
is equal to ∞.
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