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1 Introduction and Preliminaries

Recently Branciari [1] introduced the concept of a rectangular metric
space where the triangular inequality of a metric space has been replaced
by a more general inequality involving four points instead of three.
In this section we recall some definitions and facts to set up our results in
the next section.

Definition 1.1. [2− 5] Let E be a topological vector space with the zero
vector θ. A subset P of E is called a cone if:

(i) P is closed, nonempty and nontrivial ( i.e. P 6= {θ});

(ii) ax+ by ∈ P, for all x, y ∈ P and nonnegative real numbers a and b;

(iii) P
⋂

(−P ) = {θ}.

In addition to that, if the interior of P is nonempty, we say that P is a
solid cone.

Definition 1.2. [2, 3, 6] Let E be a topological vector space and P ⊆ E
be a cone. We define a partial ordering ≤ on E with respect to P by x ≤ y
if and only if y − x ∈ P and we write x < y if x ≤ y and x 6= y. Likewise,
we write x ≪ y if y − x ∈ int(P ), where int(P ) denotes the interior of P .
If ambiguity is possible we can use the notations ≤P , <P and ≪P . The
pair (E,P ) consisting of a topological vector space E and a cone P of E is
called a partially ordered topological vector space.

2 Some Properties of the Nonlinear Scalarization

Mapping

The nonlinear scalarization mapping plays a key role in the paper. In
this section we recall some useful properties of it that are needed in the
next section.

Definition 2.1. [7, 8] Let E be an ordered topological vector space with
the solid cone P and e ∈ intP. The formula

ζe(y) := inf{t ∈ R : y ≤ te},

where y ∈ E, defines a mapping from E into R ( the real line) and is called
the nonlinear scalarization function on E (with respect to P and e).
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The following lemma characterizes some other properties of the non-
linear scalarization mapping.

Lemma 2.2. [3, 7, 9] Let (E,P ) be an ordered topological vector space. For
any e ∈ int P and r ∈ R, the mapping ζe has the following properties:

(1) ζe(θ) = 0;

(2) y ∈ P =⇒ ζe(y) ≥ 0;

(3) If y2 < y1, then ζe(y2) < ζe(y1) for any y1, y2 ∈ E;

(4) ζe(y) ≤ r ⇐⇒ y ∈ re− P ⇐⇒ y ≤ re;

(5) ζe(y) ≥ r ⇐⇒ y /∈ re− intP ⇐⇒ y 6≪ re;

(6) ζe(y) < r ⇐⇒ y ∈ re− intP ⇐⇒ y ≪ re;

(7) ζe(y) > r ⇐⇒ y /∈ re− P ⇐⇒ y � re;

(8) ζe is subadditive on E, i.e. ζe(x+ y) ≤ ζe(x) + ζe(y) for all x, y ∈ E;

(9) ζe is positively homogeneous on E, i.e. ζe(βx) = βζe(x) for every
x ∈ E and positive real number β, and

(10) ζe is continuous on E.

The following result extends part (1) of Lemma 2.2 which will be needed
in the next section.

Lemma 2.3. Let E be a partially ordered topological vector space with solid
cone P and e ∈ intP , then:

ζe(y) = r if and only if y ∈ re− (P r intP )

Proof. Suppose that ζe(y) ≤ r and ζe(y) ≥ r, by note that before lemma
(part (4) and (5)), y ∈ re−P and y /∈ re− intP , thus y ∈ re− (P r intP ).
Now, if y ∈ re− (P r intP ), then y ∈ re− P and y /∈ re− intP , by parts
(4) and (5) of lemma 2.2 , therefore ζe(y) = r.
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3 Cone Rectangular Metric Space

Definition 3.1. [1] Let X be a nonempty set and d : X × X → [0,+∞)
such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them
differernt from x and y, one has the following:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Then, (X, d) is called a rectangular metric space (or shortly r.m.s.).
Note that in some of the papers about rectangular metric space, we can
see generalized metric space (g.m.s.) instead of rectangular metric space
(r.m.s.).

Any metric space is a rectangular metric space, while the following
example shows that the converse may fail.

Example 3.2. [10] LetX = A
⋃

B, where A = {
1

2
,
1

3
,
1

4
,
1

5
}, B = [

3

4
,+∞).

Define the rectangular metric d on X as follows:

d(
1

2
,
1

3
) = d(

1

4
,
1

5
) =

1

5
, d(

1

2
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1

5
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1

3
,
1

4
) =

1

4
, d(

1

2
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1

4
) = d(

1

5
,
1

3
) =

1

2
,

d(
1

2
,
1

2
) = d(

1

3
,
1

3
) = d(

1

4
,
1

4
) = d(

1

5
,
1

5
) = 0,

d(x, y) = d(y, x), for all x, y ∈ A,

d(x, y) =| x− y | if
x ∈ B or y ∈ A,
x ∈ A , y ∈ B,
x, y ∈ B.

It is clear that d does not satisfy the triangle inequality on A. Indeed,

1

2
= d(

1

2
,
1

4
) > d(

1

2
,
1

3
) + d(

1

3
,
1

4
) =

9

20

Notice that (3) holds, so d is a rectangular metric.

Definition 3.3. [1, 11] Let (X, d) be a r.m.s., {xn} be a sequence in X,
and x ∈ X. We say that {xn} is r.m.s. convergent to x if and only if
d(xn, x) → 0 as n→ +∞. We denote this by xn → x.



On Fixed Point Theory for Generalized Contractions in Cone ... 37

Definition 3.4. [1, 12] Let (X, d) be a r.m.s., {xn} be a sequence in X. We
say that xn is a r.m.s. Cauchy sequence if and only if for each ǫ > 0, there
exists a natural number N such that d(xn, xm) < N for all n > m > N .

Definition 3.5. [1, 13] Let (X, d) be a r.m.s. Then, (X, d) is called a
complete r.m.s. if every r.m.s. Cauchy sequence is r.m.s convergent in X.

Remark 3.6. Several papers attempting to generalize fixed point theorems
in metric spaces to r.m.s. are plagued by the use of some false properties
given in [1] (see, for example, [14, 15, 16, 17]). This was observed first by
Samet [18, 19] and then by Sarma et al.[20] by assuming that the rectangular
metric space is Hausdorff. We know that every metric space is Hausdorff,
but in the case of a r.m.s it is false in general as it is shown in the example
1.1. [20]

Definition 3.7. Let X be a nonempty set and E be a real topological
vector space with cone P . A vector-valued function d : X × X → E is
said to be a cone metric function on X, if the the following conditions are
satisfied:

(1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The pair (X, d) is called a cone metric space ( for short CMS).

Definition 3.8. [21] Let X be a nonempty set and E be a real topological
vector space with cone P . Suppose the mapping d : X×X → E, satisfying

(1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤ d(x,w)+d(w, z)+d(z, y) for all x, y ∈ X and for all distinct
points w, z ∈ X − {x, y} (rectangular property).

Then d is called a cone rectangular metric on X, and (X, d) is called a cone
rectangular metric space (for short c.r.m.s.).

Let {xn} be a sequence in (X, d) and x ∈ (X, d) If for every c ∈ E with
θ ≪ c there is n0 ∈ N such that for all n > n0, d(x, xn) ≪ c, then {xn} is
said to be convergent to x and x is the limit of {xn}. We denote this by
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limn→∞xn = x or xn → x as n → ∞. If for every c ∈ E with θ ≪ c there
is n0 ∈ N such that for all n,m > n0 and n,m ∈ N we have d(xn, xm) ≪ c.
Then {xn} is called a Cauchy sequence in (X, d). If every Cauchy sequence
is convergent in (X, d), then (X, d) is called a complete cone rectangular
metric space.

Example 3.9. [22, 23] Let X = N (The set of natural numbers), E = R2

and P = {(x, y) : x, y > 0}. Define d : X ×X → E as follows:

d(x, y) =











(0, 0) if x = y,

(3, 9) if x and y are in{1, 2 }, x 6= y

(1, 3) if x and y both can not be at a time in {1, 2}, x 6= y.

Now (X, d) is a cone rectangular metric space, but (X, d) is not a cone
metric space because it lacks the triangular property

(3, 9) = d(1, 2) > d(1, 3) + d(3, 2) = (1, 3) + (1, 3) = (2, 6)

as (3, 9) − (2, 6) = (1, 3) ∈ P.

4 Main Results

In 2010, Du[3] investigated the equivalence of vectorial versions of fixed
point theorems in cone metric spaces and scalar versions of fixed point
theorems in (general) metric spaces (in usual sense). He showed that the
Banach contraction principles in general metric spaces and in TVS-cone
metric spaces are equivalent. His results also extended some results of [24]
and [25]. In theorem 2.2 [3], the author has claimed that the conclusion
(iii) is immediate from conditions (i) and (ii). This assertion is not true.
Of course the complete proof given in [26] in the setting of locally convex
spaces. In here by using Theorem 2.2, for the sake of reader, we establish
t.v.s version of it in rectangular cone metric space. Also, by using the non-
linear scalarization mapping, we present the Banach’s contraction principle
from rectangular metric space in to cone rectangular metric space and ob-
tain the extension of the theorem 1.3 in [20]. The results of this section
extend and improve and repair theorem 2.2 [3] and the equivalency between
vectorial versions of fixed point theorems in cone rectangular metric spaces
and scalar versions of fixed point theorems in rectangular metric spaces is
presented. Now we are ready to present the first main result.

Theorem 4.1. Let (X, d) be a cone rectangular metric spaces. Then ρ :
X ×X → [0,∞) defined by ρ := ζeod is a rectangular metric.
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Proof. Since d(x, y) ∈ P by part 2 of lemma 2.2, we can conclude that
ζe(d(x, y)) ≥ 0, i.e. θ ≤ ρ(x, y) for all x, y ∈ X. If ρ(x, y) = 0 then
ζe(d(x, y)) = 0 = r, by lemma 2.3 we have d(x, y) ∈ −P ∩ P = {θ} which
implies x = y. Conversely, if x = y, then from part 1 of Lemma 2.2, we
have ρ(x, y) = ζe(θ) = 0. It is clear that ρ(x, y) = ρ(y, x). By parts 3 and
8 of lemma 2.2, we have ρ(x, y) ≤ ρ(x,w)+ρ(w, z)+ρ(z, y) for all x, y ∈ X
and for all distinct points w, z ∈ X − {x, y}.

The following lemma will be use in the proof of the Theorem 4.3.

Lemma 4.2. Let (X, d) be a cone rectangular metric space with solid cone
P and e ∈ int P . Then for every c ∈ int P , there exists ǫc > 0 such that
ǫce≪ c.

Proof. Since c ∈ int P , there exists a convex, symmetric and absorbing
neighborhood B of zero such that B + c ∈ intP . Thus there exists ǫc > 0
such that for all ǫ with |ǫ| ≤ ǫc, ǫe ∈ B. So −ǫce + c ∈ intP . Therefore
ǫce≪ c.

The following theorem plays a crucial rule in the next result. Also parts
1,2 and 3 of the following theorem repair and extend theorem 2.2 of [3].

Theorem 4.3. Let (X, d) be a cone rectangular metric space, x ∈ X and
{xn} be a sequence in (X, d). Let ρ be the same as in before theorem. Then
the following statements hold.

(1) {xn} is a cone rectangular converges to x, if and only if ρ(xn, x) → 0
as n→ ∞;

(2) {xn} is a cone rectangular Cauchy sequence in (X, d), if and only if
{xn} is a rectangular Cauchy sequence in (X, ρ);

(3) (X, d) is a complete cone rectangular, if and only if (X, ρ) is a com-
plete rectangular metric space;

(4) C ⊆ X is a closed set of (X, d), if and only if C is a closed set of
(X, ρ);

(5) If (X, d) is Hausdorff cone rectangular metric space, then (X, ρ) is
Hausdorff rectangular metric space.

Proof. (1) Let {xn} be a cone rectangular converges to x and ǫ > 0 be
given. Since e ∈ int P , ǫe ∈ int P . Hence there exists n0 ∈ N such
that for all n > n0, d(xn, x) ≪ ǫe. By part 6 of lemma 2.2, we have
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ζeod(xn, x) < ǫ i.e. ρ(xn, x) → 0 as n → ∞. Conversely, if ρ(xn, x) → 0
as n → ∞ and c ∈ int P , by lemma 4.2 there exists ǫc > 0 such that
ǫce ≪ c. Since ρ(xn, x) → 0 as n → ∞ and ǫc > 0, there exists n0 ∈ N
such that for all n > n0, ρ(xn, x) < ǫc. By part 6 of lemma 2.2, we have
ǫce− d(xn, x) ∈ int P , i.e. d(xn, x) ≪ ǫce≪ c. This completes the part of
(1).
(2) Let {xn} be a cone rectangular Cauchy sequence in (X, d), and ǫ > 0 be
given, since ǫe ∈ int P . Hence there exists n0 ∈ N such that for all n,m >
n0, d(xn, xm) ≪ ǫe. By part 6 of lemma 2.2, we have ζeod(xn, xm) < ǫ
i.e. ρ(xn, xm) < ǫ. Hence {xn} is a rectangular Cauchy sequence in (X, ρ).
Conversely, let c ∈ int P , by lemma 4.2 there exists ǫc > 0 such that
ǫce≪ c, since {xn} is a rectangular Cauchy sequence in (X, ρ) and ǫc > 0,
there exists n0 ∈ N such that for all n,m > n0, ρ(xn, xm) < ǫc. By part 6
of lemma 2.2, we have ǫce − d(xn, xm) ∈ int P , i.e. d(xn, xm) ≪ ǫce ≪ c.
This completes the part of (2).
(3) It follows from part of (1) and (2).
(4) It is clear by part of (1 ).
(5) We show that if (X, d) is Hausdorff cone rectangular metric space, and
{xn} be a sequence in (X, ρ), then {xn} converges to at most one point
of (X, ρ) and conclude (X, ρ) is a Hausdorff rectangular metric space. Let
{xn} rectangular converges to x, y in (X, ρ). By part (1) we have {xn}
cone rectangular converges to x, y in (X, d), since (X, d) is a Hausdorff
cone rectangular metric space, then x = y. This completes the proof.

In 2009, Sarma, Rao in [20] established the following theorem that is
a corrected version of the generalization Banach’s contraction principle in
metric spacees to rectangular metric space that presented by Branciari in
[1].

Theorem 4.4. [20] (Banach’s Contraction principle in a r.m.s) Let (X, d)
be a Hausdorff and complete rectangular metric space and let f : X → X be
a mapping and 0 < λ < 1 satisfying the inequality d(fx, fy) ≤ λd(x, y) for
all x, y ∈ X (such a mapping is called a contraction mapping on X and λ
is called the contractive constant of f). Then there is a unique point x ∈ X
satisfying f(x) = x (such a point is called a fixed point of f).

Now by combing Banach’s contraction principle in a r.m.s and Theorem
4.3, we conclude the following theorem, which is an extension of the Banachs
Contraction principle from generalized metric space in to cone generalized
metric space. It should be pointed out that theorem 4.5 extend some results
L.G. Huang and X. Zhang in [24] and Sh. Rezapour, R. Hamal barani in[25].
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Theorem 4.5. (Banach’s contraction principle in a c.r.m.s) Let (X, d) be
a Hausdorff and complete cone rectangular metric space and let f : X → X
be a mapping and 0 < λ < 1 satisfying the inequality d(fx, fy) ≤ λd(x, y)
for all x, y ∈ X. Then there is a unique point x ∈ X satisfying f(x) = x.

Proof. By using the inequality d(fx, fy) ≤ λd(x, y) for all x, y ∈ X and
parts (3),(9) of lemma 2.2, we can conclude the inequality ζe(d(fx, fy)) ≤
λζe(d(x, y)) for all x, y ∈ X which implies ρ(fx, fy) ≤ λρ(x, y) for all
x, y ∈ X. Also by parts (3),(6) of theorem 4.3, (X, ρ) be a Hausdorff and
complete g.m.s (r.m.s). Then by using theorem 4.4, there is a unique point
x ∈ X satisfying f(x) = x. This completes the proof.

In the following some fixed point theorems for generalized contractions
in cone rectangular metric spaces are provided.

In 2012 Ghosh and Ray [27] proved the following fixed point theorem
for generalized contractions in complete rectangular metric spaces.

Theorem 4.6. Let (X, d) be a complete r.m.s. and let T : X → X be a
map. Define a nonincreasing function θ : [0, 1) onto (12 , 1] by

θ(r) =











1, 0 ≤ r ≤
1

3
;

2(1−r)
3r(r+1) ,

1

3
≤ r < 1.

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, T (x)) ≤ d(x, y) ⇒ d(T (x), T (y)) � rd(x, y), for all x, y ∈ X.

Then there exists a unique fixed point z of T and limn→∞ T nx = z, for
all x ∈ X.

One can inform from the proof of theorem 4.6 that the authors assume
that every r.m.s is Hausdorff while it is not true by Remark 3.6 Thus we
need Hausdorff condition in the following theorem that is the cone rectan-
gular metric space version of Theorem 4.6 which generalizes Theorem 2.1
in [27] and Theorem 2.3 in [3].

Theorem 4.7. Let (X, d) be a Hausdorff and complete cone rectangular
metric space, θ as given in Theorem 4.6, T : X → X be a map. Assume
that there exists r ∈ [0, 1) such that

d(x, y) 6≪ θ(r)d(x, T (x)) ⇒ d(T (x), T (y)) � rd(x, y), ∀x, y ∈ X. (∗)
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Then there exists a unique fixed point z of T. Moreover, limn→∞ T nx = z,
for all x ∈ X.

Proof. It is clear by part 3,5 of Theorem 4.3 (X, ξeod) is a Hausdorff and
complete metric space. Let θ(r)ξeod(x, T (x)) ≤ ξeod(x, y). Then, by the
properties of ξe (see Lemma 2.2) we have

0 ≤ ξeod(x, y) − θ(r)ξeod(x, T (x)) =

ξe(d(x, y)) − ξe(θ(r)d(x, T (x))) ≤ ξe(d(x, y) − θ(r)d(x, T (x))).

So it follows from Lemma 2.2 (5) that

d(x, y)− θ(r)d(x, T (x)) 6≪ θ,

and then
d(x, y) 6≪ θ(r)d(x, T (x)),

and so by using our assumption (∗) we get

d(T (x), T (y)) � rd(x, y).

Hence it follows from Lemma 2.2 (3) that

ξe(d(T (x), T (y))) � ξe(rd(x, y)) = rξe(d(x, y)).

Now the result follows from Theorem 4.6.

The following example satisfies in Theorem 4.7.

Example 4.8. Define a Hausdorff and complete cone rectangular metric
space X with cone P = {(x, y) ∈ R2 : x, y > 0} by

X = {(0, 0), (4, 0), (0, 4)(4, 5), (5, 4)}

and its rectangular metric d by

d((x1, x2), (y1, y2)) = (|x1 − y1|+ |x2 − y2|, |x1 − y1|+ |x2 − y2|)

Let X = N (The set of natural numbers), E = R2 and P = {(x, y) : x, y >

0}. Define a mapping T on X by

T (x1, x2) =

{

(x1, 0) if x1 6 x2

(0, x2) if x1 > x2.

Then T satisfies the assumption in Theorem 4.7 and then there exists a
uniq fixed point. Moreover, limn→∞T

nx = z for all x ∈ X. It is clear that
in this example z = (0, 0).
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