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Abstract : A new and efficient numerical approach is developed for solving linear
Fredholm integral equations. The fundamental structure of the presented method
is based on the modification of hat functions (MHFs) in which a new operational
matrix of integration is introduced. After implementation of our scheme, the
solution of the main problem would be transformed into the solution of a system
of linear algebraic equations. Also, an error analysis is provided under several
mild conditions. In addition, examples that illustrate the pertinent features of the
method are presented, and the results are discussed.

Keywords : modified hat functions; Fredholm integral equation; vector forms;
operational matrices; error analysis

2010 Mathematics Subject Classification : 45A05; 45B05; 65D30.

1 Introduction

Integral equations are often involved in the mathematical formulation of physi-
cal phenomena. Integral equations can also be encountered in various fields such as
physics, biology and engineering. Hence, the research on their numerical solutions
is of interest both theoretically and practically.
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Integral equations have been developed to solve boundary value problems for
both ordinary and partial differential equations [1]. The theory and numerical
solutions of integral equations have been studied comprehensively [2]. In recent
years, several authors for the integral and Fredholm integral equations of the sec-
ond kind have worked semi-analytical methods such as the Taylor-series expansion
method [3], the homotopy perturbation method [4], the quasi-interpolation method
[5], the fast collocation method [6], the Adomian decomposition method [7, 8], the
iteration method [9] and so on. Recently, Babolian et al. [10] have given a new
method for solving systems of linear or nonlinear Fredholm integral equations of
the second kind by hat basis functions.

In the present paper, we use MHFs to solve the linear equation

f −Kf = g, (1.1)

where K is a compact linear operator on the Banach space X . The operator (I−K)
is assumed to be invertible, so that the equation has a unique solution f ∈ X for
any given g ∈ X . Let K be the compact linear integral operator defined by

Kf(x) =

∫ 1

0

k(x, y)f(y)dy, x ∈ D = [0, 1],

where X = C4(D) and the kernel function k ∈ L2(D ×D). A standard technique
to solve (1.1) approximately is to replace K by a finite rank operator. The ap-
proximate solution is then obtained by solving a system of linear equations. For
the integral equation (1.1), consider the iteration

f (n+1) = g +Kf (n), n = 0, 1, . . . .

From the geometric series theorem, it can be shown that this iteration converges
to the solution f if ||K||∞ < 1, and in that case

||f − f (n+1)||∞ 6 ||K||∞ ||f − f (n)||∞.

Sloan [11] showed that once such iteration is always a good idea if the initial
guess is the solution obtained by the Galerkin method, regardless of the size of K.

2 MHFs and Their Properties

In this section, we first give some basic definitions and then present properties
of MHFs.

Definition 2.1. An (m+ 1)-set of MHFs consists of (m+ 1) functions which are
defined over district D as follows:

h0(x) =






1
2h2 (x− h)(x− 2h) 0 6 x 6 2h,

0 otherwise,
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if i is odd and 1 6 i 6 m− 1,

hi(x) =






−1
h2 (x− (i− 1)h)(x− (i + 1)h) (i− 1)h 6 x 6 (i+ 1)h,

0 otherwise,

if i is even and 2 6 i 6 m− 2,

hi(x) =





1
2h2 (x− (i − 1)h)(x− (i− 2)h) (i− 2)h 6 x 6 ih,

1
2h2 (x− (i + 1)h)(x− (i+ 2)h) ih 6 x 6 (i + 2)h,

0 otherwise,

and

hm(x) =





1
2h2 (x− (1− h))(x − (1− 2h)) 1− 2h 6 x 6 1,

0 otherwise,

where m > 2 is an even integer and h = 1
m
.

According to definition of MHFs, we have:

hi(jh) =





1 i = j,

0 i 6= j,

if i is even,
hi(x)hj(x) = 0, |i− j| > 3, (2.1)

if i is odd,
hi(x)hj(x) = 0, |i− j| > 2, (2.2)

and
m∑

i=0

hi(x) = 1.

In Fig. 1, the behavior of a set of hat functions with m = 6 is depicted.
Let us write the MHFs vector H(x) as follows

H(x) = [h0(x), h1(x), . . . , hm(x)]T ; x ∈ D. (2.3)

Form Eq.s (2.1) and (2.2) we have

H(x)HT (x) = H̃(x) =
[
h̃ij(x)

]

(n+1)×(n+1)
,

where

h̃ij(x) =





hi(x)hj(x)
i is even and |i− j| < 3
i is odd and |i − j| < 2

,

0 otherwise,
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Figure 1: Set of MHFs with m = 6.

and ∫ 1

0

H(x)HT (x)dx = P, (2.4)

where P is the (m+ 1)× (m+ 1) matrix as follows

P =
h

15



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. . .
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−1 2 8 2 −1
0 2 16 2

−1 2 4




.

An arbitrary function f(x) ∈ X can be expanded by the MHFs as

f(x) ≃ FTH(x) = HT (x)F,

where
F = [f0, f1, . . . , fm]T ,
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and

fi = f(ih), i = 0, . . . ,m.

Similarly an arbitrary function of two variables, k(x, y) on district L2(D×D)
may be approximated with respect to MHFs such as

k(x, y) ≃ HT (x)KH(y),

where H(x) and H(y) are MHFs vector of dimension (m+ 1) and K is the (m+
1)× (m+ 1) MHFs coefficients matrix.

3 Method of Solution

In this section, we convert the model (1.1) to linear systems of matrix equations
which can be easily solved.

First, we approximate functions f(x), g(x) and k(x, y) with respect to MHFs
as 




f(x) ≃ FTH(x) = HT (x)F,

g(x) ≃ GTH(x) = HT (x)G,

k(x, y) ≃ HT (x)KH(y),

(3.1)

where H(x) is defined in Eq. (2.3) and the vectors F,G and matrix K are MHFs
coefficients of f(x), g(x) and k(x, y), respectively.

Substituting Eq. (3.1) in Eq. (1.1) yields

HT (x)F = HT (x)G +

∫ 1

0

HT (x)KH(y)HT (y)Fdy

= HT (x)G +HT (x)K

(∫ 1

0

H(y)HT (y)dy

)
F.

Using Eq. (2.4), yields

HT (x)F = HT (x)G+HT (x)KPF, ⇒ F = G+KPF, ⇒ (I −KP )F = G.

After solving the above linear system, we can find F and then

f(x) ≃ HT (x)F.

4 Convergence Analysis

In this sections, we show that the MHFs method in the previous sections, is
convergent and its order of convergence is O(h4).
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Assume that Xm is the set of all continuous function that are quadratic poly-
nomials when restricted to each of the subintervals [x0, x2], . . . , [xm−2, xm]. Obvi-
ously, the dimension of Xm is dm = m+1. Moreover, let Pm be the interpolatory
projection operator from X to Xm. Also, assume that xi = ih, i = 0, . . . ,m. We
can write Pmf in its Lagrange form:

Pmf(x) =

m∑

i=0

fihi(x). (4.1)

If i is even, the interpolation error have two formulas on [xi−2, xi]

f(x)− Pmf(x) = (x− xi−2)(x − xi−1)(x− xi)F [xi−2, xi−1, xi, x], (4.2)

and

f(x)− Pmf(x) =
(x− xi−2)(x − xi−1)(x− xi)

6
f ′′′(ξx), xi−2 6 x 6 xi, (4.3)

for some ξx ∈ [xi−2, xi]. The quantity F [xi−2, xi−1, xi] is a Newton divided differ-
ence of order three for the function f(x). From the above formulas [13],

||f − Pmf ||∞ 6

√
3

27
h3||f ′′′||∞, f ∈ X . (4.4)

According to (4.4), if f ∈ X , then

lim
m→∞

Pmf = f,

and if f ∈ Xm, from (4.3) it is clear that

Pmf = f.

Now, we approximate the solution of Eq. (1.1) by attempting to solve the problem

Pm(I −K)fm = Pmg, fm ∈ Xm, (4.5)

or
(I − PmK)fm = Pmg. (4.6)

Define the iterated projection solution by

f̂m = g +Kfm. (4.7)

This new approximation is often an improvement on fm. Moreover, it is used to
better understand the behavior of the original projection solution. Applying Pm

to both sides of Eq. (4.7), we have

Pmf̂m = Pmg + PmKfm = fm,⇒ Pmf̂m = fm. (4.8)
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Thus, fm is the projection of f̂m into Xm.
Substituting the relation (4.8) into (4.7) and rearranging terms yields the

equation
(I −KPm)f̂m = g, (4.9)

then we have

f − f̂m = g + Kf − g +Kfm = K(f − fm),⇒ ||f − f̂m||∞ 6 ||K||∞||f − fm||∞.

This proves the convergence of f̂m to f is at least as rapid as that of fm to f .
Often it will be more rapid, because operating on f −fm with K sometimes causes
cancellation due to the smoothing behavior of integration.

Lemma 4.1. suppose Pm : X → Xm, be defined by Eq. (4.1), where m > 2 and
be even integer, then

||Pm||∞ = 1.

Proof. Let us first consider

||Pm||∞ = sup{||Pmf ||∞ : ||f ||∞ = 1}. (4.10)

If f ∈ X and ||f ||∞ = 1 then we have

Pmf(x) =

m∑

i=0

fihi(x) 6 ||f ||∞
m∑

i=0

hi(x) = ||f ||∞ = 1,

⇒ ||Pm||∞ 6 1. (4.11)

Now, let f(x) = 1, x ∈ D, then ||f ||∞ = 1 and

Pmf(x) =

m∑

i=0

fihi(x) =

m∑

i=0

hi(x) = 1. (4.12)

From (4.10) and (4.12), we have

||Pn||∞ > 1. (4.13)

Combining both of the inequalities (4.11) and (4.13) leads to

||Pn||∞ = 1.

Theorem 4.2. Assume X be a Banach space, K : X → X is bounded and (I−K) :
X → X is one-to-one and onto. Further if

lim
n→∞

||K − PnK||∞ = 0,
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then for all sufficiently large even integer m, say m > M , the operator (I −
PmK)−1 : X → X exists as a bounded operator. Also, it is uniformly bounded:

sup
m>M

||(I − PmK)−1||∞ < ∞. (4.14)

For the solutions of Eq.s (1.1) and (4.6)

f − fm = (I − PmK)−1(f − Pmf),

and

1

||(I − PmK)||∞
||f − Pmf ||∞ 6 ||f − fm||∞ 6 ||(I − PmK)−1||∞ ||f − Pmf ||∞.

(4.15)

Proof. For the proof see [12].

Theorem 4.2 shows that {fm} converges to f if and only if {Pmf} converges
to f . Further, if convergence does occur, then ||f − fm||∞ and ||f −Pmf ||∞ tend
to zero with exactly the same speed.

Lemma 4.3. Let Pm : X → Y, be a sequence of bounded linear operators, with
m > 2 and be even integer, X and Y Banach space. If {Pmf} converges for all
f ∈ X , then the convergence is uniform on compact subsets of X .

Proof. For the proof see [12].

Lemma 4.4. Let {Pm} be a family of bounded projections on X , where m > 1
and be even integer, X be a Banach space and

lim
m→∞

Pmf = f, f ∈ X .

If K : X → X be compact, then

lim
m→∞

||K − PmK||∞ = 0.

Proof. For the proof see [12].

According to the above lemmas and theorem, we can conclude if Eq. (1.1) is
uniquely solvable for all g ∈ X , then the collocation Eq. (4.5) is uniquely solvable
for all sufficiently large m, say m > M , and the inverses (I − PmK)−1 are uni-
formly bounded, say by L > 0.
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Lemma 4.5. Let X be a Banach space, K : X → X be a bounded linear operator
and Pm : X → Xm defined by Eq. (4.1). Assume (I−PmK)−1 exists from X onto
X and Eq. (4.14) is satisfied. Then (I −KPm)−1 also exists, and

(I −KPm)−1 = I +K(I − PmK)−1Pm, (4.16)

so

sup
m>M

||(I −KPm)−1||∞ < ∞. (4.17)

Proof. We have

(I −KPm)[I +K(I − PmK)−1Pm] = I −KPm + (I −KPm)K(I − PmK)−1Pm =

I −KPm +K(I − PmK)(I − PmK)−1Pm = I −KPm +KPm = I.

A similar proof work to show

[I +K(I − PmK)−1Pm](I −KPm) = I,

thus Eq. (4.16) is satisfied. Also, we have

||(I−KPm)−1||∞= ||I+K(I−PmK)−1Pm||∞6 ||I||∞+||K||∞||(I−PmK)−1||∞||Pm||∞
= 1 +N ||(I − PmK)−1||∞,

where ||K||∞ 6 N . So

sup
m>M

||(I −KPm)−1||∞ 6 sup
m>M

{1 +N ||(I − PmK)−1||∞} < ∞.

Theorem 4.6. Assume that the integral Eq. (1.1) is uniquely solvable for all
g ∈ X . Further assume that the solution f ∈ X and that the kernel function
k(x, y) is at least once continuously differentiable with respect to y. Let Pm be the
interpolatory projection (4.1) defined by piecewise quadratic interpolation. Then

||f − fm||∞ 6 L||f − Pmf ||∞ 6

√
3L

27
h3||f ′′′||∞, m > M,

where ||(I − PmK)−1||∞ 6 L. Then for the iterated collocation method, we have

||f − f̂m||∞ 6 ch4, (4.18)

where c > 0 is a suitable constant. Consequently,

max
i=0,1,...,m

|f(xi)− fm(xi)| = O(h4). (4.19)
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Proof. From the relations (4.4) and (4.15), we have

||f − fm||∞ 6 ||(I −PmK)−1||∞||f −Pmf ||∞ 6 L||f −Pmf ||∞ 6

√
3L

27
h3||f ′′′||∞,

where m > M . For the error in f̂m, first rewrite (1.1) as

(I −KPm)f = g + Kf −KPmf.

Subtract Eq. (4.9) to obtain

(I −KPm)(f − f̂m) = K(I − Pm)f,

or
f − f̂m = (I −KPm)−1K(I − Pm)f.

To examine the error in f̂m, we make a detailed examination of K(I−Pm)f . Using
(4.1) yields to

K(I − Pm)f(x) =

∫ 1

0

k(x, y)

{
f(y)−

m∑

i=0

fihi(y)

}
dy.

On the other hand from (4.2), we have

K(I − Pm)f(x) =
m

2∑

k=1

∫ x2k

x2k−2

k(x, y)(y − x2k−2)(y − x2k−1)(y − x2k)F [x2k−2, x2k−1, x2k, y]dy.

Examining the integral in more detail, write it as
∫ x2k

x2k−2

u(x, y)w(y)dy, (4.20)

with
u(x, y) = k(x, y)F [x2k−2, x2k−1, x2k, y],

and
w(y) = (y − x2k−2)(y − x2k−1)(y − x2k).

Assume that

v(y) =

∫ y

x2k−2

(z − x2k−2)(z − x2k−1)(z − x2k)dz, x2k−2 6 y 6 x2k.

Then v′(y) = w(y), v(y) > 0 on [x2k−2, x2k], and v(x2k−2) = v(x2k) = 0. The
integral Eq. (4.20) becomes

∫ x2k

x2k−2

u(x, y)v′(y)dy = u(x, y)v(y)]x2k

x2k−2
−
∫ x2k

x2k−2

uy(x, y)v(y)dy

= −
∫ x2k

x2k−2

uy(x, y)v(y)dy,
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and

|
∫ x2k

x2k−2

uy(x, y)v(y)dy| 6 ||uy||∞
∫ x2k

x2k−2

v(y)dy =
4h5

15
||uy||∞,

where

uy(x, y) =
∂

∂y
{k(x, y)F [x2k−2, x2k−1, x2k, y]} =

∂k(x, y)

∂y
F [x2k−2, x2k−1, x2k, y]

+ k(x, y)F [x2k−2, x2k−1, x2k, y, y].

The last formula uses a standard result for the differentiation of Newton divided
differences (see [13]). To have this derivation be valid, we must have u ∈ C(D),
and this is true if f ∈ X and kx ∈ C(D). Combining these results, we have

K(I − Pm)f(x) = O(h4). (4.21)

By substituting (4.17) and (4.21), we have

||f − f̂m||∞ 6 ch4.

Eq. (4.19) comes from noting first that the property Pmf̂m = fm implies

fm(xi) = f̂m(xi), i = 0, 1, . . . ,m,

and second from applying Eq. (4.18).

5 Numerical Examples

In this section, some examples will be given to demonstrate the efficiency of
our method. The errors have been calculated by using

em =
∥∥f(x)− fm(x)

∥∥ = max

{
|f(x)− fm(x)|, x ∈ D

}
.

All computations have been performed on a Intel CPU PC. using a Matlab code.

Example 5.1. Consider the following linear Fredholm integral equation [14]:

f(x) = (1− x)ex + x+

∫ 1

0

x2ey(x−1)f(y)dy ; x ∈ D, (5.1)

with the exact solution f(x) = ex.
Table 1 and Fig. 2 illustrate the error results for this example. Also, we

compare the maximum absolute error computed by the present method and ra-
tionalized hat functions method [10] in Table 2. This fact is obvious from Table 2
that the results obtained by the present method is better than that obtained in [10].
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Table 1:
Absolute error for m = 8, 16, 32 of f(x) of Eq. (5.1)

Nodes x Present method
m=8 m=16 m=32

x = 0.0 0.000000e-0 0.000000e-0 0.000000e-0
x = 0.1 7.051122e-5 1.678878e-5 1.074000e-6
x = 0.2 1.442252e-4 9.440411e-6 2.420387e-6
x = 0.3 1.790884e-4 1.067389e-5 2.598107e-6
x = 0.4 9.099707e-5 2.401660e-5 1.466063e-6
x = 0.5 6.567563e-7 4.100712e-8 2.562325e-9
x = 0.6 1.167226e-4 2.765041e-5 1.768881e-6
x = 0.7 2.378355e-4 1.556802e-5 3.990328e-6
x = 0.8 2.943947e-4 1.754360e-5 4.286971e-6
x = 0.9 1.519933e-4 3.947407e-5 2.409461e-6
x = 1.0 2.253516e-6 1.410860e-7 8.821773e-9

Table 2:
Approximate infinity-norm of absolute error for Example 5.1

Methods em
Method of [10]

m = 8 7.9e-3
m = 16 1.9e-3
m = 32 5.0e-4

Present method
m = 8 3.1e-4
m = 16 4.0e-5
m = 32 4.6e-6
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Figure 2. Absolute value of error, Example 5.1 with m = 8, 16, 32.
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Example 5.2. Consider the following linear Fredholm integral equation [12]:

f(x) = e−xcos(x) − 0.2ex−1(1− x+ (x− 1)cos(1) + sin(1))

x2 − 2x+ 2
+

∫ 1

0

0.2exyf(y)dy ;

(5.2)
where x ∈ D and the exact solution is f(x) = e−xcos(x).

Table 3 and Fig. 3 illustrate the error results for this example. Also, we
compare the maximum absolute error computed by the present method and ra-
tionalized hat functions method [10] in Table 2. This fact is obvious from Table 4
that the results obtained by the present method is better than that obtained in [10].

Table 3:
Absolute error for m = 8, 16, 32 of f(x) of Eq. (5.2)

Nodes x Present method
m=8 m=16 m=32

x = 0.0 7.759476e-7 4.853733e-8 3.034217e-9
x = 0.1 9.800906e-5 2.688648e-5 1.595818e-6
x = 0.2 1.829946e-4 1.019395e-5 2.414831e-6
x = 0.3 1.041159e-4 7.480676e-6 1.985549e-6
x = 0.4 4.695818e-5 1.012831e-5 6.876549e-7
x = 0.5 7.225526e-7 4.508725e-8 2.816836e-9
x = 0.6 1.672490e-5 5.248148e-6 2.848585e-7
x = 0.7 2.565871e-5 9.971313e-7 1.965583e-7
x = 0.8 9.320964e-6 1.664778e-7 5.168838e-9
x = 0.9 8.169541e-6 2.397558e-6 1.279250e-7
x = 1.0 1.586006e-6 9.919542e-8 6.200819e-9

Table 4:
Approximate infinity-norm of absolute error for Example 5.1

Methods em
Method of [10]

m = 8 1.8e-3
m = 16 4.4e-4
m = 32 1.1e-4

Present method
m = 8 2.0e-4
m = 16 2.7e-5
m = 32 3.0e-6

6 Conclusion

In this paper we have proposed method for solving linear Fredholm integral
equations based on MHFs. This method converts the linear Fredholm integral
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Figure 3. Absolute value of error, Example 5.2 with m = 8, 16, 32.

equations into a linear system of algebraic equations. Furthermore, it is proved
that MHFs method is convergence and the order of convergence of this method is
O(h4). A comparison is made between the numerical (and exact) solutions of [10].
In addition, the method can also be extended to the system of linear Fredholm
integral equations, but some modifications are required.
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