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Abstract : Numerous problems in signal processing and imaging, statistical learn-
ing and data mining, or computer vision can be formulated as optimization prob-
lems which consist in minimizing a sum of convex functions, not necessarily dif-
ferentiable, possibly composed with linear operators. Each function is typically
either a data fidelity term or a regularization term enforcing some properties on
the solution, see for example [1, 2] and references therein. In this note we are
interested in the general form of Q-Lasso introduced in [3] which generalized the
well-known Lasso of Tibshirani [4]. Q is a closed convex subset of a Euclidean m-
space, for some integer m ≥ 1, that can be interpreted as the set of errors within
given tolerance level when linear measurements are taken to cover a signal/image
via the Lasso. Only the unconstrained case was discussed in [3], we discuss here
some split proximal algorithms for solving the general case. It is worth mentioning
that the lasso model a number of applied problems arising from machine learning
and signal/image processing due to the fact it promotes the sparsity of a signal.
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1 Introduction

The lasso of Tibshirani [4] is the minimization problem

min
x∈IRn

1

2
‖Ax− b‖22 + γ‖x‖1, (1.1)
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where A is an m× n real matrix, b ∈ IRm and γ > 0 is a tuning parameter. It is
equivalent to the the basic pursuit (BP) of Chen et al. [5]

min
x∈IRn

‖x‖1 subject to Ax = b. (1.2)

However, due to errors of measurements, the constraint Ax = b is actually inexact;
It turns out that problem (1.2) is reformulated as

min
x∈IRn

‖x‖1 subject to ‖Ax− b‖p ≤ ε, (1.3)

where ε > 0 is the tolerance level of errors and p is often 1, 2 or ∞. It is noticed
in [3] that if we let Q := Bε(b), the closed ball in IRn with center b and radius ε,
then (1.3) is rewritten as

min
x∈IRn

‖x‖1 subject to Ax ∈ Q. (1.4)

With Q a nonempty closed convex set of IRm and PQ the projection from IRm onto
Q and since that the constraint is equivalent to the condition Ax − PQ(Ax) = 0,
this leads to the following equivalent Lagrangian formulation

min
x∈IRn

1

2
‖(I − PQ)Ax‖

2
2 + γ‖x‖1, (1.5)

with γ > 0 a Lagrangian multiplier. A connection is also made in [3] with the
so-called split feasibility problem [6] which is stated as finding x verifying

x ∈ C, Ax ∈ Q, (1.6)

where C and Q are closed convex subsets of IRn and IRm, respectively. An equiv-
alent minimization formulation of (1.6) is

min
x∈C

1

2
‖(I − PQ)Ax‖

2
2. (1.7)

Its l1 regularization is given as

min
x∈C

1

2
‖(I − PQ)Ax‖

2
2 + γ‖x‖1, (1.8)

where γ > 0 is a regularization parameter.
The main difficulty in solving (1.8) stems form the fact that m,n are typically

of high, hence the denomination of large-scale optimization. It is not possible
to manipulate, at every iteration of an algorithm, matrices of size n × n, like
the Hessian of a function. So, proximal algorithms, which only exploit first-order
information of the functions, are often the only viable way to solve (1.8). In
this note, we propose two proximal algorithms to solve the problem (1.8) by full
splitting; that is, at every iteration, the only operations involved are evaluations
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of the gradient of the function 1
2‖(I −PQ)A(·)‖

2
2, the proximal mapping of γ‖ · ‖1,

A, or its transpose At.
In [3], properties and iterative methods for (1.5) are investigated. Remem-

ber also that many authors devoted their works to the unconstrained minimiza-
tion problem minx∈H f1(x) + f2(x) with f1, f2 are two proper, convex lower semi
continuous functions defined on a Hilbert space H and f2 differentiable with a
β-Lipschitz continuous gradient for some β > 0 and an effective method to solve
it is the forward-backward algorithm which from an initial value x0 generates a
sequence (xk) by the following iteration

xk+1 = (1 − λk)xk + λkproxγkf1(xk − γk∇f2(xk)), (1.9)

where γk > 0 is the algorithm step-size, 0 < λk < 1 is a relaxation parameter.
It is well-known, see for instance [1], that if (γk) is bounded and (λk) is bounded
from below, then (xk) weakly converges to a solution of minx∈H f1(x) + f2(x)
provided that the set of solutions is nonempty.

To relaxing the assumption on the differentiability of f2, the Douglas-Rachford
algorithm was introduce. It generates a sequence (yk) as follows

{

yk+1/2 = proxκf2yk;
yk+1 = yk + τk

(

proxκf1 (2yk+1/2 − yk)− yk+1/2

) (1.10)

where κ > 0, (τk) is a sequence of positive reals. It is well-known that (yk) con-
verges weakly to y such that proxκf2y is a solution of the unconstrained minimiza-
tion problem above provided that: ∀k ∈ IN, τk ∈]0, 2[ and

∑∞
k=0 τk(2− τk) = +∞

and the set of solutions is nonempty.

In this note we are interested in (1.8) which is more general and reduced to
(1.5) when the set of constraints is the entire space IRn. The involvement of the
convex set C brings some technical difficulties which are overcome in what follows.
Since the same properties for problem (1.8) may be obtained by mimicking the
analysis developed in [3] for (1.5), we will focus our attention on the algorithmic
aspect.

2 Split Proximal Algorithms

In this section, we introduce several proximal iterative methods for solving
Q-Lasso (1.8) in its general form. For the sake of our purpose we confine ourselves
to the finite dimensional setting, but our analysis is still valid in Hilbert spaces,
just replace the transpose At of A by its adjoint operator A∗ and the convergence
by the weak convergence.

To begin with, recall that the proximal mapping (or the Moreau envelope) of a
proper, convex and lower semicontinuous function ϕ of parameter λ > 0 is defined
by

proxλϕ(x) := arg min
v∈IRn

{ϕ(v) +
1

2
‖v − x‖2}, x ∈ IRn,
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and that it has closed-form expression in some important cases. For example, if
ϕ = ‖ · ‖1, then for x ∈ IRn

proxλ‖·‖1
(x) = (proxλ|·|(x1), proxλ|·|(xn)), (2.1)

where proxλ|·|(xk) = sgn(xk)maxk=1,2,···n{|xk| − λ, 0}.

If ϕ(x) = 1
2‖Ax− y‖2, then

Proxγϕ = (I + γAtA)−1At = At(I + γAAt)−1,

and if ϕ = iC , we have

Proxγϕ(x) = ProjC(x) := argmin
z∈C
‖x− z‖,

where

iC(x) =

{

0 if x ∈ C;
+∞ otherwise

such function is convenient to enforce hard constraints on the solution. Observe
that the minimization problem (1.8) can be written as

min
x∈IRn

1

2
‖(I − PQ)Ax‖

2
2 + γ‖x‖1 + iC(x). (2.2)

Remember also that the partial differential is defined as

∂ϕ(x) := {u ∈ IRn;ϕ(z) ≥ ϕ(x) + 〈u, z − x〉 ∀z ∈ IRn}.

It is easily seen that

∂
1

2
‖Ax− y‖2 = ∇

1

2
‖Ax− y‖2 = At(Ax− y) = At(Ax− y)

and that

∂‖ · ‖1(x) =

{

sign(xi) if xi 6= 0;
[−1, 1] if xi = 0

and ∂iC is nothing but the normal cone to C.

Very recently several split proximal algorithms were proposed to minimize the
problem

min
x∈IRn

f(x) + g(x) + iC(x), (2.3)

where f, g are two proper, convex and lower semicontinuous functions and C a
nonempty closed convex set.

Based in the algorithms introduced in [5], we propose two solutions for solv-
ing the more general problem (2.2). Both of them are obtained by coupling the
forward-backward algorithm and the Douglas-Rachford algorithm. Then we men-
tion other solutions introduced in [7] founded on a combination of the Krasnoselski-
Mann iteration and the Douglas-Rachford algorithm or an alternating algorithm.
Other solutions may be considered by using primal-dual algorithms proposed in
[2].
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2.1 Insertion of a Forward-Backward Step in the Douglas-

Rachford Algorithm

To apply the Douglas-Rachford algorithm when g1 = γ‖ · ‖1 et g2 = 1
2‖(I −

PQ)A(·)‖
2
2+iC , we need to determine their proximal mappings. The main difficulty

lies in the computation of the second one, namely proxκ 1

2
‖(I−PQ)A(·)‖2

2
+iC . As in

[5], we can use a forward-backward algorithm to achieve this goal. The resulting
algorithm is

Algorithm 1:

1. Set γ ∈]0, 2κ−1‖A‖−1], λ ∈]0, 1] and κ ∈]0,+∞[.

Choose (τk)k∈IN satisfying ∀k ∈ IN, τk ∈]0, 2[ and
∑∞

k=0 τk(2 − τk) = +∞.

2. Set k = 0, y0 = y−1/2 ∈ C.

3. Set xk,0 = yk−1/2.

4. Pour i = 0, ..., Nk − 1,

a) choose γk,n ∈ [γ, 2κ−1‖A‖−1[ and λk,i ∈ [λ, 1];

b) compute

xk,i+1 = xk,i + λk,i

(

PC(
xk,i − γk,i(κA

t(I − PQ)Axk,i − yk)

1 + γk,i

)

− xk,i

)

.

5. Set yk+1/2 = xk,Nk
.

6. Set yk+1 = yk + τk(proxκ‖‖̇1

(2yk+1/2 − yk)− yk+1/2).

7. Increment k ← k + 1 and go to 3.

By a judicious choose of of Nk, the convergence of the sequence (yk) to y such
that proxκ 1

2
‖(I−PQ)A(·)‖2

2
+iC (y) solves problem (2.2), follows directly by applying

[5]-Proposition 4.1.

2.2 Insertion of a Douglas-Rachford Step in the Forward-

Backward Algorithm

We consider f1 = κ‖ · ‖1 + iC et f2 = 1
2‖(I − PQ)A(·)‖

2
2. Since f2 has a ‖A‖2-

Lipschitz gradient, we can apply the forward-backward algorithm. This requires
however to compute proxiC+γk‖·‖ which can be performed with Douglas-Rachford
iterations. The resulting algorithm is

Algorithm 2:

1. Choose γk and λk satisfying assumptions 0 < infk γk ≤ supk γk < 2/‖A‖2,
0 < λ ≤ λk ≤ 1.

Set τ ∈]0, 2].

2. Set k = 0, x0 ∈ C.
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3. Set x′
k = xk − γkA

t(I − PQ)Axn.

4. Set yk,0 = 2proxγk‖·‖1
x′
k − x′

k.

5. For i = 0, · · ·,Mk − 1,

a) compute

yk,i+1/2 = PC(
yk,i + x′

k

2
);

b) choose τk,i ∈ [τ, 2];

c) compute yk,i+1 = yk,i + τk,i(proxγk‖·‖1
(2yn,i+1/2 − yk,i)− yn,i+1/2);

d) if yk,i+1 = yk,i, then goto 6.

6. Set xk+1 = xk + λk(yk,i+1/2 − xk).

7. Increment k ← k + 1 and go to 3.

A direct application of [5]-Proposition 4.2 ensures the existence of positive inte-
gers (Mk) such that if for all k ≥ 0 Mk ≥ Mk, then the sequence (xk) weakly
convergences to a solution of problem (2.2).

Remark 2.1. Other split proximal algorithms may be designed by combining the
fixed-point idea to compute the composite of a convex function with a linear op-
erator introduced in [8] and the analysis developed for computing the proximal
mapping of the sum of two convex functions developed in [7]. Primal-dual algo-
rithms considered in [2] can also be used. Note that there are often several ways to
assign the functions of (2.2) to the terms used in the generic problem investigated
in [2, 8, 9].
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