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Abstract : By a right [left ] nearring we mean a triple (N, +, ·) where (N, +) is
an ablien group, (N, ·) is a semigroup and (x + y) · z = x · z + y · z [z · (x + y) =
z · x + z · y] for all x, y, z ∈ N . A semigroup is said to admit a right [left ] nearring
structure if there is an operation + on S such that (S, +, ·) is a right [left] nearring
or there is an operation + on S0 such that (S0, +, ·) is a right [left] nearring
where · is the operation on S and S0, respectively. For a nonempty set X, let
G(X), T (X), P (X) and I(X) denote respectively the symmetric group on X, the
full transformation semigroup on X, the partial transformation semigroup on X
and the 1-1 partial transformation semigroup on X. Our purpose is to characterize
when G(X), T (X), P (X) and I(X) admit a right nearring structure and a left
nearring structure. The remarkable results are as follows : T (X) and P (X) admit
a right nearring structure for every set X while they admit a left nearring structure
only the case |X| = 1.
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1 Introduction

The cardinality of a set X will be denoted by |X|.
If S is a semigroup which does not process a zero or |S| = 1, let S0 denote

the semigroup S with an adjoined zero 0 ; otherwise S0 = S. An idempotent of a
semigroup S is an element a ∈ S with a2 = a.

A right [left ] nearring is a triple (N, +, ·) where
(i) (N, +) is a group,
(ii) (N, ·) is a semigroup and
(iii) for all x, y, z ∈ N, (x + y) · z = x · z + y · z [z · (x + y) = z · x + z · y].

Subnearrings of a right [left] nearring are defind naturally. Nearrings have the
following basic properties :

Proposition 1.1. ([2], page 19) If (N, +, ·) is a right [left ] nearring, then
(i) 0 · x = 0 [x · 0 = 0] for all x ∈ N where 0 is the identity of (N, +) and
(ii) (−x) · y = −(x · y) [x · (−y) = −(x · y)] for all x, y ∈ N .
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Hence if (N, +, ·) is a right [left] nearring, then (N, ·) has a left [right] zero.
Some standard examples of right nearrings are (M(R), +, ◦), (C(R), +, ◦) and

(D(R), +, ◦) where

M(R) = the set of all mappings f : R→ R,

C(R) = {f ∈ M(R)| f is continuous},
D(R) = {f ∈ M(R)| f is differentiable}

and + and ◦ are respectively the usual addition and composition of functions.
We see that all the right nearrings (M(R), +, ◦), (C(R), +, ◦) and (D(R), +, ◦) are
additively commutative. Throughout, our right nearrings and our left nearrings
are assumed to be additively commutative. Observe that the right nearrings given
above are not left nearrings. Then they are not rings.

Since the multiplicative structure of any ring is by definition a semigroup
with zero, it is valid to ask whether a given semigroup S has S0 isomorphic to the
multiplicative structure of some ring. If it does, S is said to admit a ring structure.
Equivalently, S admits a ring structure if and only if there is an operation + on S0

such that (S0, +, ·) is a ring where · is the operation on S0. Semigroups admitting
ring structure have long been studied. For examples, see [4], [6], [1], [7] and [5].
Right [left] nearrings are a generalization of rings and by definition and Proposition
1.1(i), their multiplicative structures are semigroups with left [right] zero. Hence
we have the following fact.

If (S, ·) is a semigroup without left [right] zero, then there is
no operation + on S such that (S, +, ·) is a right [left] nearring.

(1)

A right [left] nearring (N, +, ·) is called zero-symmetric if 0 · x = x · 0 = 0 for all
x ∈ N . The following question is reasonable.

For a given semigroup S, is there an operation + on S0

such that (S0, +, ·) is a zero-symmetric right [left] nearring

where · is the operation on S0?

(2)

Note that a right [left] zero of (N, ·) is an idempotent. Because of (1) and (2),
the definition of a semigroup admitting right [left] nearring structure is reasonably
given as follows : A semigroup S is said to admit a right [left ] nearring structure
if there is an operation + on S such that (S, +, ·) is a right [left] nearring where
· is the operation on S or there is an operation + on S0 such that (S0,+, ·) is a
right [left] nearring where · is the operation on S0. Equivalently, a semigroup S
admits a right [left] nearring structure if and only if S or S0 is isomorphic to the
multiplicative structure of some right [left] nearring. We note here that if (S0, +, ·)
is a right [left] nearring, then by Proposition 1.1(i), 0 is the identity of (S0,+, ·).

The following fact will be quoted.
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Proposition 1.2. ([2], page 7) If (G,+) is a group and M(G) is the set of all
mappings f : G → G, then (M(G), +, ◦) is a right nearring where + and ◦ are the
usual addition and composition of functions, respectively.

For a nonempty set X, let

G(X) = the symmetric semigroup on X,

T (X) = the full transformation semigroup on X,

P (X) = the partial transformation semigroup on X,

I(X) = the 1-1 partial transformation semigroup on X.

Then G(X) ⊆ T (X) ⊆ P (X) and G(X) ⊆ I(X) ⊆ P (X). Also, P (X) and I(X)
have a zero 0 (the empty transformation) but G(X) and T (X) have no zero if
|X| > 1. The domain and the range of f ∈ P (X) are denoted by domf and ranf ,
respectively. For convenience, for ∅ 6= A ⊆ X and x ∈ X, let Ax be the constant
mapping whose domain and range are A and {x}, respectively and the identity
map on A may be denoted by 1A. For distinct a, b ∈ X, let (a b) ∈ G(X) be
defined by (a b)(a) = b, (a b)(b) = a and (a b)(x) = x for all x ∈ X r {a, b}.
Elements of P (X) may be written by bracket notation. For examples,

(
a

b

)
= the mapping in I(X) whose domain and

range are {a} and {b} , respectively,(
a x
b x

)

x∈Xr{a}
= the mapping f ∈ T (X) defined by

f(x) =

{
b if x = a,

x ortherwise.

Observe that

Ax =
(

a

x

)

a∈A

and (a b) =
(

a b x
b a x

)

x∈Xr{a,b}
.

The following facts are known.

Proposition 1.3. ([7]) Let X be a nonempty set. Then the following statements
hold.
(i) G(X) admits a ring structure if and only if |X| ≤ 2
(ii) If S(X) is T (X), P (X) or I(X), then S(X) admits a ring structure if

and only if |X| = 1.

Two-sided distribution was used for the proof of Proposition 1.3. These results
motivate us to characterize when these standard transformation semigroups admit
a right nearring structure and admit a left nearring structure. The following
important facts are helpful for our work.
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Proposition 1.4. ([7]) For any nonempty set X, there is an operation + on X
such that (X, +) is an abelian group.

It can be seen from the proof of Proposition 1.4 in [7] that the identity of the
group (X, +) can be specified. Hence we have

Proposition 1.5. If X is a nonempty set and a ∈ X, then there is an operation
+ on X such that (X, +) is an abelian group with identity a.

Proposition 1.6. ([3], page 41) Let X be a nonempty set and θ a symbol not
representing any element of X. For f ∈ P (X), define f∗ ∈ T (X ∪ {θ}) by

f∗(x) =

{
f(x) if x ∈ domf,

θ otherwise.

Then f 7→ f∗ is an isomorphism from P (X) onto the subsemigroup of T (X ∪{θ})
consisting of all g ∈ T (X ∪ {θ}) with g(θ) = θ.

2 Transformation Semigroups

For convenience, let R,RNR and LNR denote respectively the class of all semi-
groups admitting a ring structure, the class of all semigroups admitting a right
nearring structure and the class of all semigroups admitting a left nearring struc-
ture. Then we have R ⊆ RNR∩ LNR.

Theorem 2.1. For a nonempty set X,
(i) G(X) ∈ RNR if and only if |X| ≤ 2 and
(ii) G(X) ∈ LNR if and only if |X| ≤ 2.

Proof. If |X| ≤ 2, then by Proposition 1.3(i), G(X) ∈ R. Hence the converses of
(i) and (ii) hold since R ⊆ RNR and R ⊆ LNR.

Assume that |X| > 2. Let a, b, c be distinct elements of X. Since G(X) is a
group and 1X is the only idempotent of G(X), it follows that G(X) has neither
a right zero nor a left zero. First, suppose that G(X) ∈ RNR. Then there
is an operation + on G0(X) such that (G0(X), +, ◦) is a right nearring. Thus
1X + (a b) = f for some f ∈ G0(X), so

f = 1X + (a b) = ((a b) + 1X)(a b) = (1X + (a b))(a b) = f(a b)

Case 1: f 6= 0. Then (a b) = 1X , a contradiction.

Case 2: f = 0. Then 1X + (a b) = 0. Since (a b) 6= (a c), 1X + (a c) 6= 0. Let
1X + (a c) = g ∈ G(X). Then

g = 1X + (a c) = ((a c) + 1X)(a c) = g(a c),

so (a c) = 1X , a contradiction.
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This proves that G(X) /∈ RNR.
Next, to show that G(X) /∈ LNR, suppose on the contrary that G(X) ∈ LNR.

Then there is an operation + on G0(X) such that (G0(X),+, ◦) is a left nearring.
Then 1X + (a b) = f for some f ∈ G0(X). Then

f = 1X + (a b) = (a b)((a b) + 1X) = (a b)f

Case 1: f 6= 0. Then (a b) = 1X , a contradiction.

Case 2: f = 0. Then 1X + (a c) = g for some g ∈ G(X). Since

g = 1X + (a c) = (a c)((a c) + 1X) = (a c)g,

we have (a c) = 1X , a contradiction.

Hence the proof is complete.

Theorem 2.2. (i) For any nonempty set X, T (X) ∈ RNR.
(ii) For any nonempty set X, T (X) ∈ LNR if and only if |X| = 1.

Proof. (i) Let X be a nonempty set. By Proposition 1.4, there is an operation +
on X such that (X, +) is an abelian group. For f, g ∈ T (X), define

(f + g)(x) = f(x) + g(x) for all x ∈ X.

By Proposition 1.2, (T (X), +, ◦) is a right nearring, so T (X) ∈ RNR.
(ii) Suppose that |X| > 1. Let a, b ∈ X be distinct. Since Xaf = Xa and

Xbf = Xb for all f ∈ T (X), it follows that T (X) has no right zero. Suppose that
there is an operation + on T 0(X) such that (T 0(X), +, ◦) is a left nearring. Then
Xa + Xb = f for some f ∈ T 0(X).

Case 1: f 6= 0. Then

Xa + Xa = Xa (Xa + Xb) = Xaf = Xa

which implies that Xa = 0, a contradiction.

Case 2: f = 0. Then Xa + Xb = 0 and

Xa + Xa = Xa(Xa + Xb) = Xa0 = 0.

It follows that Xb = Xa, a contradiction.

The converse is obtained from Proposition 1.3(ii) since R ⊆ LNR.

Theorem 2.3. (i) For any nonempty set X, P (X) ∈ RNR.
(ii) For a nonempty set X, P (X) ∈ LNR if and only if |X| = 1.
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Proof. (i) Let X be a nonempty set. Let θ be a symbol not representing any
element of X. For f ∈ P (X), define f∗ ∈ T (X ∪ {θ}) as in Proposition 1.6.
By Proposition 1.6, the mapping f 7→ f∗ is an isomorphism from P (X) onto the
subsemigroup {g ∈ T (X ∪ {θ}) | g(θ) = θ} of T (X ∪ {θ}). From Proposition 1.5,
there is an operation + on X∪{θ} such that (X∪{θ} , +) is an abelian group with
identity θ. Then (T (X ∪ {θ}), +, ◦) is a right nearring by Proposition 1.2 where

(f + g)(x) = f(x) + g(x) for all f, g ∈ T (X ∪ {θ}) and x ∈ X.

If g, h ∈ T (X ∪ {θ}) are such that g(θ) = θ = h(θ), then

(g + h)(θ) = g(θ)+h(θ) = θ + θ = θ, (gh)(θ) = g(h(θ)) = g(θ) = θ,

(−g)(θ) = −g(θ) = −θ = θ.

Therefore {g ∈ T (X ∪ {θ}) | g(θ) = θ} is a subnearring of the right nearring (T (X∪
{θ}), +, ◦). But P (X) is isomorphic to ({g ∈ T (X ∪ {θ}) | g(θ) = θ} , ◦), so P (X) ∈
RNR.

(ii) Assume that |X| > 1. Let a and b be distinct elements of X. Suppose that
there is an operation + on P (X) such that (P (X), +, ◦) is a left nearring. Then(

a

a

)
+

(
a

b

)
= f for some f ∈ P (X). Then

(
a

a

)
f =

(
a

a

)((
a

a

)
+

(
a

b

))
=

(
a

a

)
+ 0 =

(
a

a

)
and

(
b

b

)
f =

(
b

b

)((
a

a

)
+

(
a

b

))
= 0 +

(
a

b

)
=

(
a

b

)
.

It follows that a =
(

a

a

)
(a) =

((
a

a

)
f

)
(a) =

(
a

a

)
f(a) and b =

(
a

b

)
(a) =

((
b

b

)
f

)
(a) =

(
b

b

)
f(a) which imply respectively that f(a) = a and f(a) = b.

This is a contradiction.
The converse holds by Proposition 1.3(ii).

Theorem 2.4. Let X be a nonempty set.
(i) I(X) ∈ RNR if and only if |X| = 1.
(ii) I(X) ∈ LNR if and only if |X| = 1.

Proof. (i) Assume that |X| > 1 and let a, b ∈ X be distinct. Suppose that
there is an operation + on I(X) such that (I(X), +, ◦) is a right nearring. Then(

a

a

)
+

(
b

a

)
= f for some f ∈ I(X), so

f

(
a

a

)
=

((
a

a

)
+

(
b

a

)) (
a

a

)
=

(
a

a

)
+ 0 =

(
a

a

)
,

f

(
b

b

)
=

((
a

a

)
+

(
b

a

)) (
b

b

)
= 0 +

(
b

a

)
=

(
b

a

)
.
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These implies that f(a) =
(

f

(
a

a

))
(a) =

(
a

a

)
(a) = a and f(b) =

(
f

(
b

b

))
(b) =

(
b

a

)
(b) = a. This is a contradiction since f is 1-1.

The converse is obtained from Proposition 1.3(ii).
(ii) The proof can be given the same as that of Theorem 2.3(ii).
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