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1 Introduction

Usually, a conventional system of equations for time series data, particularly
the seemingly unrelated regressions (SUR) model and the simultaneous equations
(SE) model, has a strong assumption of normally distributed residuals. Con-
sequencely, in our previous works, we relaxed this assumption of normality by
using copulas to link the different marginal distributions in the system of equa-
tions and introduced the copula-based simultaneous equations model and also the
copula-based seemingly unrelated regressions model, and applied in several areas
of economic research. (see, [1], and [2]) In this study, we aim to further develop
our copula-based SE model with a special concern about more flexibility of depen-
dency between equations. The copula approach offers a flexible way to construct a
joint distribution independently from the marginal distributions [3]. This, in turn,
makes the copula-based SE model more flexible and possible to capture nonlinear
and asymmetric dependence between two or more equations. However, univariate
and multivariate statistical analysis in either (pure) economics or applied eco-
nomics typically involves inference of probability distribution, so the appropriate
specification of marginal distributions and copula function appears so difficult to
obtain. Uncertainty distributions can be specified either by fitting to data or by
prior information (Bedford and Wilson, 2014). The data or prior information pro-
vides several specifications of functions of the variables for which the uncertainty
distribution must satisfy. These are known as constraints of the parametric copula-
based SE model. However, if there is some knowledge or partial information of the
data or the outcome, the parametric copula-based SE model may give bias results.

Therefore, instead of using a parametric copula function, this study proposes
to construct the joint distribution using the copula method with the marginal
distribution derived by the entropy method. The principle of maximum entropy
allows for the inclusion of the available information in assignment of probabilities
to different data or outcome of a model [4]. The concept of maximum entropy
for probability density inference has been applied extensively in a variety of areas,
including copulas. Accordingly, this study considers the entropy copula method
as a promising technique for modelling the dependency, particularly for joining
the error terms in the SE model. Subsequently, the maximum primal discrete
entropy estimator is used to estimate the unknown parameters of the copula-based
SE model. The rest of this paper is structured as follows. In Section 2, we will
explain the theoretical foundation of the entropy copula-based SE model, including
the conceptual idea of the SE model, copula theory, entropy theory, and the GME
estimator for the bivariate entropy copula-based SE model. Then, Section 3 is
mainly for application in which the proposed model is extended to the analysis of
demand and supply of Thai rice and the results are presented. And finally Section
5 contains conclusions.
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2 Methodology

2.1 Review of Simultaneous Equations Model

In this section, we review the formulas to estimate simultaneous equations
(SE) model. We then provide some background of entropy and Copula theories.
Finally, the estimation steps are presented to show how to estimate the coefficients
using entropy copula-based SE model.

Economic systems are usually described in terms of the behavior of various
economic agents, and the equilibrium is reached when these behaviors are recon-
ciled [5]. For example, with the demand and supply behaviors; the market clearing
process will respond to the behavioural equations for demand and supply, creat-
ing simultaneous or joint determination of the equilibrium quantities. This causes
the correlation between explanatory variables and errors in the estimation of this
system equations. This system equations are called ”simultaneous equations (SE)
model”. The system of equations of SE model is written as

yi = [Γ′i, X
′
i]βi + εi i = 1, ....,M, (2.1)

where yi is a T × 1 vector of dependent variables, Γi is T × K matrix of M
endogenous yi, Xi is T ×K a matrix of K exogenous variables, and βi is a (M +
K) × 1 vector of unknown parameters to be estimated. εi is a T × 1 vector of
error terms in equation ith. Hence, we can write the extension form of SE as

y1
y2
...
yM

 =


β21y2 + β31y3 + · · ·+ βM1yM + β11X1 + · · ·βK1XK

β12y1 + β32y3 + · · ·+ βM2yM + β12X1 + · · ·βK2XK

...
β1My1 + · · ·+ βM−1,MyM−1 + β1MX1 + · · ·+ βKMXK

 +


ε1
ε2
...
εM


(2.2)

In the real application study, we can restrict some coefficients of endogenous vari-
ables to be zero. In addition, the vital assumption of the SE model is that it
assumes that the errors have no correlation across observations but there are cor-
relations across equations., so that

E[ εit εjs |X ] = 0 ; t 6= s, i 6= j (2.3)

where i and j indicate the number of each equation and t and s denote the observa-
tions at each time. However, we explicitly allow for contemporaneous correlation,
i.e.,

E[εit εjt |X] = σij (2.4)

That indicates that the SE model allows non-zero covariance between the error
terms of different equations in the model. In the conventional approach, the errors
are assumed to have a normal distribution, that is εt = (ε1t, ..., εMt)˜N(0,Σ)
where Σ, is a variance-covariance matrix for M equations, thus

E(εtε′t) = Ω = Σ⊗ IT , (2.5)
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where I is an T-dimensional identity matrix and ⊗ denotes the matrix Kronecker
product, and this system equation can be estimated by least squares (LS), Maxi-
mum likelihood (ML), Bayesian, and entropy estimators.

2.2 Copula Theory

Nowadays, one of the most popular dependence theories is copula. The copula
theory has been recently employed to construct the joint distribution of multiple
variables. It provides a flexible way for constructing the joint distribution to mea-
sure the dependence of multivariate random variables, says marginal distributions.
For example, in the bivariate case, the marginal distributions for the continuous
random variables X and Y are denoted as F (X)and G(Y ), respectively. The joint
cumulative distribution functions (CDF) of C(u, v) or F (x, y) can be constructed
with the copula C as

P (X ≤ x, Y ≤ y) = C(F (x), G(y); θ) = C(u, v; θ), (2.6)

where C is copula distribution function of a two-dimensional realization of random
variables, u, v. θ is the copula parameter that relates to the dependence structure
or family. The copula C can link two marginal distributions by mapping them into
a joint distribution. If the marginal distribution is continuous, the copula function
is unique. According to Nelsen [6], the copula function satisfies the properties on

[0, 1]
2
.

(1) Boundary condition:

C(u, 0) = 0 = C(0, v), (2.7)

C(u, 1) = u

C(1, v) = v.
(2.8)

(2) Monotonicity:
For every u1, u2, v1 and v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2:

C(u2, v2)− C(v1, v2)− C(u1, v2) + C(u1, v1) ≥ 0. (2.9)

There is a variety of copula families such as elliptical copulas (Gaussian and t-
copula), Archimedean copulas (Frank, Clayton, Gumbel copulas), extreme copulas
and vine copulas, and mixed copulas. The best fit copulas can be assessed using
AIC, BIC and goodness of fit [7].

2.3 Entropy Theory

The basic concept of maximum entropy consists of making inferences on the
probability distribution that maximizes information entropy subject to a set of
constraints, which are the assignment of probabilities that best represent the cur-
rent state of knowledge [8]. In this study, we use a maximum entropy estimator,
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in discrete form, to estimate our unknown parameters in copula-based SE model.
In the discrete case, for a random variable X with probabilities p = p1, ..., pT on
X = x1, ..., xT , the Shannon entropy ([9], [10]) is defined as

H(p) = −
T∑
i=1

pi log pi , (2.10)

where 0 log 0 = 0 and
T∑
i=1

pi = 1. The probability distribution p is derived by the

principle of maximum entropy based on discrete form given a set of constraints.
The entropy measures the uncertainty of a distribution and reaches a maximum
when pi has uniform distribution. For example, suppose the expected value of the
variable is known, we can specify another constraint as:

H(p) = −
T∑
i=1

pixi = x̄. (2.11)

The optimization of this problem can be solved using the Lagrangian method
which takes the form as

L =

T∑
i=1

pi log pi−(λ0 − 1)

(
T∑
i=1

pi − 1

)
− λ1

(
T∑
i=1

pixi − x̄

)
, (2.12)

where λ0 and λ1 are the Lagrangian multiplier. Thus, the resulting first-order
conditions become

pi = exp(−λ0 − λ1xi) =
exp(−λ1xi)
T∑
i=1

exp(−λ1xi)
.

(2.13)

2.4 Concept of Bivariate Entropy Copula-Based SE Model

To apply the entropy concept to an estimator of bivariate copula-based SE
model, we use generalized maximum entropy to inverse a problem to the regres-
sion framework (see, [11]). First of all, the estimated parameter can be classified
into two groups, namely SE parameter and error group and copula parameter
group. These two parameter groups can be estimated jointly using the discrete
entropy approach. Before we derive the entropy copula-based SE model, we need
to understand the basic concept of the estimated parameters in each group. For
the SE parameters, the point estimates βk is computed as expectations of ran-
dom variables pkd with zk = [zk1, ..., 0, ..., z̄kd] support value, whereas zk1 and z̄km
denote the lower bound and upper bound, respectively. Thus we can compute
parameter βk as

βk =

D∑
d=1

pkdzkd (2.14)
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where pkd are the D dimensional support values or estimated probability distri-
bution defined on the set zkd. Similarly, the error εt is also constructed as the
expected value of some random variable wtd with vt = [vt1, ..., 0, ..., vtd] whereas
wt is a D dimensional proper probability weights defined on the set vt such that

εt =

D∑
d=1

wtdvtd (2.15)

For the copula parameter group, we need to find the appropriate constraint
to model the dependence structure h(ε1i, ε2i) where ε1i and ε2i are the error term
in the first and and the second equations respectively of SE model. Note that
the study uses the discrete entropy copula as a dependence structure to join the
expected errors in bivariate SE model. Therefore, in this section, we show in the
following the derivation of maximum entropy distributions in discrete form of the
bivariate entropy copula-based SE model.

2.5 Generalized Maximum Entropy Estimator to Bivariate
Entropy Copula-Based SE Model

The maximum entropy can be approximated by discrete form of constraints
to derive a copula-based SE model with maximum entropy. This estimation is
classified as the discrete density maximum entropy copula-based model. We em-
ploy the maximum entropy checkerboard copula (MECBC) of Piantadosi et al.
([12],[13]) to join the residuals of entropy SE model In addition, the grade correla-
tion is imposed as a constraint to preserve the dependence structure in the original
data. In this section, the bivariate entropy checkerboard copula based SE model
is proposed and constructed.

Suppose that the input space has been discretized into the points (ε1i , ε
2
j )

fori, j = 1, ..., T , we construct the discrete copula entropy as proposed by Pianta-
dosi1, Howlett, and Borwein, [12]; Bedford and Wilson [14]; and Hao and Singh
[8], to join the expected error term of two equations in bivariate SE model. Those
studies suggested that the entropy copula density functionc(u, v) can be approx-
imated by the discrete form. Suppose the probability B(i, j) = bij , 0 ≤ i, j ≤ T
is the discrete copula probability partitioned within the interval [0, 1] × [0, 1] on
the point (ε1i , ε

2
j ), p

1
kd, p

2
kd, w

1
id and w2

jd are the discrete coefficients and error
probabilities of equations 1 and 2 in SE model, therefore the discrete form of the
entropy copula-based SE model can be expressed by

H(b,p,w) = −
T∑
i=1

T∑
j=1

bij log bij −
K1∑
k=1

D∑
d=1

p1kd log p1kd −
K2∑
k=1

D∑
d=1

p2kd log p2kd

−
T∑
i=1

D∑
d=1

w1
id logw1

id −
T∑
j=1

D∑
d=1

w2
jd logw2

jd , (2.16)

subject to the following constraints.
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1) Marginal probabilities constraints

T∑
i=1

bij =
1

T
(2.17)

T∑
j=1

bij =
1

T
(2.18)

Bedford and Wilson [14] mentioned that these constraints on the functions of the
discretized variables, E(hl) = αl, l = 1, ..., L can be defined from the Kronecker
deltas:

δ(r)q (i, j) =

{
1, if i = q,
0, if i 6= q,

δ(c)q (i, j) =

{
1, if j = q,
0, if j 6= q,

(2.19)

which indicate whether we are in the qth row and qth column, respectively. The
marginal constraints Eqs.(2.17-2.18) are then considered to be the expectations of
these Kronecker deltas.That is,

E
[
δ(r)q (i, j)

]
=

T∑
i=1

T∑
j=1

δ(r)q (i, j)bij =
1

T
; q = 1, ..., T,

E
[
δ(c)q (i, j)

]
=

T∑
i=1

T∑
j=1

δ(c)q (i, j)bij =
1

T
.

(2.20)

2) Dependence structure constraint

T∑
i=1

T∑
j=1

hl

(
D∑
d=1

w1
idv

1
id,

D∑
d=1

w2
jdv

2
jd

)
bij = αl, (2.21)

where αl is the sample mean of the dependence function hl, which is encompassed
by a variety of dependence measures.

3) The constraints of SE equations can be expressed as

y1t =

K1∑
k=1

x′1k

D∑
d=1

p1kdz
1
kd +

T∑
t=1

D∑
d=1

w1
idv

1
id

y2t =

K2∑
k=1

x′2k

D∑
d=1

p2kdz
2
kd +

T∑
t=1

D∑
d=1

w2
jdv

2
jd

, (2.22)

where K1 and K2 are the number of coefficient in the first and the second equation,
respectively. For a simple derivation, x′1k is denoted as either endogenous variable
or exogenous variable.
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4) Additional constraints

D∑
d=1

p1kd = 1,

D∑
d=1

p2kd = 1,

D∑
d=1

w1
id = 1,

D∑
d=1

w2
jd = 1 (2.23)

By using Lagrangian method, solution of the optimization problem to derive the
maximum entropy copula-based SE model subject to all the above constraints can
be expressed as:

L = −H (b,p,w) + λ′1

(
y1t −

K1∑
k=1

x′1k

D∑
d=1

p1kdz
1
kd −

T∑
t=1

D∑
d=1

w1
idv

1
id

)

+ λ′2

(
y2t −

K2∑
k=1

x′2k

D∑
d=1

p2kdz
2
kd −

T∑
t=1

D∑
d=1

w2
jdv

2
jd

)

+ λ′3

(
D∑
d=1

pkd − 1

)
+ λ′4

(
D∑
d=1

wtd − 1

)

+ θ′1

 T∑
i=1

T∑
j=1

δ(r)q (i, j)bij −
1

T

+ θ′2

 T∑
i=1

T∑
j=1

δ(c)q (i, j)bij −
1

T


+ θ′3

 T∑
i=1

T∑
j=1

hl

(
D∑
d=1

w1
idv

1
id,

D∑
d=1

w2
jdv

2
jd

)
bij − αl

 ,

(2.24)

where θ′i, λ
′
i , i = 1, 2, 3 are the vectors of Lagrangian multiplier. Thus, the

resulting first-order conditions this optimization yields are as follows ([11], [14]).

p̂1kd =
exp(−z1kdλ1x′1k)
D∑
d=1

exp(−z1kdλ1x′1k)

,
(2.25)

p̂2kd =
exp(−z1kdλ1x′1k)
D∑
d=1

exp(−z2kdλ2x′2k)

,
(2.26)

ŵ1
id =

exp(−λ̂3tvid)
D∑
d=1

exp(−λ̂3tvid)
,

(2.27)

ŵ1
jd =

exp(−λ̂3tvjd)
D∑
d=1

exp(−λ̂3tvjd)
,

(2.28)

bij =
exp

[
−

T−1∑
q=1

(θ(r)q δ(r)q (i,j)+θ(c)q δ(c)q (i,j))−
L∑

l=1

θlhl

(
D∑

d=1

w1
idv

1
id,w

2
jdv

2
jd

)]
T∑

i=1

T∑
j=1

exp

[
−

T−1∑
q=1

(
θ
(r)
q δ

(r)
q (i,j)+(θ

(c)
q δ

(c)
q (i,j)

)
−

L∑
l=1

θlhl

(
D∑

d=1

w1
idv

1
id,w

2
jdv

2
jd

)] . (2.29)
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Summing up the above equations, we maximize the joint-entropy objective, Eq.
(2.16), subject to the regression Eqs. (2.17-2.23). The solution to this maximiza-
tion problem is unique by forming the Lagrangian and solving for the first-order
conditions to obtain the optimal solution for each probabilities. Then these es-
timated probabilities are used to derive the point estimates for the regression
coefficients and error term, as well as the joint copula dependence structure hl(·).
For the dependence structure between two error terms in SE model, the Spearman
correlation [13] is used as a dependence measure here to illustrate the flexibility
of entropy copula for dependence modelling. Thus, the copula dependence struc-
ture hl(·) in Eq. (2.29) can be measured by the Spearman correlation ρ which is
expressed as:

ρ = 12

 1

n3
·
T∑
i=1

T∑
j=1

bij(i− 1/2)(j − 1/2)− 1/4

 (2.30)

For more discussion, formulation and solution of the discrete copula entropy in
the primal problem can be found in Piantadosi, Howlett, Borwein [12]. In this
method, the probability density bij is only available for the points defining the

partition on [0, 1]
2
. For example, given T = 20, M = 2, and ρ = 0.6, Figure 1

illustrates the density function that is consistent with continous entropy copula
density function. (see, [15]).

 

Figure 1: Example of copula density function from discrete entropycopula meth-
ods.

3 An Application

So far we have explained the theoretical foundation of the entropy copula-
based SE model, starting from conceptual idea of the SE model, copula theory,
and entropy theory, followed by the GME estimator for the bivariate entropy
copula-based SE model. Right now, this part is conducted as an empirical study
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to roughly evaluate the performance of this approach and explore how it can work
through the real data set.

We consider the analysis of demand and supply of Thai rice as a case study
due to two reasons. First, rice is considered one of the most important agricultural
crops in Thailand. It creates a large economic value for the Thai economy through
exportation and provides income to a large number of Thai farming families. Sec-
ond, the analysis of demand and supply is an obvious example of simultaneous
equations model. For example, the analysis of Thai rice consists of two equations,
demand and supply, describing the behavior of consumer and producer, respec-
tively, and also the equilibrium price and quantity of rice that result when the
demand and supply behaviors are reconciled. In essence, the market clearing pro-
cess feeds back equilibrium price into the demand and supply equations, creating
simultaneous determination of the equilibrium quantity.

The demand and supply analysis of Thai rice can be specified as:

Qdt = β1 + β2 Pt + β3 P
V N
t + β4 P

PK
t + β5 P

Ind
t + εt, (3.1)

Qst = α1 + α2Pt + α3WSt + α4Rt + α5 P
fm
t + εt. (3.2)

Eqs.(3.1) and (3.2) show demand and supply for Thai rice, respectively. The
quantity demanded depends on the export price of Thai rice(P ) as well as the
prices of other rice-exporting countries namely Vietnam (PV N ), Pakistan (PPK),
and India (P Ind) -which are main competitors of Thailand’s rice exports. The
quantity supplied typically depends on the export price, but also reacts to essential
factors for rice cultivation like water storage (WS), rain (R), and producer price for
rice or so-called farm price (P fm). All the data is collected monthly from January
2006 to December 2015, from different sources. We retrieved the data regarding
rice cultivation, and Thailand’s export prices and quantities from the government
institutions. But other countries’ rice prices were obtained from the International
Rice Research Institute (IRRI), with some help from the Bank of Thailand staff.
Prior to the model estimation, we checked the stationarity of the data set by using
the Augmented Dickey-Fuller (ADF) unit root test. We found that all the series
were non-stationary. Then, we transformed the data into stationary form through
taking growth rates, before estimating the model. Table 1 is descriptive statistics
a simple quantitative summary of the variables.

Table 1: Descriptive statistics

Q P PV N PPK P Ind WS R P fm

Mean 0.0002 0.004 0.007 0.001 −0.001 0.001 0.680 0.003
Median 0.003 −0.007 0 0 0 −0.021 0 0.002
Maximum 0.373 0.413 0.428 0.135 0.059 0.216 11.506 0.362
Minimum −1 −0.118 −0.213 −0.138 −0.089 −0.126 −0.958 −0.113
Range 1.373 0.531 0.641 0.274 0.149 0.342 12.465 0.475
Std.Dev. 0.147 0.071 0.094 0.045 0.020 0.084 2.004 0.059
Skewness −2.580 2.032 1.231 0.193 −0.404 0.764 2.836 2.762
Kurtosis 20.730 11.450 7.572 4.747 7.195 2.523 12.319 17.726

Source: Calculation.
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In this subsection, the entropy copula-based SE model is compared to the rele-
vant benchmarking models in terms of in-of-sample predictive ability. Firstly, it is
compared to the conventional SE model estimated by least squares (LS) estimator
using the R package systemfit, contributed by Henningsen and Hamann [16]. Sec-
ondly, we compare our proposed approach to the copula-based SE model, which is
estimated using the maximum likelihood estimator (MLE). The distribution of the
innovations for each equation and the copula are chosen according to the AIC from
a range of different innovation distributions, which consist of normal, student-t,
and various copulas capturing different types of dependence, e.g., tail independent
Gaussian copula and Frank copula, symmetric-tail-dependent student-t, Student-
t copula with symmetric tail dependence, lower-tail-dependent Clayton, upper-
tail dependent Gumbel, Joe, and Ali-Mikhail-Haq. This parametric copula-based
model was described in our previous work, Pastpipatkul et al. [1]. Predictions
are evaluated in terms of two different loss functions, so the classical root mean
squared error is used to evaluate the performance of the proposed method in this
work.

RMSE =

√√√√ 1

T

T∑
t=1

(ŷt − yt)2 (3.3)

Table 2 presents the RMSE values for the conventional SE model (denoted
by LS-SE), the copula-based SE model (denoted by parametric Cop-SE), and the
entropy copula-based SE model (denote by Entropy-Cop-SE).

Table 2: Model comparison

Model LS-SE Parametric Cop-SE Entropy Cop-SE
RMSE 0.1368 0.1709 0.1381

Source: Calculation.
Note: Gaussian copula with student-t and normal margins shows the lowest AIC in parametric Cop-SE model.

The results show that the conventional SE model is the best model for this
data set as it holds the minimum value of RMSE compared to the others. How-
ever, apart from the LS-SE model, if we compare the Entropy-Cop-SE model to
the parametric Cop-SE, we will find that our newly proposed model can perform
strongly better than the parametric Cop-SE model due to the smaller RMSE value.
In fact, this value is pretty close to the one of LS-SE model. We expect that the
error bound or support in the entropy estimator is possibly too wide which, in
turn, leads a higher variance of the GME estimator. Golan, Judge, and Miller [11]
noted that the bias increases as we widen the error bounds. Thus, there exists the
higher value of RMSE.

We have to note that this experiment is conducted under one specific data set.
So, the results do not indicate that this model is certainly better than the other
models. In this specific case, using the conventional SE approach is preferable,
but the entropy copula-based SE model is still acceptable and can be interesting
for the analysis of demand and supply of Thai rice as an alternative model. In
addition, for the case that the distribution is unknown, the entropy copula-based
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SE model is better. This is because we do not need to spend time selecting the
best-fit model as happened in either the conventional SE or the parametric Cop-SE
models.

Table 3: Estimated results

Conventional SE Entropy Copula based SE
Coefficient Std. Error Coefficient Std. Error

Demand equation
Intercept 0.002 0.0124 −0.0034 0.0125
P −0.9697 ∗ ∗∗ 0.1996 −0.8872 ∗ ∗∗ 0.2020
PVN 0.4534** 0.1527 0.3829∗ 0.1544
PPK −0.223 0.2949 0.0069 0.2984
PInd 1.2819∗ 0.6539 0.4959 0.6615
Supply equation
Intercept −0.0026 0.0152 −0.0192 0.0133
P 0.1082 0.2137 0.0377 0.1866
WS 0.0421 0.1796 0.0336 0.1568
R 0.0041 0.0074 0.0066 0.0065
Pfm −0.1369 0.2502 0.0290 0.2185
Spearman correlationa 0.8577 0.8912

Source: Calculation.
Note: *, **, and *** denote rejections of the null hypothesis at the 10%, 5% and 1% significance levels,
respectively. ”a” is correlation of the residuals.

The estimated parameters for the demand and supply equations (Eqs.3.1-3.2)
are shown in Table 3. According to results shown in Table 3, we estimated the
parameters under the form of the conventional SE model and also the entropy
copula-based SE model. As we can see, the results from both models are slightly
different. In the case of the conventional model, we find that the quantity de-
manded for Thai rice depends on the export price and the prices of other rice-
exporting countries namely Vietnam and India. On the other hand, the entropy
copula-based SE model discovers that only Thailand’s export price and Vietnam’s
export price can significantly create the impact on the demand for Thai rice. But
surprisingly, we failed to find statistically significant impacts for the rest of the
variables.The results show that an increase in export price creates the negative
effect on the demand for Thai rice with the predicted coefficients -0.9697 (for the
conventional SE) and -0.8872 (for entropy copula-based SE). Moreover, the process
of other rice-exporting countries is also relevant to the quantity demanded, but
in the opposite direction to Thai price. An increase in export prices of Vietnam
and India cause the increasing demand for Thai rice as they are substitute goods.
Rice consumers think that rice from those countries can satisfy the same neces-
sity, when the price of one country rises, the consumers tend to import rice from
other countries instead, creating the positive relationship between Vietnamese and
Indian export prices and the demand for Thai rice.

Additionally, high value of Spearman correlation coefficients, and 0.8912, just
support our efforts to estimate the SE model using a correlated joint distribu-
tion.The demand and supply residuals based on the maximum entropy copula are
shown in Figure 1, which provide multivariate return period information based on
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both demand and supply residuals. The level curves of the entropy copula are also
plotted to compare with the Gaussian copula.As we expected, contour plots give
evidence that demand and supply tend to have positive dependence and symmetry.

 

Figure 2: Bivariate return period of the demand and supply residuals based on entropy
copula.

4 Conclusion and Future Work

The copula approach has been used so far to relax the strong assumption
of normally distributed residuals in a conventional system of equations. In this
study, we aimed to develop this further by applying the entropy approach to
the copula-based simultaneous equations (SE) model. In essence, we generate
the joint distribution by using copulas, whereas the marginal distributions are
derived by the entropy method. As a result, the entropy copula-based SE model is
introduced in this paper.Then, we conducted an empirical experiment to explore
the performance of this proposed model through real analysis of demand and
supply for Thai rice. According to this experiment, we found that the conventional
SE model was best-fit to this data set. However, this experiment can also lead to
a general suggestion that when the distribution is unknown, the entropy copula-
based SE model is more advantageous and it can be a promising technique for
modeling the dependency, particularly for joining the error terms in the SE model.
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