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1 Introduction

Nowadays, energy is key to almost all human activities such as lighting, trans-
portation, industrial production et al. Hence, population growth entails an in-
creasing energy consumption. In 2014, the world total final energy consumption
is 9,425 Mtoe increased from 1973 (4,661 Mtoe) about 49.45%. While, the world
total final energy supply is 13,699 Mtoe increased from 1973 (6,101 Mtoe) about
44.54%(see [1]). The energy prices are invariably very volatile because of many fac-
tors such as politics, wars, climate change including speculation. Many researchers
have tried to study about the changes in energy prices such as [2] and [3]. Because
uncertain situation of energy prices can pose a lot of risk for investors, financial
institutions, and portfolio managers. Thus, risk management is important. While
there are many methods for management of risks, value at risk (VaR) and condi-
tional value at risk (CVaR) are widely used to measure risk. According to these
risk measures, we can construct optimal portfolio by minimizing the risks for any
given expected returns.

The goal of portfolio optimization is to find the proportions of various assets
to be held in a portfolio with the highest returns. In 1952, [4] introduced modern
portfolio theory in which dependence between financial returns is explained by cor-
relation coefficient. However, it may be not appropriate for the financial analysis.
For example, [5], [6], [7], and [8] found that the performance of portfolio based on
dependence structure is better than portfolio based on normal distribution model.
While, we found that copula is widely used in dependence structure model (see [9]
and [10]). A copula is a multivariate probability distribution with the uniformly
distributed marginal distributions. However, in higher dimensions, the selection of
parametric copula is still rather limited. This has led [11] to develop a pair-copula
construction (PCC) which further explored and discussed by [12]. Finally, [13]
put the PCC in an inferential context. After that PCC has been applied to many
fields such as finance, insurance, genetic, marketing, and hydrology.

Pair-copula construction (PCC) or vine copula demonstrates high flexibility
and advantages in constructing multivariate distributions. PCC have been used to
construct dependence structure and build the joint distribution of portfolio returns
(see [14], [15], and [16]). Meanwhile, [13] and [17] show that the optimal portfolio
via vine copula is better than Student t copula model.

In 2013, [18] proposed the minimum information copula which can be consid-
ered the most independent copula satisfying the data constraints. The concept of
minimum information was first introduced by [19] and considered by [20].

Minimum information copula that was proposed by [18] had led [21] to develop
minimum information copula for risk analysis. The results show that the minimum
information copula can model from weak to strong upper tail dependence in all
of the parametric copulas chosen and the minimum information copula is better
to capture the conditional relationship between variables than gaussian copula.
Similarly, [22] showed that the log-likelihood of the minimum information copula
is larger than gaussian copula and t-copula. However, this method has the source
of error that the algorithm works more slowly and this becomes more important
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when the distribution being modeled is far from uniform. Therefore, [23] addressed
the problem of approximating a conditional copula and developed a two-stage pro-
cedure. This showed that the two-stage procedure is both feasible and competent;
and it can be applied to relatively higher-dimensional vine copulas than [21].

This paper aims to investigate the dependence among energy commodities
future prices by using minimum information copula in order to calculate VaR and
CVaR, and to construct the optimal portfolio.

The remainder of this paper is organized as follows. Section 2 provides the
theoretical background of vine copula, relative information, and minimum infor-
mation copula. Section 3 gives the discussion on vine copula approximation from
minimum information methods. Application to energy commodity is given in Sec-
tion 4. Finally, we conclude our paper in Section 5.

2 Vine Copula

The dependence among stock returns is a crucial information for portfolio
optimization. In this paper, we model the dependence structure of stock returns
using copula. An n-dimensional copula is a joint distribution function (restricted
to [0, 1]n) with uniform marginal distributions. When any two different joint
distributions are constructed using the same copula function, they will exhibit the
same type of dependence regardless of their marginal distributions.

Theorem 2.1 (Sklar’s Theorem [24]). Let X1, ..., Xn be a given random variables
having continuous distribution functions, F1(x1), ..., Fn(xn) and a joint distribu-
tion function, H(x1, ..., xn). There exists a unique copula C(.) such that

H(x1, ..., xn) = C (F1(x1), ..., Fn(xn)) ,∀(x1, ..., xn) ∈ Rn. (2.1)

Conversely, for a given continuous distribution function F1(x1), ..., Fn(xn) and a
copula function C(.), H(x1, ..., xn) defined in (2.1) is a joint distribution function.

Let V = {T1, ..., Tn−1} be a vine on n variables with the set of edges E(V) =
E1 ∪ ... ∪ En−1; where T1 is a tree with nodes N1 = {1, ..., n} and a set of (n− 1)
edges denoted by E1; for i = 2, ..., n− 1, Ti is a tree with nodes Ni = Ei−1. If for
every e = {e1, e2} ∈ Ei, i = 2, .., n− 1, the cardinality of the symmetric difference
(union without intersection) between e1 and e2 is 2, then V is called a regular vine
on n variables [25].

Let U∗e denote the constraint set related to the edge e = {e1, e2} ∈ Ei, i =
2, .., n − 1. The constraint set is the subset of {1, .., n} reachable from e. Let
De = U∗e1 ∩ U

∗
e2 denote the conditioning set of e and the conditioned set of e

can be defined as {U∗e1 \ De, U
∗
e2 \ De}, where {U∗e1 \ De represent the relative

complement of De in U∗e1 . To simplify the notation, we would write ė1 and ė2 for
U∗e1 \De and U∗e2 \De, respectively.

Figure 1 illustrates a regular vine on 4 variables. T1 is a tree connecting nodes
N1 = {1, ..., 4} with corresponding edges E1 = {{1, 2}, {2, 3}, {3, 4}}. T2 is a tree
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Figure 1: An example of regular vine or called D-vine on 4 variables

connecting nodes N2 = E1 with corresponding edges E2 = {{1, 3|2}, {2, 4|3}}. For
T3 with nodes N2 = E2 and edge E3 = {{1, 4|2, 3}}, the constraint set of E3 is
{1, ..., 4}. Thus, the conditioned set is {1, 4} and the conditioning set is {2, 3}.
Notice that; for the tree T1, e = {e1, e2} ∈ E1, we have U∗e = {e1, e2} and De is
empty.

Suppose that we have a regular vine V. For any edge e ∈ E(V) with the
conditioned set {ė1ė2} and corresponding conditioning set De, we define Xe =
(Xv|v ∈ De) as the vector of random variables associated with the conditioning
set De. Note that a bold letter denotes a vector. Let Cė1ė2|De

(.) be a bivari-
ate copula for the edge e ∈ E(V) and cė1ė2|De

(.) be a copula density associated
with Cė1ė2|De

(.). We denote the values of Xė1 , Xė1 , and Xe by xė1 , xė1 , and xe,
respectively. We have the following theorem from [25].

Theorem 2.2. Let V = {T1, ..., Tn−1} be a regular vine for the random variables
{X1, ..., Xn}. For each edge e ∈ Ei, i = 2, .., n−1 with the conditioning set De and
the conditioned set {ė1ė2}, let the conditional copula and copula density be and
Cė1ė2|De

and cė1ė2|De
, respectively. Let the marginal distribution functions Fi(xi)

with density functions fi(xi), i = 1, 2, .., n be given. Then the vine-dependent dis-
tribution for the random variables {X1, ..., Xn} is uniquely determined with density
function

f(x1, ..., xn) =

n∏
i=1

fi(xi)×
∏
e∈E

cė1ė2|De
(uxe , wxe |Xe = xe) , (2.2)

where uxe = Fė1|De
(xė1 |Xe = xe) and wxe = Fė2|De

(xė2 |Xe = xe) are conditional
marginal distributions (conditional on Xe).
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A regular vine copula for the regular vine structure shown in Figure (1) can
be written as

f(x1, ..., x4) =

4∏
i=1

fi(xi)× c12 (F1(x1), F1(x1))× c23 (F2(x2), F3(x3))×

c34 (F3(x3), F4(x4))× c13|2 (F1(x1|x2), F3(x3|x2))×
c24|3 (F2(x2|x3), F4(x4|x3))× c14|23 (F1(x1|x2, x3), F4(x4|x2, x3)) .

3 Vine Copula Approximation

3.1 Relative Information

For any given bivariate densities f and g, we define the relative information
of f with respect to g as

I(f |g) =

∫ ∫
ln

(
f(x1, x2)

g(x1, x2)

)
f(x1, x2)dx1dx2. (3.1)

The relative information is a non-symmetric measure of the degree of deviation
of f from g. Its value equates zero (the minimum value of relative information)
when f = g. [21] used this information as a criterion for selecting a copula by. The
reason that this information is a good criterion for copula selection is its monotonic
transformation-invariant property. According to this property, I(f |g) is the same
as I(cf |cg), where cf and cg are two copula densities of f and g, respectively.
Equation (3.2) can be written with copula density function as

I(f |g) =

∫ ∫
ln

(
cf (F1(x1), F2(x2))

cg(F1(x1), F2(x2))

)
dF1(x1)dF2(x2). (3.2)

To measure the degree of dependency in a copula, it is natural to choose the copula
of g as an independent bivariate with the same marginal distributions as f [21].

Using information and entropy framework [19], one can use data moments as
the dependency constraints for copula approximation. [21] use minimum infor-
mation methods to operationalize the approximation in the class of copulas used.
Notice that one can either specify on the underlying joint density or on the copula
since we can transform from one to another if we know the margins. Minimum
(relative) information copula is a copula that its relative information from the
independence copula is minimal. We can view the minimum information copula
as the most independent copula among the class of qualified copulas satisfying the
data moment constraints.

Suppose that we have a multivariate data set and a regular vine structure
for the involved random variables, we can find the minimum information copula
for every edge in the regular vine structure. From the minimum information
(bivariate) copulas we can build up the regular vine copula to approximate the
multivariate distribution representing the random variables. [23] showed that a
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regular vine copula is minimally informative if and only if all its bivariate copulas
are minimally informative. This means we can get a minimum information regular
vine copula from the minimum information copula for every edge in the regular
vine.

3.2 Bivariate Minimum Information Copula

Let X1, ...Xn be n uniformly distributed random variables. In a practical use of
copula modeling, researchers can transform any samples from random variables to
uniformly distributed samples by taking the probability integral transformation.
Let h1, ..., hk : [0, 1]2 → R be k basis functions for which we specify the mean
values α1, ..., αk corresponding to these functions. Furthermore, we assume that
hi, hj are linearly independent for i 6= j. [21] suggested to use the expectation
constraints in the following form:

αl =

∫ 1

0

∫ 1

0

hl(xi, xj)ce(xi, xj)dxidxj , l = 1, .., k, (3.3)

as the copula dependency constraints discussed in the previous section, where Xi

and Xj , for 1 ≤ i < j ≤ n, are the two uniform random variables joined by the
edge e and ce is the bivariate copula density for the edge e. This expectation
form of constraint is flexible for capturing the shape of dependence in the data.
For example, when hk(Xi, Xj) = XiXj , it means that the rank correlation of a
qualified copula should be αk. Therefore, this expectation constraints can capture
a wider range of correlations within the data.

[26] showed that there exists a unique minimum information copula satisfying
the constraints in Equation (3.3) with the following copula density function:

ĉe(xi, xj) = d1(xi)d2(xj) exp (λ1h1(xi, xj) + ...+ λkhk(xi, xj)) , (3.4)

for some functions d1(.) and d2(.), and λ1, ...λk are the unknown Lagrange mul-
tipliers. These Lagrange multipliers also depend nonlinearly on α1, ...αk. Notice
that d1(.) and d2(.) have no closed-form expression. Thus, ĉe(xi, xj) has to be
determined numerically. [23] gives the algorithm for determining d1(.), d2(.), and
λ1, ...λk.

How well does ĉe(xi, xj) can approximate the true copula density ce(xi, xj) [21]
has given the proof that by selecting sufficiently many basis functions one can ap-
proximate log (ce(xi, xj)) to any required level of precision by a linear combination
of the basis functions h1, ..., hk.

We end this section by discussing about how to evaluate αl, for l = 1, .., .k
from data. For the practical implementation, we calculate the sample mean of the
random variable hl(Xi, Xj) as α̂l to approximate the αl, for l = 1, .., .k. For an
edge e in tree T1, the conditioning set De is empty. We can use all observations
in the data to approximate the sample mean of hl(Xi, Xj). However, for tree
Ti, i = 1, ..., n− 1 the conditioning set is no longer empty. Thus, we have to take
into account the value of Xe when calculating the sample mean.
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Using the previous notations in Section 2, see Equation (2.2) , the constraints
for an edge e in tree Ti, i = 1, ..., n− 1 can be written as

αl(xe) =

∫ 1

0

∫ 1

0

hl(uxe
, wxe

)cė1ė2|De
(uxe

, wxe
|Xe = xe) duxe

dwxe
, (3.5)

for l = 1, ..., k.
Ideally, if we have a sizable sample of Uxe

and Wxe
, we can calculate the sample

means and use them as the approximation of αl(xe). However, in reality, we have
only one realization of Uxe and Wxe for any point Xe = xe. In this paper, we
assume that the conditional copula cė1ė2|De

(uxe
, wxe

|Xe = xe) does not depend
on the value of Xe. Thus, we treat an approximation of αl(xe) as a constant:

αl =

∫ 1

0

∫ 1

0

hl(uxe , wxe)cė1ė2|De
(uxe , wxe) duxedwxe . (3.6)

3.3 The Lagrange Multipliers Determination

Given random variables hl(Xi, Xj) and their expected values αl, for l = 1, ..., k,
the Lagrange multipliers λ1, ..., λk can be numerically determined by solving the
equality constraints in Equation (3.5). [23] has suggested to numerically solve the
discretized version of Equation (3.5) as follows. For a large enough integer m, we
can discretize (Xi, Xj) into

(x
(r)
i , x

(v)
j ) =

(
2r − 1

2m
,

2v − 1

2m

)
, for 1 ≤ r, v,≤ m.

The integral in Equation (3.5) can be approximated by

1

m2

m∑
r=1

m∑
v=1

d1(x
(r)
i )d2(x

(v)
j )A(x

(r)
i , x

(v)
j )hl(x

(r)
i , x

(v)
j ), (3.7)

where A(x
(r)
i , x

(v)
j ) = exp(λ1h1(x

(r)
i , x

(v)
j ) + ... + λkhk(x

(r)
i , x

(v)
j )). The Lagrange

multipliers is the root of the equation [23]:

k∑
l=1

L2
l (λ1, ..., λk) = 0, (3.8)

where

Ll(λ1, ..., λk) =
1

m2

m∑
r=1

m∑
v=1

d1(x
(r)
i )d2(x

(v)
j )A(x

(r)
i , x

(v)
j )hl(x

(r)
i , x

(v)
j )− αl.

The elements in the two vectors
(
d1(x

(r)
i ), r = 1, ..,m

)
and

(
d2(x

(v)
j ), v = 1, ..,m

)
can be numerically determined by a simple algorithm suggested by [27]. Start-

ing with any initial values of d1(x
(r)
i ) and d2(x

(r)
j ), we can iteratively evaluate
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d1(x

(r)
i ), r = 1, ..,m

)
and

(
d2(x

(v)
j ), v = 1, ..,m

)
until convergence by using the

following two mappings:

d1(x
(r)
i ) 7→ m∑m

v=1 d2(x
(v)
j )A(x

(r)
i , x

(v)
j )

,

d2(x
(v)
j ) 7→ m∑m

r=1 d1(x
(r)
i )A(x

(r)
i , x

(v)
j )

.

Finally, finding the root of Equation (3.8) can be accomplished by the Nelder-Mead
simplex method [28].

4 Application to Energy Commodity Returns

4.1 Data

Table 1: Descriptive statistics and unit root test

Statistics Crude oil Natural gas Gasoline Heating oil

Mean -0.000032 -0.000137 -0.000015 -0.000003

Median 0.000000 0.000000 0.000000 0.000000

Maximum 0.071267 0.116266 0.094046 0.049049

Minimum -0.056742 -0.064681 -0.070189 -0.045013

Std. Dev. 0.010441 0.013675 0.010548 0.008847

Skewness 0.171172 0.710985 0.014087 -0.059824

Kurtosis 7.717443 7.993057 8.953872 5.813096

Jarque-Bera 2664.069* 3209.607* 4221.431* 944.0719*

ADF-Test

None -56.16297* -57.27366* -54.02022* -55.60386*

Constant -56.15364* -57.26913* -54.01083* -55.59412*

Constant and trend -56.15087* -57.26685* -54.00738* -55.59616*

PP-Test

None -56.19851* -57.35277* -54.02605* -55.57505*

Constant -56.18915* -57.36142* -54.01659* -55.56547*

Constant and trend -56.18711* -57.36161* -54.01255* 55.56845*
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We used daily data of four energy commodity futures prices including crude oil(C),
natural gas(N), gasoline(G), and heating oil(H). These data were obtained from
Thomson Reuters. The 2,859 energy commodity futures price observations were
collected from 17 January 2006 to 30 December 2016, traded in the New York
Mercantile Exchange (NYMEX). Then, we transformed energy commodity futures
prices to log return and we checked all log return data are stationary by using
Augmented Dickey-Fuller (ADF) and Phillip-Perron (PP) tests. The descriptive
statistics and the unit root tests are shown in Table (1).

4.2 GARCH Models

[29] proposed the generalized autoregressive conditional heteroscedasticity (GARCH)
model that relaxed the constant variance assumption of the innovations (εt) in
conventional time series model. After that there are many variations of GARCH
models that can be used to capture the volatility of price movement in the market.
In this paper, we use the GARCH and exponential GARCH (EGARCH) model of
[30]. We chose best fitted GARCH from three types of GARCH include GARCH,
GJR-GARCH, and EGARCH based on lowest akaike information criterion(AIC).
For a log return series (rt), a GARCH model can generally be specified as

rt = µ+

p∑
i=1

φirt−i +

q∑
j=1

ψjεt−j + εt

εt = σtzt

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1

An EGARCH model can generally be specified as

rt = µ+

p∑
i=1

φirt−i +

q∑
j=1

ψjεt−j + εt

εt = σtzt

log(σ2) = ω +

k∑
i=1

aiε
2
t−i +

l∑
j=1

bj log(σ2
t−j) +

k∑
i=1

γi

(
|εt−i|
σt−i

−
√

2

π

)
,

where εt, t = 1, ..., T is the innovation process and zt is assumed to be the skew
student’s t and student’s t distributions. GARCH and EGARCH models for the
log returns of energy commodity futures prices were estimated and the results are
shown in Table (2). We obtained the standardized residuals for four log return
series from GARCH and EGARCH models. These standardized residuals will be
used as marginal distributions in the regular vine copula models for four energy
commodity futures prices. However, EGARCH has some drawback such as incor-
rect conditions, no clear explanation which lead to misleading interpretation(see
[31], [32]).
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In order to guarantee that the marginals are uniformly distributed, we use the
Kolmogorov-Smirnov test(KS-test) and we use Ljung-Box test to guarantee that
the residuals are independent and identically distributed random variable(i.i.d) as
shown in Table (3).

Table 2: ARMA-GARCH models

Crude oil Natural Gas Gasoline Heating Oil

Mean equation

µ -0.000276** -0.00014 0.00013 -0.00002

φ1 0.951031*** -1.27407*** 0.61796*** -0.23643***

φ2 0.016525*** 0.38937*** -0.99968*** -0.44929***

φ3 0.020726*** 0.70122*** - -0.86503***

ψ1 -0.980883*** 1.25744*** -0.61891*** 0.21179***

ψ2 - -0.42430*** 0.99885*** 0.45908***

ψ3 - -0.71923*** - 0.85306***

Variance equation

ω -0.043347*** 0.00000 -0.04220*** -0.02470***

a1 -0.070283*** 0.05461*** -0.04286*** -0.03473***

b1 0.995345*** 0.92986*** 0.99559*** 0.99745***

γ1 0.087843*** - 0.07654** 0.07469***

Skewness 0.936700*** 1.07324*** - -

Shape 9.535924*** 7.14716*** 5.26904*** 7.90749***

LL 9547.568 8486.483 9382.053 9851.077

AIC -6.6736 -5.9304 -6.5585 -6.8853

Table 3: KS-test and Ljung-box test

Crude oil Natural gas Gasoline Heating oil

KS-test 0.4891*** 0.4912*** 0.4884*** 0.4897***

Q(5) 17.215*** 22.673*** 9.5582*** 9.5782***

Q(10) 19.624*** 25.560*** 11.557*** 12.138

Q(15) 23.068*** 30.844*** 29.154*** 14.953

Q(20) 28.282 34.816*** 31.47*** 18.413
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4.3 Minimum Information Copula Approximation

Given the standardized residuals obtained from the previous section, we let
C, N, G, and H denote the four variables for the standardized residuals of crude
oil, natural gas, gasoline and heating oil, respectively. The technique of [33] is
used to construct the Vine copula structure and we found that C-vine structure is
appropriate for this data. Figure 2 illustrates the C-vine structure on 4 variables.

C

1Tree

H

G

N

2Tree 3Tree

GC,

NC,

HC,

C|NG,

C|HG,

NC,

GC,

HC,

C|NG,

C|HG,

GC,|HN,

Figure 2: C-vine structure on 4 variables

To construct minimally informative copulas between each set of two adjacent
variables in the C-vine structure. We must decide on which bases to take and
how many discretization points to use in each case. The basis function could be
chosen, starting with simple polynomials and moving to more complex ones, and
include them until we are satisfied with our approximation. [23] did the intensive
simulation study and found that the polynomial of degree six is optimal in the
sense that increasing the power more than six will improve the approximation a
little but will impose a lot of additional computational load.

Table 4: Constraints and parameter values for CCN , CCG, and CCH

hi(C,N) αl λl hi(C,G) αl λl hi(C,H) αl λl

C4N2 0.07989 -0.6651 C2G2 0.1743 8.0669 C2H2 0.1475 -4.3102
CN2 0.1834 2.2768 CG2 0.2276 2.1432 CH2 0.2024 5.5931
C2N 0.1826 0.6543 C2G 0.2274 4.5078 C2H 0.2022 4.7538

In this paper, we select only three basis functions out of all possible polynomial
basis functions {upwq : 0 ≤ p, q ≤ 6} that give the largest increase in the log-
likelihood to reduce the burden of computational time. A grid size of 200 × 200



208 Thai J. Math. (Special Issue, 2017)/ P. Tarkhamtham et al.

is chosen for all bivariate copula densities. Notice that, for three basis functions,
the level of precision is about 10−6. The optimal basis functions for all edges in
tree 1 of C-vine structure are given in Table (4). For tree 2 and tree 3 of C-vine
structure, the optimal basis functions, constraints and parameter values are given
in Table (5). The surface plots for all bivariate copula densities of the C-vine
copula are illustrated in Figure 3.

The log-likelihood of minimum information copula, obtained by summing the
log-likelihoods of each of the component minimum information copulas, is 2,634.89.
This is larger than that using the vine construction of bivariate t-copulas which
the log-likelihood is 1,676.88. Same as, the results of [21] and [22] showed that the
log-likelihood of minimum information copula is larger than the log-likelihood of
t-copulas. The results are shown in Table (6).

Table 5: Constraints and parameter values for CGN |C , CGH|C , and CNH|CG

hi(G,N) αl λl hi(G,H) αl λl hi(N,H) αl λl

G4N2 0.0774 -1.0253 GH 0.2852 2.7361 N2H4 0.0721 -0.2326
G2N 0.1802 2.2834 G2H 0.2005 -1.5334 NH2 0.1732 1.1654
GN2 0.1798 0.5094 GH2 0.2011 4.5406 N2H3 0.0893 -0.0763

Table 6: Comparison between Vine copula and Minimum information cop-
ula

Types of copula Variables Log-likelihood

Vine Copula
(C,N)− (C,G)− (C,H)
(G,N |C)− (G,H|C)

(N,H|C,G)
1,676.88

MI Copula
(C,N)− (C,G)− (C,H)
(G,N |C)− (G,H|C)

(N,H|C,G)
2,634.89

4.4 Portfolio Optimization

To construct energy commodities portfolio , we use the Monte Carlo simulation
to estimate VaR and CVaR. After that, the optimal portfolio is constructed under
minimizing CVaR with respect to maximizing returns. First, we use minimum
information copula to generate N sample size by inputting the joint minimum
information copula densities to Algorithm 4 (see [21]). Second, we use simulates
in first step for inverse functions of the probability distributions and use the mean
and variance equations of the ARMA-GARCH model to get the N values of each
variable at period t+ 1. Finally, optimal portfolio is given by:

MIN CVaR = E[r|r ≤ rα],
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subject to

ri = w1r(1,t+1) + w2r(2,t+1) + ...+ wnr(n,t+1),

w1 + w2 + ...+ wn = 1,

0 ≤ wi ≤ 1, i = 1, 2, ..., n

where rα is the lower α-quantile and ri,t+1 is the return on individual asset at
time t+ 1.

The optimal portfolio shown in Table (7). The results shows that most of the
investment proportion are crude oil, while natural gas, gasoline, and heating oil
have little of the investment proportion. In case of natural gas, it’s prices have
been declining for several years and are currently 50 percent off their 2008 peak
and the costs to roll the futures contracts are very high. Even though the natural
gas prices have been declining for several years, the supply of natural gas continues
to increase. There are reasons for the oversupply situation. In case of gasoline,
gasoline is seasonal so the prices are lowest in December and their highest price
in April-May in preparation for the summer driving season. In case of heating oil,
heating oil is seasonal so heating oil prices are increasing in winter according to
heating oil demand and heating oil is an important alternative energy source for
homes that lack access to natural gas.

Table 7: Optimal investment proportion of energy portfolio with minimum
risk (CVaR 5)

Portfolios
Investment proportion

Returns Risk
Crude oil Natural gas Gasoline Heating oil

1 0.84500 0.06634 0.03396 0.05470 0.74154 -0.26929

2 0.86184 0.05542 0.03271 0.05003 0.74665 -0.26909

3 0.87868 0.04515 0.02749 0.04869 0.75177 -0.26864

4 0.89586 0.03702 0.02656 0.04056 0.75689 -0.26794

5 0.91308 0.02933 0.02452 0.03307 0.76201 -0.26703

6 0.93004 0.02007 0.01935 0.03054 0.76713 -0.26569

7 0.94716 0.01197 0.01463 0.02624 0.77225 -0.26400

8 0.96423 0.00325 0.01132 0.02120 0.77737 -0.26180

9 0.98193 0.00000 0.00671 0.01136 0.78249 -0.25878

10 1.00000 0.00000 0.00000 0.00000 0.78761 -0.25466

5 Conclusion

In this paper, we investigated the optimal portfolio of energy market with min-
imally informative copula. Empirical results showed that ARMA-GARCH and
ARMA-EGARCH with student-t distribution and skew student-t distribution are
appropriate to estimate parameter. Then, we approximate copula parameter by
using minimally informative copula. After we obtained minimally informative
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Figure 3: Surface plots of the minimally informative copulas for C-vine structure
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copula parameters, we estimated VaR and CVaR based on 10%, 5%, 1% levels,
respectively. Finally, the optimal portfolios suggest that crude oil has the large
proportion, while gasoline, natural gas, and heating oil should be in small propor-
tion in portfolio.
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