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Abstract : This study aims to examine the predictive factors of a tourist’s deci-
sion to revisit Pha Ngan Island in Surat Thani Province of Thailand. A sample
survey was collected from a random sample of tourists to Pha Ngan Island. The
binary logistic regression model was applied. We use the method of generalized
maximum entropy for estimating the model parameters. Based on the accuracy
criteria of mean square error(MSE) to justify the model, the present study demon-
strated that the prediction of tourism demand for revisiting Pha Ngan Island which
is obtained from logistic regression by using GME method is more accurate than
ML method, in the case of a small sample size. We also found that price and
promotion are the factors influencing to tourism demand.
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1 Introduction

[1] purposed the modern econometric model for estimating the tourism demand
and mentioned the research trends related to tourism demand forecasting: “Many
researchers involved with quantitative causal tourism modeling and forecasting to
compute many regression equations and try to find the finest model”. Most of
the variables for the tourism demand in the choice model could be a qualitative
variable. [2] has developed a logistic regression for a binary response to analyze
the data such as an event could happened or could not happened, chosen or not
chosen. [3] used a logit model to calculate the probability of Portuguese tourists for
choosing Brazil as a tourism destination. The estimated value of the dependent
variable of the model will be the probability of occurrence of a value ranging
between [0, 1].

Tourism is considered as a major economic sector that has contributed to the
economic growth of Thailand. The tourism demand in Thailand has been growing
steadily for the last decade. Tourism industry benefits for related businesses, for
instance, travel agencies, hotels, restaurants. In 2015, tourism industry impacts
5.8% of GDP of Thailand. Most of the tourists are from China, Russia, Malaysia,
UK and Australia according to data from the Department of Tourism, Ministry
of Tourism and Sport. Many papers on tourism demand such as [4], [5], [6], [7].
In their studies, they applied econometric techniques to determine the elasticity
of tourism demand and to forecast tourism demand. In this study, we attempt to
illustrate the factor affecting revisiting decision on tourism demand in Pha Ngan
Island by applying a logistic regression with a concept of maximum entropy.

The classical logistic model is a parametric statistic, which gives the mean and
standard deviation of the population based on distribution assumption and uses
the maximum likelihood (MLEs) principle as an estimation method. However,
The MLEs are solutions of maximization problems. But maximization problems
might not have solutions. In such cases, we have to look for other methods of
estimation. The point is this, in nice situations, MLE is a popular way to find
good estimators. But it is by no means that it is a universal method of estimation.
An alternative method for estimation comes from the modern information theory
in which a mathematically robust measure of probabilistic information, namely,
the entropy, has been developed.

The main idea behind the ME principle is this. We should select a probability
distribution which is consistent with our knowledge and introduce no unwarranted
information. Any distribution (satisfying known constraints) which has smaller
entropy will contain more information (less uncertainty) and hence says something
stronger than what we know. The distribution with ME (satisfying our known
constraints) is the one which should be least surprising in terms of the predictions
it makes. The ME principle guides us to the best distribution which reflects our
current knowledge and it tells us what to do if experimental data do not agree
with predictions coming from our chosen distribution.

The ME is useful in a variety of situations (e.g., in Econometrics). For decision-
making as in a flooding prevention project, the choice of joint distributions (via,
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copulas, say) based on ME has several advantages:
(i) it incorporates as much (or as little) information as there is available, (ii) it

makes no assumption on a particular form of the joint distribution, (iii) it can be
applied to both numerical and qualitative random variables (as it only involves the
distributions and not the “values” that the random “elements” take, for example,
categorical variables such as those take “values” as “low,middle, high”), (iv) it
can take into account of any form of constraints, not only moments and linear
correlations.

Finally, note that the rationale for choosing the most likely distribution in the
light of the observed data by ME is somewhat similar to the Maximum Likelihood
Principle (MLP) that you are all familiar with. Recall that, in the context of MLP,
the “rational” estimator (function of the data) of a population parameter is taken
as the argument of the maximization problem maxL(θ|Xn) over θ ∈ Φ, i.e., the
statistics θ(Xn) making the “likelihood” (= probability of observing the data Xn)
maximal. Here, it is the “entropy” which replaces the likelihood. The maximum
entropy distribution is the most likely distribution giving rise to an observed state
since it can generate more states than any other distributions, and as such, the
observed state is more likely to belong to its set of possible outcomes.

We are “estimating” the whole distribution function: it is a nonparametric
problem. In the sequent, we will elabore more on the role of data in the entropy
maximization problem.

This paper is structured as follows. In Section 2 exhibits the theoretical back-
ground of GME logit model, while section 3 explains the empirical application and
a survey data of tourist. Section 4 reports the empirical results and discussion,
and final section gives conclusions.

2 Theoretical Background

In this section we give a brief conception of the GME logit and the formulation
of the model and how the estimation method is working.

2.1 Generalized Maximum Entropy Logit

Discrete choice model such as logit is wildly used in the research. This model
the probability (p) that individual i will choose or deal with a precise outcome
from the set of possible outcomes [8]. This estimation method require the proba-
bility that an outcome is observed, and they impose that the most likely outcome
is the one observed [8]. However, logit assume a parametric structure on the prob-
abilities. The underlying distribution for the probabilities is unknown, and the
choice of logit depends on this strong assumption [9]. Thus [9] and [10] favor to
use estimation approaches that do not commit to such a strong assumptions.

Maximum entropy involves detecting the probability distribution (pi) for the
set of random variables (xi). Generalized maximum entropy (GME) based on
maximum entropy by including intuitive innovation terms. For the GME result,



190 Thai J. Math. (Special Issue, 2017)/ A. Ayusuk and K. Autchariyapanitkul

we examine a study including T trials. In each case with J unsequenced feasible
outcomes, a binary set of values ytj is observed, where yij for i = 1, 2, ..., T takes
one of the J unsequenced groups j = 1, 2, ..., J . On each trial i, each alternative
J is observed in the format of a binary variable, yij , that equals one if alternative
j is chosen and zero otherwise. Let pij be the probability of choice j on trial i and
be associated to a set of variables through the equation

pij = Prob(yij = 1|xi, αj) = F (x
′

iαj) > 0 for all i and j (2.1)

where αj is a (K × 1) vector of unknowns, x
′

i is a (1 × K) vector of predictive
variables, and F (·) is a function uniting the probabilities pij with the covariates

x
′

iαj such that
∑

j F (x
′

iαj) = 1. The likelihood function shows the values of α in
terms of know, fixed values for y. Thus,

L(α|y) =

N∏
i=1

ni!

yi!(ni − yi)!
πyi

i (1− πi)ni−yi (2.2)

The maximum likelihood calculates are the values for α that maximize the like-
lihood function in (2.2). Then, We allow the model to have noisy data, then the
equation is

yij = F (·) + eij = pij + eij (2.3)

where pij indicates the unknown multinomial probabilities and eij represents the
natural noise elements for each observation and is accommodated in the [−1, 1]
support space for each observation.

To find out the unknown p and undetectable e, we use the known covariates,
xi and the noisy observable, yij to formulate the problem. This information is
used as the cross-moments between the x matrix and all the other variables

(Ij ⊗X
′
)y = (Ij ⊗X

′
)p+ (Ij ⊗X

′
)e (2.4)

where X is a (T ×K) matrix and yij is a T ·J observations. Thus, a vectorized yij
are going to be (T · J × 1) vectors. The same employs for e and p, which are also
vectors of dimension (T · J × 1). From equation (2.3), it is an ill-posed problem,
a problem which may have more than one solution where there are {T × (J − 1)}
unknown parameters but only (K × J) < {T × (J − 1)} data points.

To apply Shannons entropy measure to formulate the problem, we need to
reparameterize the noise terms. Due to p is already in a probability form, only the
components of e need to be reparameterized to continue with GME, as introduced
by [9]. Because each eij will range between [−1, 1], we are including a set of
discrete points (vij) ranging between [0, 1]. The error terms are characterized
by an H-dimensional support space, v, and w as a weights of an H-dimensional
vector that correspond to each v. The unknown weights have the properties of
probabilities with

∑
h wijh = 1. Thus the resulting reparameterization is

eij ≡
∑
h

vijhwijh, (2.5)
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where the H-dimensional errors support recommended by [10] as a traditional
choice is v = (1/

√
T , 0, 1/

√
T ) for each eij . Thus, In this paper, H = 3. The

equation (2.3) takes the form

(Ij ⊗X
′
)y = (Ij ⊗X

′
)p+ (Ij ⊗X

′
)(wv), (2.6)

where w is a T · J ×H matrix, and v is an H × 1 matrix.
As above, the solutions for ML and ME multinomial logit are equivalent, re-

gardless of their formulations are distinction (see [8]). As [11] argue, this parallel
can be described by the following: 1) the estimating equations or moment con-
straints in the ME formulation are the ML logit first-order conditions; and 2)
the ME solution resulting from the optimization has the same form as the logis-
tic multinomial probabilities. As mentioned in [12] the GME dominate the ME
because the GME is a product of two logits for the p and for the w, (see [9]).

3 Methodology and Data

3.1 Model Formulation

The functional form of the GME discrete choice model is a dual objective func-
tion. The dual objective function is composed of the entropy of the probabilities
(p) and the entropy for the weights (w) (see [9], [10]). This implies the assumption
of independence between the two. The objective function of the GME multino-
mial problem is the maximization of the Shannon entropy measure and takes the
following form specified in [9, 13, 14],

maxp,wH(p, w) = maxp,w(−p
′
lnp− w

′
lnw) (3.1)

subject to the JK information-moment conditions

(Ij ⊗X
′
)y = (Ij ⊗X

′
)p+ (Ij ⊗X

′
)(wv) (3.2)

the normalization constraints,

(IT1IT2...ITJ)p = 1 for i = 1, 2, ..., T (3.3)

where h is a (1×H) vector of 1s.
The corresponding Lagrangian is

L = −p
′
ln p− w′ lnw

+ λ
′
{(IJ ⊗X

′
)p+ (IJ ⊗X

′
Vw − (IJ ⊗X

′
y}

+ µ
′
{h− (IT1IT2...ITJ)p}+ p

′
(1− h

′
w)

where λ, µ, and ρ are the corresponding Lagrange multipliers. Under this specifi-
cation, the parameters of interest are λ. Note that these provide the coefficients
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−λj = βj . To simplify the math, we proceed with the Lagrangian in scalar form,

maxp,wH(p, w) = maxp,w

(
−
∑
ij

ln pij −
∑
ijl

wijl lnwijl

)
(3.4)

subject to the JK information-moment conditions [9, 13], where the JKth condi-
tion is ∑

i

yijxik =
∑
i

xikpij +
∑
il

xikvlwijl (3.5)

When
∑

j pij = 1 and
∑

l wijl = 1
Note that βjk = −λjk and the first-order conditions give us

pij = exp

(
− 1− µi −

∑
k

λjkxik

)
The summation of probability equation over j and the summation of the noise
term weights over h are∑

j

pij = exp(−1− µi)
∑
j

exp

(
−
∑
k

λjkxik

)
= 1

and ∑
l

wijl = exp(−1− ρi)
∑
l

exp

(
−
∑
k

λjkxikvl

)
= 1

Then, a zero (K × 1) vectors are set, given λ1 = 0, we get

p̂ij =

exp

(
−
∑

k λ̂jkxik

)
1 +

∑J
j=2 exp

(
−
∑

k λ̂jkxik

)
and

ŵijl =

exp

(
−
∑

k λ̂jkxikvl

)
∑

h exp

(
−
∑

k λ̂jkxikvl

)
We can show log odds-ratios as same as the traditional logit, by calculate from

the equation below [11]

ln(
pij
pi1

) = −xiλj (3.6)

Coincidentally, we illustrated the odds ratios as the exponentiated logistic regres-
sion coefficients. The dual unconstrained formulation of the GME problem denotes
that the GME is associate with a class of generalized logit foundations (see, [9];
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[10]). Starting from Lagrangian, the dual unconstrained GME formulation as a
function of the Lagrangian multipliers, λ, is, according to [9] and [10]

M(λj) = y′(Ij ⊗X)λ+
∑
i

ln{Ωi(λj)}+
∑
i

∑
j

ln{Ψi(λj)} (3.7)

We can minimize the dual objective function subject to λ, we get the multipliers
λ̂. From these, we get the values of P̂ij and P̂jh as well. The error components
converge to zero as the sample size increases.

3.2 The Evaluation Criterion

In this study, we used the mean square error (MSE) as a criterion to evaluate
the accuracy of the prediction in each estimation method. The MSE can be written
as

MSE =
1

N

N∑
i=1

(Yi − Ŷt)2, (3.8)

where N is a number of observation. (Yi − Ŷt)2 represents the error from our
predictions.

3.3 Data

Pha Ngan Island is one of the most famous tourist attractions in Suratthani
province, southern of Thailand. The main activity for visitors here is the Full
Moon party. It is very well known for the world class travelers, held every evening
under the full moon. Hence, this study is empirically collected the primary data
in 2017 by applying the survey method with questionnaires to 400 tourists (N
= 400) in Pha Ngan Island. We used questionnaires for determining the values,
demographics, behaviors, attitudes, beliefs, and other information relating with a
group of tourist. Once we got the completed data.

4 Empirical Results and Discussion

The results will be evaluated using advanced econometric techniques in order
that we describe the relationship between marketing mixes, full moon party and
revisit intention of tourists. Advanced econometric techniques focus on logistic re-
gression, which employ the maximum likelihood and generalized maximum entropy
to be the procedure for finding the value of parameters. The logistic regression
can be defined by a function as follows:

REVi = α0 + α1FMi + α2PDi + α3PRi + α4PLi + α5PMi + εi (4.1)

where REVi = 1 if tourists have intention to revisit, REVi = 0 otherwise. αi

are the regressors. εi is the error term. FMi is dummy variable, FMi = 1 if full
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moon party is the motivation to travel in Pha Ngan Island, FMi = 0 otherwise.
This study designs the satisfaction of the marketing mix variables of the tourists
coming to Pha Ngan Island. There are product PDi, price PRi, place PLi and
promotion PMi, these are measured in likert scale.

Table 1: Parameter estimates of logistic regression model for tourist demand

N 100 200 400

Coeff. ML GME ML GME ML GME

α0 -11.029 -7.870 -3.512 -3.212 -3.206 -3.075
(3.846)∗∗∗ (2.866)∗∗∗ (1.618)∗∗∗ (1.541)∗∗∗ (1.141)∗∗∗ (1.118)∗∗∗

α1 -0.028 0.265 -1.055 -0.999 -0.154 -0.151
(1.245) (1.093) (0.543) (0.529) (0.309) (0.304)

α2 0.402 0.270 0.203 0.188 0.279 0.267
(0.734) (0.625) (0.432) (0.417) (0.298) (0.293)

α3 1.729 1.315 0.800 0.744 0.636 0.617
(0.557)∗∗∗ (0.434)∗∗∗ (0.288)∗∗∗ (0.277)∗∗∗ (0.190)∗∗∗ (0.187)∗∗∗

α4 -0.121 -0.132 -0.277 -0.254 -0.112 -0.107
(0.653) (0.575) (0.374) (0.361) (0.263) (0.259)

α5 1.806 1.338 0.865 0.799 0.634 0.613
(0.667)∗∗∗ (0.539)∗∗∗ (0.340)∗∗∗ (0.325)∗∗∗ (0.239)∗∗∗ (0.235)∗∗∗

ML -29.430 - -73.891 - -146.017 -
ME - 35.000 - 77.100 - 159.900
MSE 0.6467 0.6390 0.6739 0.6709 0.1191 0.1192

() standard error is in parenthesis, ∗∗∗ is significant level at 0.05

ML is the maximum value of likelihood function. ME is the maximum value of entropy

Table 1 reports the estimated coefficient of logistic regression conventionally
discussed in the logistic function. The calculation involve with the impact of
product, price, place promotion and full moon party on the revisit intention of
tourists to Pha Ngan Island. We also indicated that the performance of two
different estimation methods of logistic regression by applying the sample data
of N = 100, N = 200 and N = 400. In the case of N = 100, the estimation of
logistic regression of two methods show that price and promotion are significant
positive influence to revisit intention. While the GME method perform better
than the ML method because the GME method has a small value of MSE. In the
case of N = 200, the results illustrate that price and promotion are significant
factors to revisit intention and the MSE indicates that the GME method is the
better method for estimating the logistic regression. Last, in the case of N = 400,
the logistic regression by ML method indicates that the price and promotion are
significant positive influence to revisit intention as well as the logistic regression
with the GME method. While the ML method has lower mean squared error
than the GME method. In addition, we used the standard errors to evaluate
the accuracy of the estimated coefficient in logistic regression. We found that all
standard errors estimated by GME method were less than the ML method.
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5 Conclusions

This study attempts to examine an alternative procedure of estimation method,
namely, Generalized Maximum Entropy method in the logistic regression model,
in the study of revisit intention of tourists in Pha Ngan Island, Thailand. The
results show that the sample of N=100 , N= 200 and N=400 give the results in
the same manner. The GME method used to estimate coefficients of the logistic
regression gives a lower standard error than the ML method. We used the MSE as
a measurement to determine the efficiency and accuracy of a prediction methods.
The results confirmed the truth of the MSE from the ML method is lower than
the GME method, It is suggested that the GME method may be superior to the
ML method, which gives the results similar to the work of [12], in their studied,
they used the GME method in order to estimates the parameter in the sample
selection model, in the case of a small sample size.

The specific policy implications for improving tourist revisit to Pha Ngan
Island, there are two aspects, price and promotion are the two main factors influ-
encing revisit intention. The implementation of an advertisement through various
media, such as promotional activities, and selling tour package to tourist directly
strategies may prove to be useful as well to make tourists wish to return to Pha
Ngan Island again.
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