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1 Introduction

The goals of this study are to analyse farmers’ choices of rice acreage, and to
determine how the likelihood of unusual weather conditions influences the choices
of rice planted area. The framework employed to evaluate the farmers’ rice planted
area decision follows the standard assumption that farmers are risk averse and
concerning that an uncertain weather condition affects farm production costs and
future returns. The rice planted area is therefore subjected to individual’s past ex-
perience and likelihood of the unexpected weather events (i.e., flood and drought).
The past experience of financial losses due to the disruptive weather could re-
sult in smaller rice acreage in the current year. Hence, the subjective probability
of weather risk from farmers is considered when the farmers decide on their rice
planted area. The rice acreage is determined in a two-stage process that considers
farmers’ given scores for a chance of unexpected weather events occurring on their
farmlands, and then evaluates the alternative choices of rice planted area. A sur-
vey of rice producers in the northern region of Thailand provides the data for the
analysis. To estimate the farmers’ choice, the sample selection model with ordered
outcomes of the Bellemare and Barrett[1] is applied. However, the problem of
sample selection model often arises in many econometric studies. The maximum
likelihood (ML) estimator may not be consistent when known distribution of the
data generating process associated with the sample cannot be specified. Golan,
Moretti, and Perloff [2] suggest that the conventional parametric and semiparamet-
ric estimations of the sample selection model are difficult to estimate the unknown
parameters when sample sizes are small. For example, the full and limited informa-
tion of the maximum likelihood as found in Heckman [3], and the semiparametric
estimators of Ahn and Powell [4]. Furthermore, the choice of model assumptions
for the conventional estimators is based on researcher’s prior knowledge rather
than the actual data generation process. This could lead to an inconsistent MLE
when the assumptions are incorrectly specified.

In practice, the distribution of an error term is unknown, and none of the usual
families of the distribution is a good fit to the residuals. The generalized maximum
estimator (GME) requires a fewer number of assumptions for the error equation.
The estimator uses the entropy-information measure [5] to recover the unknown
probability distribution of underdetermined problems. The entropy refers to an
amount of the uncertainty represented by a discrete probability distribution. Let
xj be a random variable with k possible outcomes. Each of the outcomes corre-
sponds to the probability pi which is unknown and unobserved. The sum of all
outcomes probability equals to one,

∑
i

pi = 1. The information criterion (entropy)

of Shannon’s (1948) can be written as

H (P ) = −
∑
i

pi log pi, (1.1)

where pi log(pi) = 0 when pi = 0. This entropy function measures the uncertainty
of the distribution implied by P. The P reaches a maximum when pi = 1/N .



The Sample Selection Model: Application on The Farmers’ Decision ... 177

Therefore, Generalized Maximum Entropy (GME) estimator by Golan, Judge,
and Miller [6] was applied to our sample selection model. The model consists of
two-stage regressions: 1) the farmers rating scores for the subjective probability of
the unexpected weather events was classified by using the ordered choice model;
and 2) the number of rice planted area was addressed with the regression model.

The contribution of this paper is threefold. First, we developed a semipara-
metric estimator for the sample selection model with ordered-multinomial response
outcomes model. The estimator has its roots on the information theory, and it is
based on the generalized maximum entropy (GME) approach of Golan, Judge, and
Miller[6], Golan, Judge, and Perloff [7], Golan, Moretti, and Perloff [2]. Second,
the validation of the GME estimator was performed. The method was done based
on the data simulation. Third, the sample selection model in GME approach was
used to determine the choice of the rice acreage.

The paper is organized as follows. Section 2 gives the explanation of the farm
survey and data. Section 3 describes empirical methods of the sample selection
model and GME estimator. Section 4 provides the validity of the GME estimator.
The model application and conclusion of the study are presented in Sections 5 and
6, respectively.

2 Farm Survey and Data

A survey was conducted during October to November 2016 to identify the
subjective probability of the expected weather events of rice producers and their
planted area decision. The farm-level data was collected in three districts (San
Kamphaeng, San Patong, and Hang Dong) of Chiang Mai Province, Thailand.
The three districts were chosen because they are the major rice cultivation areas.
One hundred twenty rice producers were randomly selected to take part in the
survey. The survey questions include demographic information, farm structure,
and weather risk experience. The questions on the ranking scores of the unexpected
weather events are also inquired from the rice producers.

Table 1 reports mean and range values of farm characteristics for the sample
selection model. Gender, education, and age of the respondents are explanatory
variables in the ordered response equation. Household farm income and number of
years in rice production are explanatory variables in the regression model. Most
of the respondents are female with 39.1 years experience in rice production. The
averages of respondent age and education are 61.5 and 2 years, respectively. The
average farm income of the household is 44,458.83 Thai Baht/year (1 US dollar is
approximately equal to 34 /Baht)

The farmers’ rating scores indicating the chance of weather risk and their
planted area decision are reported in Table 2. Most of the farmers, 42%, stated
that their rice fields have moderate risk of the unexpected weather events, which
may cause the farm future returns. Only 6% of the farmers thought the weather
risk would have very low and low impact on their farmland. The mean of rice
planted area is 3.44 acres (1 acre equals to 2.53 rai) which is two times lower than
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Table 1: Mean and range values of farm characteristics by the regression model

Variable

Ordered Response Equation

Gender (1= male, 0 = female) 0.4583 0 1

Age (years) 61.5583 44 79

Education (Years of schooling) 2 1 3

Regression Equation

Household farm income (baht/year) 44458.83 10000 150000

Number of years in rice production (years) 39.0667 7 55

Table 2: Descriptive statistic for the chance of weather risk and the rice planted
area decision

Category Frequency Percentage

(Farmers rating scores for
the chance of weather risk)

Ordered response Equation

Very low 1 0.09%

Low 7 5.83%

Moderate 50 41.67%

High 35 29.17%

Very high 27 22.50%

Regression Equation Mean Min-Max

Planted area of rice (rais) 8.7091 [3-23]

the maximum of the rice planted area.
About 78.3% of the households grow at least one variety of landrace rice and

21.7% grow other white rice. Only 9% of the households are willing to increase
their cultivated areas. About 81.7% of the households insist to maintain the same
cultivated area (Table 2).

3 Empirical Methods

This section develops the sample selection with ordered-multinomial response
model which is subsequently implemented to the survey data in the next section.
The idea behind the model is that because the unexpected weather events (flood
and drought) from the farmers’ prospective are partitioned into ordered categories.
It is informative to distinguish the farmers’ expectation on possible events rather
than lump them together. Thus, the two equations, ordered outcomes and regres-
sion equations, were applied to the study. The ordered outcomes equation was
used to classify the farmers’ rating scores for the subjective probability of the un-
expected weather events. The regression model was used to estimate the farmers’
choice of rice planted area.
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Table 3: Distribution of the upland rice growers

Category Frequency Proportion

Selection equation

Grow landrace rice 260 0.7832
Not grow landrace rice (grow the white rice) 72 0.2168

Outcome Equation

reduce the cultivated area 22 0.0877
maintain same size of the cultivated area 205 0.8167
increase the cultivated area 24 0.0956

3.1 The Sample Selection Model with Ordered-Multinomial
Response Outcomes Model

The model consists of two equations, namely, ordered multinomial response
and regression equations. Let’s consider a model in which individuals i(i =
1, ..., N) are sorted into J + 1 categories. The linear regression model under the
ordered selection rule is written as follows:

s∗i = γGi + vi, (3.1)

where s∗i is a ordinal response variable of an individual i, which takes a value of
0, ..., J . That is

si =



1 if -∞s∗i ≤ µ1

2 ifµ1s∗i ≤ µ2

3 ifµ2s∗i ≤ µ3

...
J ifµJs∗i ≤ ∞

(3.2)

where Gi is the vector of explanatory variables of the ordered-multinomial re-
sponse equation. γ is the vector of estimated parameters, vi is the sequence of
unobservable random errors, and µ1, ..., µJ are the unknown cut-offs which satisfy
µ1 < µ2 < · · · < µJ . We assume that the independent variables Gi and the cate-
gorical variable si are observed, but the latent selection variable s∗i is unobserved.

For regression equation, we observe a dependent variable yi that is a linear
function of the vector of explanatory variables Xi. The regression equation can
be specified as

yi = Xβi + εi (3.3)

yi =


β1X1i + ε1i if si = 1,
β2X2i + ε2i if si = 2,

...
βJXJi + εJi if si = J,

(3.4)
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where β is the vector of estimated parameters depending on the category si, and
εi is a random error term for the regression equation. Technically, no assumptions
for the distribution of the errors εi and vi are made in this study.

3.2 The Formulation of the Sample Selection with Ordered-
Multinomial Response Model

The GME approach was used to estimate the sample selection with ordered-
multinomial response data model. First, we start by providing the background of
the generalized maximum entropy approach and then develop the GME for our
study model.

In GME, the parameter vectors of γ, β, µi, vi, and εi are decomposed into a set
of categories M, support points zk, and probability weights pk. The support points
are commonly provided based on the researcher prior information. In the ordered-
multinomial response equation, each parameter of the explanatory variables (γ)
has M categories (where M > 2), support points rk, and probability weights pk
(k =1, ..., K). Each parameter of the explanatory variables in regression equation
(β) has M > 2 categories, support points rk, and probability weights qk(k =1, ....,
K). Likewise, the parameter of the each cut-off value, µj , has M > 2 categories,
support points cj , and probability weights lj (j=1,,J). The unobservable random
errors vi and εi also have M > 2. There are ui support points and ωi probability
weights for each error vi while each error εi has support points vi and probabil-
ity weights wi. Intuitively, each parameter and error is equal to the product of
a support point and its associated probability weight, summed over all support
points. In the model, we specify the support space for γ, β, µj , vi, and εi to be
both negative and positive possible values. Thus, the parameters of Eqs. 3.1–3.2
are reparameterized as

γ = Zp =


z′1 0 · · · 0
0 z′2 · · · 0
...

...
. . .

...
0 0 · · · z′K

 ·

p1
p2
...
pK

 , (3.5)

β = Rq =


r′1 0 · · · 0
0 r′2 · · · 0
...

...
. . .

...
0 0 · · · r′K

 ·

q1
q2
...
qK

 , (3.6)

µ = CL =


c′1 0 · · · 0
0 c′2 · · · 0
...

...
. . .

...
0 0 · · · c′J

 ·

l1
l2
...
lJ

 , (3.7)
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v = Uω =


u′1 0 · · · 0
0 u′2 · · · 0
...

...
. . .

...
0 0 · · · u′N

 ·

ω1

ω2

...
ωN

 , (3.8)

ε = V w =


v’1 0 · · · 0
0 v’2 · · · 0
...

...
. . .

...
0 0 · · · v’N

 ·

w1

w2

...
wN

 , (3.9)

Combining Equations 3.5-3.9, the generalized sample selection with ordered-multinomial
response data model to be estimated is

si =



1 if ∞ZpG′1 + U1ω1 ≤ c′1l1
2 if c′1l1ZpG

′
2 + U2ω2 ≤ c′2l2

3 if c′2l2ZpG
′
3 + U3ω3 ≤ c′3l3

... if
J if c′J lJZpG

′
J + UJωJ ≤ ∞

(3.10)

yi =


R1q1X1i + V1w1 if si = 1
R2q2X2i + V2w2 if si = 2

...
RJqJXJi + VJwJ if si = J

(3.11)

3.3 Maximum Entropy Generalized Maximum Entropy Es-
timators

After reparameterizing the model in Eqs. 3.10–3.11, the GME objective func-
tion can be expressed as

max
p,q,l,ω,w

(p, q, l, ω, w) = −p′ log p− q′ log q − l′ log l − ω′ logω − w′ logw (3.12)

Subject to:

si =



1 if ∞ZpG′1 + U1ω1 ≤ c′1l1
2 if c′1l1ZpG

′
2 + U2ω2 ≤ c′2l2

3 if c′2l2ZpG
′
3 + U3ω3 ≤ c′3l3

... if
J if c′J lJZpG

′
J + UJωJ ≤ ∞

(3.13)

yi =


R1q1X1i + V1w1 if si = 1,
R2q2X2i + V2w2 if si = 2,

...
RJqJXJi + VJwJ if si = J,

(3.14)
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and adding up constraints

1′p = 1 k = 1, ...,K1, (3.15)

1′q = 1 k = 1, ...,K2, (3.16)

1′lj = 1 j = 1, ..., J, (3.17)

1′ωj = 1 i = 1, ..., N , j = 1, ..., J, (3.18)

1′wj = 1 i = 1, ..., Nj , j = 1, ..., J (3.19)

The corresponding Lagrangian is

L=H(p, q, l, ω, w)+λ
(1)
1 (c′1m1−ZpG′1−U1ω1)+ ...+λ

(1)
J (c′J lJ−ZpG′1−UJωJ)

+ λ
(2)
1 (c′1l1 − ZpG′2 − U2ω2) + ...+ λ

(2)
J−1 (c′J−1lJ−1 − ZpG′J − UJωJ)

+ θ1(yi1 −R1q1xi1 − V1w1) + ...+ θJ(yiJ −RJqJxiJ + VJwJ) + φ1(1− 1′p)

+ φ2(1− 1′q) + φ3(1− 1′lj) + φ4(1− 1′ωj) + φ5(1− 1′wj) (3.20)

where λ , θ , φ are the vectors of Lagrangian multiplier. Taking the gradient of L
to derive the first-order condition, resulting in the solutions as

_

pkm =
exp(−ZG′1kλ̃1 − ...− ZG′Jkλ̃J)∑

m
exp(−ZG′1kλ̃1 − ...− ZG′Jkλ̃J)

, k = 1, ...,K1 (3.21)

_

q jkm =
exp(−rjkmX ′jkθ̃j)∑

m
exp(−rjkmX ′jkθ̃j)

, j = 1, ..., J , k = 1, ...,K2 (3.22)

_

l jm =
exp(−

_

λ
(1)

cjm −
_

λ
(2)

cjm)∑
m

exp(−
_

λ
(1)

cjm −
_

λ
(2)

cjm)

, (3.23)

_

ωim =
exp(−U1

_

λ1 − ...− UJ

_

λJ)∑
m

exp(−U1

_

λ1 − ...− UJ

_

λJ)
, (3.24)

_

wjim =
exp(−

_

θ jVj)∑
m

exp(−
_

θ jVj)
, (3.25)

The optimal solution of the equations 3.21–3.25 yields the point estimates

_

γk = z′km
_

pkm, k = 1, ...,K1, (3.26)

_

βjk =
∑
m

r′jkm
_

q km , j = 1, ..., J , k = 1, ...,K2, (3.27)

µj =
∑
m

cjmljm, j = 1, ..., J, (3.28)
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vi =
∑
m

u′imωim, i = 1, ..., N, (3.29)

εjm =
∑
m

vjim
_

wjim, j = 1, ..., J , i = 1, ..., Nj . (3.30)

3.4 Validation of the Generalized Maximum Entropy (GME)
Estimator

To examine the accuracy of the GME estimator for the sample selection with
ordered-multinomial response model, the simulation study is conducted.

3.4.1 Data-Generating Process

Gi is random variable which is independently generated under the standard
uniform distribution. The error terms vi and εi are generated under the stan-
dard bivariate normal distribution with the correlation value of 0.5. The selection
process is

s∗i =γGi + vi, (3.31)

si =


1 if −∞ < γG′i + vi ≤ 0

2 if 0 < γG′i + vi ≤ 1

3 if 1 < γG′i + vi ≤ ∞
(3.32)

The dependent variable yi is defined by

yi =


β1Xi + εi if s1 = 1

β2Xi + εi if s1 = 2

β3Xi + εi if s1 = 3

(3.33)

where Xi is random variable generated under the uniform distribution. The sam-
ple sizes of one hundred and two hundred (N = 100 and N = 200) are considered
for generating the random variables. The values for parameters γ, β1, β2 and in
Eqs. (3.32–3.33) are 0.5, 1, 2, and 3, respectively. The 100 repetitions are made
for each simulation.

In this simulation study, we fix M = 5 for the number of support points. Since
the true value of the estimated parameters is known, we can determine the upper
and lower bounds of the parameters and errors covering the true value. Thus, we
set z = r = [−5,−2.5, 0, 2.5, 5], and c = [−2,−10, 1, 2] . For the error supports, we
specified the values using three sigma rule of Pukelsheim [8] and thereby setting
u = v = [−3σ2,−1.5σ2, 0, 1.5σ2, 3σ2].
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3.4.2 Results of the Simulation Study

Tables 3 displays the summary statistics of the parameters obtained from the
100 replications. Columns denote the true values, mean, and standard deviation
of the estimated parameters. The simulation results show that the mean estimates
are close to the true values. The standard error gets smaller as the sample size
increases. From these results we can infer that the GME is reliable and accurate
estimator for our model. Moreover, we also compare the performance of GME
with two-step estimation of Greene [9], we find that the GME performs better
than two-step estimation, when the data is small (N = 100).

Table 4: Simulation results

GME Two-step estimation
Par. TRUE N=100 N=200 N=100 N=200
γ 0.5 0.3246 0.4668 1.134 0.179

(0.1911) (-0.0125) (-0.6257) (-0.4421)
β1 1 1.2095 1.3787 1.0898 1.3787

(-0.2637) (-0.1302) (-0.2184) (-0.1302)
β2 2 2.2846 2.3511 2.166 2.3511

(-0.2389) (-0.1328) (-0.211) (-0.1328)
β3 3 3.0815 3.1941 2.9492 3.1941

(-0.1929) (-0.1374) (-0.1677) (-0.1374)
µ0 0 0.1615 0.053 0.1615 -0.253

(-0.1515) (-0.0652) (-0.3548) (-0.2652)
µ1 1 1.1161 0.9384 1.358 0.9384

(-0.3010) (-0.2733) (-0.3807) (-0.2733)

Source: Calculation

4 Results of Application Study

In this empirical study, we also fix M = 5 for the number of support points
where z = r = c = [−2 − 1, 0, 1, 2]. Furthermore, we have our expectation that
the range of the estimated parameters is large, and the bound of the coefficients
would be located between [−2, 2] and [−4, 4] for cutoffs parameters. This is due to
we have only 5 ordered choice scores. For the error supports, we specify the values
using three sigma rule of Pukelsheim [8] and set u = v = [−3,−1.5, 0, 1.5, 3].

Table 4 reports the estimated coefficients for sample selection with ordered-
multinomial response model. The ordered response and regression equations are
obtained from this model. The gender and age significantly affect the farmers’
subjective probability of the weather risk. Female–rice farmers and older ages give
a higher score for the probability of the weather risk occurrence.

For the regression equation of the rice planted area decision, the farmers in
all categories of the weather risk prospective (si) are affected significantly by the
household average farm income (1% level). Higher farm income household earned
per year increases the rice planted area. This implies that the farmers spend more
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Table 5: Estimation results

Variable Coefficient Standard error
Ordered response Equation
Gender 0.0190* 0.1998
Age 0.0230* 0.017
Education -0.8447 0.7891
Regression Equation in each ordered response

s = 1
Income 0.0003*** 0.0001
Experience 0.00001 0.0001

s = 2
Income 0.0003*** 0.0001
Experience 0.3743*** 0.0049

s = 3
Income 0.00001*** 0.00002
Experience 0.1691*** 0.0248

s = 4
Income 0.0001*** 0.00001
Experience 0.0933** 0.0287

s = 5
Income 0.00003* 0.00001
Experience 0.1647*** 0.0184

µ1 -2.7294 2.3753
µ2 -1.8031 2.3386
µ3 -0.2965 2.3327
µ4 0.509 2.3332

Note: ***, **, and * represent significance at 1%, 5%, and 10% level, respectively

time on farming regardless of their higher future returns. The number of years in
rice production also has positive and significant impact on the farmers’ decision.
The longer time farmers have been in rice production, the larger size of the rice
acreage. Only those farmers who expect the weather risk is unlikely to occur on
their farmland (s = 1) are not affected by the farming experience.

5 Conclusions

The problem of sample selection model often arises in many econometric stud-
ies. The maximum likelihood (ML) estimator is not consistent when the distribu-
tion of the data generating process associated with the sample is not known. In
addition, our data sets are relatively small and need a consistent estimator that re-
covers these problems and converges to an optimal solution. Thus, we employ the
generalized maximum entropy(GME) estimator to estimate all unknown parame-
ters of the sample selection with ordered-multinomial response outcomes model.
We also conduct the simulation study to examine the accuracy of the model and
find that our model performs well in the simulation study.
From the application study, our results shed some light on how farmers make a
decision on the rice planted area regardless of the unusual weather events. The
gender and age affect the farmers’ subjective probability of the weather risk. The
female farmers and older ages have a higher prospective of the unexpected weather
events and are more concern about the weather risk. The annual household in-
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come from farming also increases the rice planted area. The farmers’ decision is
positively impacted by the farmers’ experience. The longer time farmers have been
in rice production, the larger size of the rice acreage.
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