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Abstract : This study aims at exploring the use of generalized maximum entropy
for estimating the unknown parameters in macroeconomic panel data models with
two special concerns. First, the macroeconomic empirical panel studies usually face
to a problem of data limitations, where the exiting estimation methods are often
hard to get a significant results. Hence, we consider the GME estimator as one of
the effective solutions for this problem. Second, there is often a discontinuity found
in a relationship between explanatory and response variables in the macroeconomic
studies. Therefore, in this study, the panel regression kink design based on the
GME estimator is proposed for examining a discontinuous slope of the relationship
between variables especially when the data is limited. The performance of the
proposed method is evaluated through simulation study and later in the empirical
analysis of the foreign direct investment. Both experiments showed a satisfiable
performance of the model as well as the considered estimation technique.
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1 Introduction

Panel data set for macroeconomic study possess several major advantages over
the conventional units like cross-sectional data or time series. It derives theoretical
ability to isolate the effects of specific actions or more general policies. But one
of the problems that bothers researchers when conducting macroeconomic studies
using state-level panel data is data limitations. This can be the consequence of
many reasons, such as uneven development in different countries. This inequality
can cause different levels of data quality, data collection as well as source, and
make equal data-lengths across countries become difficult to access. The limited
observations can bring about under-determined or ill-posed problems to the anal-
ysis, and hard to get meaningful results. For instance, the sample size generally
corresponds to the shape of the sampling distribution in such a way that increase
in the sample size will make the sampling distribution more bell-shaped (according
to the central limit theorem). However, when the sample size is limited, the shape
of the corresponding distributions will become more difficult to obtain, which in
turn make the optimal solution cannot be obtained through traditional estimation
techniques. [Song and Cheon [1], 2006; and Lee and Cheon [2], 2014]

Apart from that problem in the estimation, this study also realizes the exis-
tence of discontinuity in the relationship between explanatory and response vari-
ables, which often occurs in the macroeconomic studies. For instance, there is a
discontinuous adjustment in the economic growth through the different stages of
economic development or the adjustment of cost in the dynamic of investment.
Consequently, this study is focusing on two important issues; first, the estimation
technique to handle the limited information in panel data model; and second, the
discontinuous relationship between macroeconomic variables. To overcome these
concerns, we introduce a panel regression kink design -extended from the regression
kink of Hansen [3] (2017)- and suggest to use the Generalized Maximum Entropy
(GME) approach to estimate the unknown parameters. This method allows for
the examination of discontinuous slope of the relationship between variables when
there is also limited information.

For empirical examination, this study applies the panel regression kink model
based on GME estimator to examine the structure of Foreign Direct Investment
(FDI) flows into European region in which the impacts of some macroeconomic
variables on inward FDI are considerably discontinuous, especially due to the UK
withdrawal from EU, or the so-called Brexit. The effect of this change in the con-
text of foreign investment will be explored in this study in Section 4 application.
Prior to the application, the general idea of panel regression kink model will be
described in Section 2. Then, Section 3 contains the explanation and some math-
ematical properties of generalized maximum entropy estimator. In Section 5, we
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conduct a simulation study to evaluate the performance of GME estimator for the
proposed model under finite samples. And Section 6 contains conclusion.

2 A General Idea of Panel Regression Kink Model

Consider a form of the panel regression kink model shown in Eq. (2.1), there
are two error components namely an unobserved individual fixed effect ui and a
zero-mean idiosyncratic random disturbance εit, where i = 1, · · · , N correspond
to individuals and t = 1, · · · , T correspond to time.

yit =β−1 (X ′1,it − γ1)− + β+
1 (X ′1,it − γ1)+

+ · · ·+ β−K(X ′K,it − γK)− + β+
1 (X ′K,it − γK)+

+ θDit + ui + εit (2.1)

The dependent variable yit is NT × 1 scalar, the regressor Xit is NT ×K matrix
explanatory variables. γ is a kink or a threshold parameter. β− and β+ are slope
associated with different regimes. In this model, we use (A)− and min[A, 0] to
represent respectively negative (A)+ and max[A, 0] positive parts of a real number
in A in order to divide the regressor Xit into two regimes. θ denotes G × 1
vector of other dependent variables Dit, which are linearly related to yit. The
assumption about this error term is that it usually has no correlation with Xit

and the individual-specific effect error component ui. We also assume that ui
varies across individuals but is constant over time.

3 Estimation: Generalized Maximum Entropy
Estimation

In this study, we propose the use of maximum entropy estimator to estimate
the unknown parameters in the panel data kink regression. The maximum en-
tropy concept is proposed in Jaynes (1957) to estimate the unknown probabilities
of discrete probability distribution. Under this maximum entropy principle, one
chooses the distribution for which the information is just sufficient to determine
the probability assignment. The term of entropy refers to the uncertainty, regard-
ing predicting the future outcome, represented by discrete probability distribu-
tion. Shannon [4] (1948) defined the entropy of the distribution of probabilities

p = (p1, · · · , pK) as the measureH(p) = −
K∑
k=1

pk log pk , where 0 log 0 tend to zero.

This entropy measure reaches a maximum when p1 = p2 = · · · = pK =
1

K
.

To apply the concept of GME to be an estimator for our model, we follow
the work of Sriboochitta, Yamaka, Maneejuk, and Pastpipatkul [5] (2017) but
extend to the inverse problem of the panel data framework. Here, the point
estimates (β−1 , · · · , β

−
K), (β+

1 , · · · , β
+
K) and θg can be viewed as expectations of
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random variables with M support value for each estimated parameter value (k),
Z = [z1, · · · , zK ] where zk = [zk1, · · · , zkm]∀k = 1, · · · ,K and 2 ≤ M < ∞. Note
that zk1 and zkm are the lowest and highest value, respectively, of β. Thus we can
express parameters β−k and β+

k as

β−k

β+
k

=

=

∑
m

p−kmz
−
km, Xk,it ≤ γk

∑
m

p+kmz
+
km, Xk,it > γk

(3.1)

θg =
∑
m

rgmagmZg,it, (3.2)

where p−km and p+km are the M dimensional estimated probability distribution
defined on the set z−km and z+km, respectively. Likewise, rm is M dimensional
estimated probability distribution and am is support value. For the threshold γk,
we also view that (k) element of γ as a discrete random variable with M support
value qk = [qk1, · · · , qkm], where qk1 and qkm are the lowest and highest value,
respectively, of γk

γk =
∑
m

hkmqkm (3.3)

Then, as we do with the estimated parameters, εt is also assumed to be bounded a
priori. Golan, Judge, and Miller [6] (1996) assume that the errors can be bounded
in vt = [vt1, · · · , vtm], where vt1 and vtm are the lowest and highest value, respec-
tively, of εt. Then for each random error, εt, there exist w ∈ [0, 1] such that

εt =
∑
m

wtmvtm (3.4)

However, it is difficult to specify the appropriate bounds in the panel data kink
regression model. To get around this difficulty, Pukelsheim [7] (1994), Golan,
Judge, and Miller [6] (1996) suggested setting the error bounds using the 3σ rule.
That is, vt1 = −3σ and vtm = 3σ, where σ is the standard deviation of εt. In
practice, we can get σ from either Ordinary Least Squares estimator or standard
deviation of dependent variable yit. Finally, the individual-specific effect error
component αi can be expressed as

αi =
∑
m

fimgim, (3.5)

where fim is the a vector of positive probability that sum to one and this error
can be bounded in gt = [gt1, · · · , gtM ], where gt1 and gtM are the lowest and high-
est value, respectively, of αi. Therefore, by using the re-parametrized unknowns
β−k , β

+
k , θg, γg, αi and εt, we can rewrite Eq.(2.1) as

y = p−Z−(X− hQ)− + p+Z+(Z− hQ)+ + rAD + fG + wV, (3.6)
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where Z−isK×KM matrix, p− isKM×1, Z+ isK×KM matrix, p+ isKM×1, h
is KM ×1, r is KM ×1, A is G×GM matrix, f is NM ×1 matrix, G is N ×NR,
w is NTM × 1 matrix, and V is NT × NTM . We assume that the unknown
probabilities on the parameter and the weight on the error are independent and
estimate them jointly by solving the constrained optimization problem

H(p−,p+,h, r, f ,w) = arg max
p−,p+,h,r,f,w

{
H(p−) + H(p+) + H(h)

+H(r) + H(f) + H(w)}
= −p− log p− − p+ log p+ − h′ log h

−r′ log r− f ′ log f −w′ log w, (3.7)

subject to

y= p−Z−(X− hQ)− + p+Z+(X− hQ)+ + rAD + fG + wV, (3.8)

iK = (IK ⊗ i′M )p−, (3.9)

iK = (IK ⊗ i′M )p+, (3.10)

iK = (IK ⊗ i′M )h, (3.11)

iG = (IK ⊗ i′M )r, (3.12)

iN = (IN ⊗ i′M )f , (3.13)

iNT = (INT ⊗ i′M )w. (3.14)

Then, the Lagrangian function is

L =−p− log p− − p+ log p+ − h′ log h− r′ log r− f ′ log f −w′ log w

+ λ′[y − p−Z−(X− hQ)− + p+Z+(X− hQ)+ − rAD− fG−wV]

+ θ[iK − IK ⊗ i′M )p−] + Φ[iK − (IK ⊗ i′M )p+]

+ φ[iK − (IK ⊗ i′M )h] + ϑ[iG − (IG ⊗ i′M )r]

+ ϕ[iN − (IN ⊗ i′M )f ] + ξ[iNT − (INT ⊗ i′M )w]. (3.15)

By taking the gradient of L to derive the first-order conditions, we obtain

∂L

∂p−
= −logp− − iKM − Z′(X′ − hQ)−λ− (IK ⊗ iM )θ = 0, (3.16)

∂L

∂p+
= −logp+ − iKM − Z′(X′ − hQ)−λ− (IK ⊗ iM )Φ = 0, (3.17)

∂L

∂r
= −logr− iGM −A′D′λ− (IK ⊗ iM )Φ = 0, (3.18)

∂L

∂h
= −logh− iK − Z′(Q)−λ− Z′(Q)+λ− (IK ⊗ iM )φ = 0, (3.19)

∂L

∂f
= −logh− iNM −G′λ− (IN ⊗ i′M )ϕ = 0, (3.20)
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∂L

∂w
= −logw − iNTM −V′λ− (INT ⊗ i′M )ξ = 0, (3.21)

∂L

∂λ
= y − p−Z(X− hQ)− − p+Z+(X− hQ)+ − rAD− fG−wV, (3.22)

∂L

∂θ
= iK − (IK ⊗ i′M )p−, (3.23)

∂L

∂Φ
= iK − (IK ⊗ i′M )p+, (3.24)

∂L

∂φ
= iK − (IK ⊗ i′M )h, (3.25)

∂L

∂ϑ
= iG − (IG ⊗ i′M )r, (3.26)

∂L

∂ϕ
= iN − (IN ⊗ i′M )f , (3.27)

∂L

∂ξ
= iNT − (INT ⊗ i′M )w. (3.28)

After some algebra, we obtain

p− = exp{−Z′(X′ − hQ)−λ} exp{iKM − (iKM − (IK ⊗ iM )θ)}, (3.29)

p+ = exp{−Z′(X′ − hQ)+λ} exp{−iKM − (iKM − (IK ⊗ iM )Φ)}, (3.30)

r = exp{−A′D′λ} exp{−iGM − (IG ⊗ iM )ϑ}, (3.31)

h = exp{−Z′(Q)−λ} − exp]{−Z′(Q)+λ} exp{−iK − (IK ⊗ i′M )φ}, (3.32)

f = exp{−G′λ exp{−iKM − (IN ⊗ i′M )ϕ} = 0, (3.33)

−w = exp{−V′λ exp{−iNTM − (INT ⊗ i′M )ξ} (3.34)

where ⊗ denotes the Hadamard product. Since the additive constraints Eqs.(3.9)-
(3.14) and exp{iKM − (iKM − (IK ⊗ iM )θ)}, exp{−iKM − (iKM − (IK ⊗ iM )Φ)},
exp{−iGM − (IG⊗ iM )ϑ}, exp{−iK − (IK ⊗ i′M )φ}, exp{−iKM − (IN ⊗ i′M )ϕ} and
exp{−iNTM − (INT ⊗ i′M )ξ} are constant, this optimization yields

p− =
exp{−Z′(X′ − hQ)−λ}

(IK ⊗ iM ) exp{−Z′(X′ − hQ)−λ}
, (3.35)

p+ =
exp{−Z′(X′ − hQ)+λ}

(IK ⊗ iM ) exp{−Z′(X′ − hQ)+λ}
, (3.36)

r =
exp{aA′D′λ}

(IG ⊗ iM ) exp{aA′D′λ}
, (3.37)

h =
exp{−Z′(Q)−λ} − exp{−Z(Q)+λ}

(IK ⊗ i′M )(exp{−Z′(Q)−λ} − exp{−Z(Q)+λ})
, (3.38)

f =
exp{−G′λ}

(IN ⊗ i′M ) exp{−G′λ}
, (3.39)

w =
exp{−V′λ}

(INT ⊗ i′M ) exp{−V′λ}
, (3.40)
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4 Simulation Study

In this section, we conduct a simulation and experiment study to investigate
the finite sample performance of the GME estimator for the proposed model, panel
kink regression. We compare the performance of the estimation when the number
of support varies in its value, for example, three-point support z1m = [−z, 0, z]
and five-point support z1m = [−z,−z/2, 0, 0, z/2, z]. The support space of the
β−1 , β

+
1 , γ1, ui and εt are chosen to be uniformly symmetric around zero. In this

study, several choices of the support for each of GME unknown parameters and
errors are used. The support space of parameter and two error components are
provided in Table 1. Our model is based on

yit = β−1 (X ′1,it − γ1)− + β+
1 (X ′1,it − γi) + εit, (4.1)

where X ′1,it is generated by X ′1,it = 1 + 1x1,it + ωit, where ωit is generated from
N(0, 1) and x1,it is generated from N(0, γ1). In the error term, ui and εit are
generated independently from N(0, σ2

u and N(0, γ1), respectively, where σ2
u = ρσ2

and σ2
ε = (1−ρ)σ2 with σ2 = σ2

ε +σ2
u. We set σ2 = 1 and ρ = 1 in all simulations.

The threshold value is γ = 0.5. The true value for parameter β−1 , and β+
1 are set

to be 1 and 2 respectively. In this Monte Carlo simulation, we consider sample
size N = 5, T = 10 and N = 10, T = 5.

In the simulation results shown in Table 1, the choice of number of support
points (M) and value of support space z, h, g, and v are considered in this simu-
lations. Heckelei, Mittelhammer, and Jansson [8] (2008) suggested that the prior
information on the support points and the number of support points are compli-
cated, composite, and difficult to be specified. Thus, we examine the performance
of the GME estimator by varying its support space and the number of support
points. The estimated results for this simulation are shown in Table 1. We can see
that the estimated parameters are close to their true values, nonetheless, except
when the number of support points is large (i.e. M = 7), the threshold parameter,
γ1 seems to be affected by the change in the number of support points since it
deviates a bit from its true value. When we consider the range of the support, the
performance is quite similar and stable in all cases. In summary, this simulation
result shows that the GME can perform well for our model.

5 An Application

This section presents an application of the panel kink regression model to the
analysis of Foreign Direct Investment (FDI) flows into European countries. The
study aims to examine how the inward FDI in EU countries changes due to the UK
withdrawal from EU, or the so-called Brexit. In this experiment, macroeconomic
factors are considered in order to explain the changes in inward FDI. However,
we pay attention only to 10 countries in EU, namely Belgium, Czech Republic,
Germany, Ireland, Spain, France, Italy, the Netherlands, Portugal, and Finland.
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Table 1: Choices of number of supports and values of support space

Value of support space TRUE
N=10/T=5 1 2 0.5

z h g v M β−
1 β+

1 γ1

[-5,5] [-1,1] [-5,5] [-5,5] 3 1.0797 2.0515 0.5124
[-10,10] [-1,1] [-6,6] [-6,6] 3 1.1536 1.9033 0.5131
[-15,15] [-1,1] [-7,7] [-7,7] 3 0.9647 2.0085 0.5115
[-5,5] [-1,1] [-5,5] [-5,5] 5 0.9368 1.9275 0.4857

[-10,10] [-1,1] [-6,6] [-6,6] 5 1.0323 2.0187 0.4877
[-15,15] [-1,1] [-7,7] [-7,7] 5 0.9215 1.8907 0.4875
[-5,5] [-1,1] [-5,5] [-5,5] 7 0.9904 2.1117 0.3588

[-10,10] [-1,1] [-6,6] [-6,6] 7 1.0136 1.9207 0.3544
[-15,15] [-1,1] [-7,7] [-7,7] 7 0.9189 2.0562 0.3548

N=20/T=10

z h g v M β−
1 β+

1 γ1

[-5,5] [-1,1] [-5,5] [-5,5] 3 1.0572 2.0409 0.5021
[-10,10] [-1,1] [-6,6] [-6,6] 3 1.0493 2.0139 0.5011
[-15,15] [-1,1] [-7,7] [-7,7] 3 1.0074 2.0001 0.5017
[-5,5] [-1,1] [-5,5] [-5,5] 5 1.0273 2.0559 0.4947

[-10,10] [-1,1] [-6,6] [-6,6] 5 1.1078 1.9728 0.4994
[-15,15] [-1,1] [-7,7] [-7,7] 5 1.0247 2.0034 0.4874
[-5,5] [-1,1] [-5,5] [-5,5] 7 1.0481 2.0865 0.3544

[-10,10] [-1,1] [-6,6] [-6,6] 7 1.0138 2.0654 0.3551
[-15,15] [-1,1] [-7,7] [-7,7] 7 1.0146 2.0578 0.3554

Source: Calculation.

5.1 Data

The macroeconomic factors considered as independent variable consist of gross
domestic product (GDP), the harmonized index of consumer prices (HICP) -as an
indicator of prices stability or inflation-, gross fixed capital formation (GFCF),
and unit labor cost (ULC). Again, Foreign Direct Investment (FDI) is considered
a dependent variable. All the data is collected annually from 2007 to 2016 in which
the descriptive statistics of the variables are presented in Table 2.

Figure 1 presents a scatterplot matrix of the considered variables. The vari-
ables are plotted against each other in a diagonal line from top left to bottom
right. For example, the first square in the second row is an individual scatterplot
of FDI and GDP, where FDI is as the X-axis and GDP is as the Y-axis. But the
first square in the third row shows an individual scatterplot of FDI and GFCF. In
essence, the boxes on the upper right hand side of the whole scatterplot are mirror
images of the plots on the lower left hand. This scatterplot can help determine
rough linear correlation between variables. However, from this scatterplot, less of
correlation among these variables can be found.



Generalized Information Theoretical Approach to Panel Regression ... 141

Table 2: Data description

Variable FDI GDP GFCF ULC HICP

Mean 54,201.2 927,764.7 193,724.9 100.6 1.48

Median 26,497.3 517,445.5 107,013.5 100.6 1.45

Standard deviation 93,577.3 887,540.8 181,936.6 6.1 1.39

Maximum 734,010.3 3,144,050.0 630,034.0 114.9 6.30

Minimum −28, 375.2 138,302.9 25,122.0 78.1 −1.70

Source: Calculation.

Note: All the data is collected from Eurostat, except for the data of FDI which is retrieved from World Bank.

FDI is measured in million USD; GDP and GFCF are in million euros; HICP is measured in annual

percentage change; and ULC is index (2010=100).
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Figure 1: Scatterplot matrix

5.2 Testing Kink Effect

Since the nonlinear structure of the model is proposed in this study, we use
the entropy ratio test, which is introduced by Golan and Dose [9] (2001), to check
whether the kink regression model is significantly preferable to the linear regression
model. It corresponds to the likelihood ratio test which measures the entropy
discrepancy between the constrained and unconstrained models. Consider the
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constrained simple linear repression model with one regressor,

Yt = β1(x′1,t) + εt. (5.1)

The null hypothesis of entropy test is presented in Eq. (3.27) with the restriction
of β1 = β−1 = β+

1 . Under this hypothesis, the kink variable γ does not exist while
the alternative unconstrained hypothesis can be presented by

Yt = β−1 (x′1,t ≤ γ1)− + β+
1 (x′1,t > γ1)+ + εt. (5.2)

Hence, the entropy ratio statistic can be defined as

ER = 2
∣∣HU (β−1 6= β+

1 )−HR(β1 = β−1 = β+
1 )
∣∣ , (5.3)

where HU is the unrestricted hypothesis (linear regression) and HR is the restricted
hypothesis (kink regression). Under certain regularity assumptions (see, Lee and
Cheon [2], 2014; and Sriboonchitta et al. [5], 2017), ER converges in distribution
to χ2

F as T → ∞ when the restriction is true, and F is degree of freedom. The
approximate confidence level (α) for this test is computed by setting ER(·) < Cα,
where Cα is the critical value of the χ2

F at a significance level at α, and it is chosen;
therefore Pr(χ2

F < Cα) = α.

Table 3: Entropy ratio test

Hlinear Hkink Entropy Ratio Interpretation

FDI vs. GDP −94.45 −100.22 −11.52 No kink effect

FDI vs. GFCF −96.07 −86.03 20.07*** Kink effect exists.

FDI vs. ULC −92.59 −91.39 2.38 No kink effect

FDI vs. HICP −96.75 −94.25 5.001* Kink effect exists.

Source: Calculation.

Note: “∗∗∗” is significant at 1% level.

Table 3 shows results regarding the entropy ratio test. We can see that there
is a significant kink effect occurred in a relationship between FDI and GFCF in
addition to FDI and HICP.

5.3 Estimated Results

The estimated impacts on FDI flows into European countries are illustrated
in Table 4. Even though the data set used in this experiment has a problem of
data limitation, incomplete ranges, overall results can still reflect the satisfiable
performance of the proposed method.

It shows that all explanatory variables create significant impacts on the inward
FDI. Firstly, We find a positive relationship between GDP and FDI in which the
coefficient is equal to 1.0726. Typically, GDP is considered as one of the main
factors affecting inward FDI as an increase in production of goods and services
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leads to a rise in GDP. This, in turn, makes the economy more attractive to the
foreign investors (Anaya and Indra, 2016). On the other hand, a negative effect
of unit labor cost on inward FDI is found with a significant coefficient −0.6557,
meaning that 1% increase of unit labor cost can lead to 0.66% decrease in the
inward FDI. These results conform with the literature. (see, for example, Parcon
[10], 2008; Bellak et al. [11], 2009; and Hatzius et al. [12], 1996)

Moreover, specific capability of our method allows for the nonlinear impacts
of gross fixed capital formation (GFCF) as well as harmonized index of consumer
prices (HICP, representing inflation) on inward FDI. The impacts are separated
into two sections according to a kink point. As shown in Table 4, there is a large
negative slope for any values of GFCF below the kink point around 0.1498 (0.15%)
and the slope switches to a positive one for the values of GFCF greater than that
kink value. It indicates that if the growth rate of GFCF is less than 0.15%, it will
create a negative impact on inward FDI with coefficient -11.3034. On the other
hand, the growth rate of GFCF greater than 0.15% can encourage inward FDI
with coefficient 4.8466.

Table 4: Kink regression coefficients and standard errors (in parentheses)

FDI GDP GFCF ULC HICP

β
1.0726 -0.6557

(4.0549) (5.2753)

β−

(regime 1)
−11.3034 0.1104
(0.0923) (0.0923)

β+

(regime 1)
4.8466 0.2002

(4.7981) (0.0816)

γ
(Kink parameter)

0.1498 0.3534
(0.0110) (0.0785)

Source: Calculation.

Note: All of the estimated parameters are significant at 1% level.

In the case of HICP, the result shows a small positive slope for any inflation
rates under a significant kink value around 0.3534 (0.35%), which switches to a
negative slope for the inflation rates beyond that kink value. This result indicates
that changes in HICP lead to a change in inward FDI in the same direction, but
the impact is discontinuous due to the kink effect. According to previous studies
by Huybens and Smith [13] (1999), Boyd et al. [14] (2001) and Andinuur [15]
(2013), low inflation rate is taken as a sign of internal economic stability in the
host country and this would, in turn, increase the return on inward FDI. When
inflation rate is low, nominal interest rate declines, therefore a low cost of capital.
Moreover, the availability of capital at cheap lending rate would enable foreign
investors not only to locate better partners in the host countries with sufficient
domestic investment to supplement, but also to maximize the return on their
investment.
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6 Conclusion

So far, this study has dealt with two important issues: the data limitations,
which can often be found in panel data models, and the discontinuous relationship
between economic variables. To overcome these concerns when they happen simul-
taneously, the panel regression kink design based on the Generalized Maximum
Entropy (GME) estimator is suggested in this study. The performance of this
proposed method is evaluated through simulation study and later in the empirical
analysis of foreign direct investment. Both experiments show a satisfiable perfor-
mance of the model as well as the considered estimation technique, even though
there is incomplete data for some countries.

In addition, the estimated results obtained from this proposed method just em-
phasize the distinct and discontinuous impacts of macroeconomic variables on the
FDI. We conducted the experiment using the data of 10 European countries and
found that all the considered variables, including gross domestic product (GDP),
the harmonized index of consumer prices (HICP), gross fixed capital formation
(GFCF), and unit labor cost (ULC), significantly affected the inward FDI. How-
ever, the effects of GFCF and HICP were discontinuous due to the kink effect.
For the case of GFCF, the coefficients appeared to be negative in the first regime
but positive in the second regime, whereas the effects of HICP were found to be
positive in both regimes. Our finding suggests the appropriate level of inflation
(in terms of HICP) can encourage inward FDI in EU countries.
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