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Abstract : In this paper, we apply a maximum entropy estimation method that
is used as substitute for maximum likelihood method approach. This methodol-
ogy was applied to sticky rice production data from Northern area, Chiang Mai
province, Thailand. The mean square error (MSE) and standard error of pa-
rameters confirm that the method of GME in stochastic frontier model is more
accurate than the conventional stochastic frontier model. In particular, the stan-
dard stochastic frontier model underestimate the technical inefficiency scores for
the lower rankings and overestimate for the higher rankings. In this study, 95%
of the sticky rice farmers were found to have high inefficiencies and most of them
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had technical inefficiencies between 0.6 and 0.8. These findings suggest that a
considerable amount of productivity is lost due to inefficiency.

Keywords : stochastic frontier; maximum entropy; production function; rice;
technical efficiency.
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1 Introduction

For many decades, rice is a vital to the national economic development of many
countries. Especially in Thailand, rice is not only the economic crop of Thailand
agriculture but it also plays the important role of Thailand export products. In
2016, Office of Agricultural Economics, reported that 58.427 million rais (93,483.2
million square metres) were planted to rice and produced 25.578 million tonnes and
rice products contributed more than $6,600 billion to the internationally exported
annually. The reason is that rice is not only a subsistence crop but also a cash
crop for Thai farmers. It was estimated that approximately 4 million people are
highly dependent on rice farms [1].

The development of the rice farming, relying on resources and technique, serves
as an important role of the rice production. As for research regarding technical
efficiency on the rice production, efficiency improvement is often concerned as
one of a crucial targets behind social and economic policies and reforms (see,
[2]). Concerning about rice production in Thailand, many economists have raised
the question of the technical efficiency due to the lack of knowledge in production.
Thus, stochastic frontier model (SFM) is become one of the most successful method
in agricultural production analysis. In general, SFM is a parametric method used
to investigate technical efficiency and productivity of the production function,
such as Cobb-Douglas, Leontief, translog etc. A previous studied related to a
stochastic frontier model on rice, such as [3] discussed the productive efficiency of
jasmine rice in Thailand by using a sample selection procedure in stochastic frontier
models. [4] applied data envelopment analysis (DEA) and SFM to determine the
technical efficiency on certified organic Jasmine rice farms in Thailand. The result
indicate that SFM and DEA (CRS) are more consistent than those from SFM and
DEA (VRS) for efficiency measurement.[5] measured technical efficiency of the rice
production in China. Moreover, the method of SFM is applied in various areas,
such as [6, 7, 8, 9, 10], and among others.

Technically speaking, SFM needs the definition of a specific functional form
for the production function and for the inefficiency error component. Literally,
The method of maximum likelihood was applied to estimates all the parame-
ters in the model (see, [11, 12, 13]). Another choice of estimation procedure
is a non-parametric method [14], such as a quantile estimation, which is a semi-
parametric estimation using a concept of Least absolute deviations method (LAD),
The method minimizes the sum of absolute errors. The LAD estimate also arises
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as the ML estimate if the errors have a Laplace distribution (see,[10, 15, 16, 17]).
In this paper, we measure and investigate factors affecting technical efficiency

of rice production in Northern of Thailand. We applied the stochastic frontier
method to farm-level survey data of rice farms in Chiang Mai provinces. Alterna-
tively, we used the method of maximum entropy (ME) to estimate the parameter
in a classical stochastic frontier. The principle of maximum entropy is a postulate
stating that, subject to known constraints, the probability distribution which best
represents the current state of knowledge is the one with maximum entropy. A
related works on ME in econometrics, For instance, [18, 19, 20, 21, 22, 23, 24, 25].
Specially, the ME method has the following properties ([26]) first, ME works well
when the sample size is small and the covariates are highly correlated. Second,
It avoids strong parametric assumptions and works well when the matrix is ill
conditioned. Finally, ME method is more efficient.

The remainder of the paper is structured as follows. Section 2 gives the back
ground of maximum entropy, In section 3, we describe a methodology and data.
Section 4 reports the empirical results, and final section gives conclusions.

2 Theoretical Background

[20] defines Entropy as expected information. Entropy represents what we
expect to learn from data on average. Technically, entropy is a measure of uncer-
tainty of a single random variable. Let A = {a1, a2, ..., aM} be a finite set with
a corresponding probability distribution function p. In communication theory,
[27] developed Hartley’s formula for measuring the amount of information needed
to fully characterize all of the elements in A. The formula is I(AM ) = log2M .
Shannon [28] developed the information criterion from Hartley’s formula in the
context of communication process called Shannon’s information. The Shannon’s
information is defined as

h(ai) = h(pi) ≡ log2

1

pi
i = 1, ...,M. (2.1)

Shannon’s entropy representing the expected information of an outcome is then
defined as

H(p) ≡
M∑
i=1

pi log2

1

pi
= E[log2(1/p(X))], (2.2)

where X is the random variable with probability distribution p. The entropy
(information criterion) measures the uncertainty or informational content of X
implied by p.

In the context of Econometrics, we can view H(p) as a measure of the economic
system uncertainty. Technically, researchers never knows the true underlying val-
ues that characterizes the economic system. Hence, they may incorporate their
knowledge of the system in estimating the unknown parameters of the system.
This knowledge usually can be represented by some global macro-level quantities
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such as moments. Researchers could select the parameters of the system such that
the entropy of the system is maximized while retaining the moment conditions.

Maximum entropy (ME) principle was proposed by [29] to address the question
of how to draw inferences from limited and insufficient data. The ME principle
was applied in many fields by a large number of researchers. In econometrics,
where researchers are concerned about an estimation of unknown distribution of a
random variable by imposing the minimal assumption on the underlying likelihood
function, the principle was widely applied to solve such a problem (see, e.g.[30].
The rationale behind the ME principle was provided by [31] through the entropy
concentration theorem. The theorem states that among the distributions that sat-
isfy the observed-data moments, a significantly large portion of these distributions
are concentrated sufficiently close to the one of maximum entropy. Readers are
referred to [30] for more details about Entropy Econometrics.

2.1 GME Stochastic Frontier Model

The stochastic frontier model (SFM) is a widely used model to measure in-
efficiency of production units. [11], [32], and [33] are independently developed
the SFM for a cross-section production data. Technically, SFM is just a linear
regression model with composed (of two) error components. It has a two-sided
error component as in the linear regression model capturing random variation of
the production frontier and an additional one-sided error component that mea-
sures inefficiency relative to the production frontier. In conventional estimation,
researchers have to specify the distribution assumption for those two random com-
ponents. Thus, it requires a correct model specification and complete data in order
to make a valid estimation and testing.

Another alternative for inefficiency measurement is data envelopment analysis
(DEA) [34]. DEA does not require any ad hoc assumptions about the inefficiency
distribution and also a functional form relating inputs and outputs. However, it
has some limitations such as statistical hypothesis testings are difficult and any
measurement errors or other noise can cause significant problems for inefficiency
estimation.

In this paper, we use the generalized maximum entropy (GME) approach for
stochastic frontier model. GME approach has the advantage over conventional
method, since GME does not require an assumption on the inefficiency component
of stochastic frontier model. Another advantage of GME estimation is that it also
works very well with a small sample size. The advantage of GME estimation over
DEA is that GME approach considers stochastic noise in data and is easier to
perform the statistical testing of hypotheses. GME approach gives a potential
alternative measure of inefficiency that exhibits the strengths of both SFM and
DEA.

We consider a stochastic frontier model of the following form:

yi = x′iβ + εi, εi = vi − ui, ui ≥ 0, (2.3)

where i = 1, 2, ..., N indicates production units, yi is log of output, xi is a column
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vector of function of inputs, β is a column vector of parameters, vi is a two-sided
error component, and ui is a one-sided error component capturing inefficiency
of production unit. Some common functional forms for production functions are
listed and discussed in [35]. In this paper, we assume the Cobb-Douglas production
function [36].

The GME method is based on the maximum entropy principle [37]. This
method treats both the parameter vector β, the errors vi and ui as discrete ran-
dom variables with bounded support. In line with tradition, we assume that the
set of true (unknown) parameters is bounded: β ∈ B where B is a convex set.
The probability distribution corresponding to the discrete random variables are
approximated by maximizing the Shannon entropy under data-consistency con-
straints.

Let each element (k) of the parameter vector β be bounded below by zk and
above by z̄k:

B = {β ∈ Rk|βk ∈ (zk, z̄k), k = 1, 2, ...,K}. (2.4)

Let zk ≡ {zk, · · · , z̄k} = {zk1, · · · , zkM} denote the support space of compo-
nent βk of β. We denote the probability distribution of each element βk by
pk = (pk1, . . . , pkM )′. Similarly, the two-sided error vi is assumed to be a dis-
crete random variable with support {r1, · · · , rJ} and probability distribution wi =
(wi1, . . . , wiJ). Finally, the one-sided error ui is assumed to be a discrete random
variable with support {q1, · · · , qJ} and probability distribution Φi = (φi1, . . . , φiJ).
In the absence of prior knowledge about the possible values of support spaces, re-
searchers can define the support space of component βk to be centered on zero
with wide range. For the support space of one-sided error, we define the support
space with zero lower bound. For the support space of two-sided error component,
we may use the three-sigma rule, as suggested by [30], to establish the lower and
upper bounds on the error component.

According to the ME principle, the probability distributions pk, wi and Φi

can be chosen to maximize the following Shannon entropy function,

H(p, w, φ) = −
K∑

k=1

M∑
m=1

pkm log pkm−
n∑

i=1

J∑
j=1

wij logwij−
n∑

i=1

J∑
j=1

φij log φij , (2.5)

under the normalization constraints

M∑
m=1

pkm = 1, k = 1, . . . ,K

J∑
j=1

wij = 1, i = 1, . . . , n

J∑
j=1

φij = 1, i = 1, . . . , n
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and some data-consistency constraints

yi =

K∑
k=1

xik

M∑
m=1

pkmzkm +

J∑
j=1

wijrj −
J∑

j=1

φijqj , i = 1, . . . , n. (2.7)

The optimal solution p̃k, Φ̃i and w̃i yield the point estimates

β̃k =

M∑
m=1

p̃kmzkm, (2.8)

ũi =

J∑
j=1

φ̃ijqj , (2.9)

and

ṽi =

J∑
j=1

w̃ijrj . (2.10)

Finally, technical inefficiency (TI) can be measured by exp(−ũi) for each produc-
tion unit i.

3 Data and Formulation

3.1 Data

In this paper, we used a survey data which was collected in the crop year
2014 by interviewing rice farmers in Chiang Mai province, a province located in
the north of Thailand where farmers have greater access to irrigation. A total
of 125 farmers were interviewed of sticky rice production. The data consists of
four variables, where the dependent variable is a quantity of rice in kilogram per
rai, the explanatory variables are amount of fertilizer and seed in kilogram per
rai and the number of labor per day. This data might suffer from measurement
errors due to the lack of precise input and output records for each farmer. Mostly,
farmers did not precisely record their inputs used in their rice productions. The
interviewers can only ask them to approximate their inputs used in their farms.
Therefore, we expect to have the measurement errors in this data set.

3.2 Model Formulation

The rice production frontier is specified as

log(outputi) = β0 + β1 log(fertilizeri) + β2 log(seedi) + β3 log(labori) + vi − ui,
(3.1)

where log(outputi) is the rice output, log(fertilizeri) is the amount of fertilizer,
log(seedi) is the amount of seed, and log(labori) is the number of labor per day,
for each farmer i. Notice that all variables are in logarithm form.
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In order to implement the GME method, we have to define the support spaces
for the error components and the parameters. The support space for each coeffi-
cient βk, k = 0, 1, 2, 3 were selected based on estimates obtained from conventional
SFM. We chose the number of elements for supports equal three. A simple strat-
egy to define the support space is to select the support space to be centered on
zero with wide range. For example, to define the support space for the parameter
of log(seed), we knew from the conventional SFM model that the estimated pa-
rameter is 0.046 with standard error of 0.050. Therefore, to cover the wide range
we select the lower and upper bounds for the support to be ten times of 0.050 and
make it centered on zero. Notice that the choice of support space is subject to
researchers judgment.

The chosen support were set to (−10, 0, 10), (−0.5, 0, 0.5), (−0.5, 0, 0.5), and
(−0.6, 0, 0.6) for intercept, fertilizer, seed, and labor, respectively. The supports
for the two-sided errors are chosen to be (−0.8, 0, 0.8) the same for all observations.
For the one-sided errors (inefficiency component), the lower bound of supports were
set to zero and the upper bound were set to 0.8. According to the upper bound
of 0.8, the minimum efficiency can be reached at exp(−0.8) = 44.9%. Notice that
the minimum zero efficiency is only obtained when the upper bound of support
approaches infinity. We remark here that the mean efficiency of production unit
depends on the choice of one-sided error supports. The optimal choice for the
supports has to be investigated in further study.

3.3 Empirical Results and Discussion

In this section, we present the estimated parameters and the technical ineffi-
ciency from both conventional SFM and GME-SFM (Generalized Maximum En-
tropy Stochastic Frontier Model). For the conventional SFM, we made the usual
assumptions of half-normal and normal distributions for one-sided and two-sided
errors, respectively. Table 1 shows parameter estimates form both models. In the
conventional SFM, the variance of technical inefficiency exp(−ui) was bigger than
the GME-SFM. The mean square errors (MSE) of the production frontiers were
also computed to compare the goodness-of-fit between two approaches of estima-
tion. As we expected, the MSE of GME approach was slightly lower than the
conventional approach.

In conventional SFM, the coefficients of all explanatory variables were not
statistically significant except for the constant coefficient. This might suggest
that the conventional SFM suffer from the measurement errors in the data as
previously discussed. As we expect, the better results for rice production frontier
could be achieved by GME approach. In GME-SFM, the coefficient of variable
labor was statistically significant and had positive sign. The coefficient of labor
can be interpreted as rice production elasticity for labor. GME approach is more
robust to the measurement errors when compares with the conventional method.
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Table 1: Parameter estimated in the conventional Stochastic Frontier model
(SFM) and GME Stochastic Frontier model

Input variables
SFM GME-SFM

Estimates StdErr Estimates StdErr
Constant 6.929* 0.149 6.728* 0.126

log(fertilizer) -0.027 0.020 -0.009 0.018
log(seed) 0.046 0.050 0.004 0.040
log(labor) -0.003 0.074 0.181* 0.051

σu 0.468 - - -
σv 0.142 - - -

Mean of inefficiency 0.723 0.159 0.683 0.051
MSE 5.472 - 5.169 -

Note: ∗ indicates a significance level of 0.05.
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Figure 1: Technical Inefficiency Comparison between the conventional SFM and
GME-SFM

Figure 1 illustrates the cumulative technical inefficiency distribution based on
SFM and GME-SFM. The two shapes are different where the distribution from
GME-SFM shows steeper curve in both upper and lower tails but smoother curve
in the middle. The line represents technical inefficiencies GME-SFM model, while
the dotted line illustrates technical inefficiencies of the conventional SFM models.
Given the specification of GME-SFM model, all farmers have a range of 0.10 to 0.90
inefficiency scores with an average efficiency 0.683, while the technical inefficiency
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of all farmers are from 0.45 to 0.99 according to conventional stochastic frontier
model, and the average technical efficiency is 0.723. Obviously, the traditional
SFM of technical inefficiency overestimate the technical inefficiencies.

4 Conclusions

In this paper, we have applied the classical stochastic frontier model using
maximum entropy estimation method that is used as substitute for maximum like-
lihood method thereby possibly generalizing the use of the GME-SFM approach.
GME-SFM allows the models of interest to incorporates as much (or as insufficient)
information as there is available. The mean square error (MSE) and standard er-
ror of parameters confirmed that the method of GME in stochastic frontier model
is more appropriate than the conventional stochastic frontier model.

We used the GME-SFM method to investigate the sticky rice production as-
sociated with seed, labor and fertilizer. The results showed that GME-SFM ap-
proach had better performance than traditional stochastic frontier model which
overestimate the technical efficiency in this study. The graph of the SFM and
GME-SFM model in term of technical inefficiency suggested that SFM underes-
timated the technical inefficiency scores for the lower rankings and overestimated
for the higher rankings.

This study also found some significant results which showed that 95% the sticky
rice farmers had the production inefficiencies are more than 0.5 from the maximum
scale of 0.9 inefficiency. This suggested that policy makers should seriously improve
the efficiency of the sticky rice production
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