Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics, 2006) : 25–30

Regularity of Semigroups of Multihomomorphisms of $(\mathbb{Z}_n, +)$

W. Teparos and Y. Kemprasit

Abstract : An element *a* of a semigroup *S* is called *regular* if a = aba for some $b \in S$, and *S* is called a *regular semigroup* if every element of *S* is regular. For a group *G*, denote by MHom(*G*) the semigroup, under composition, of all multi-homomorphisms of *G* into itself. It is known that the elements of MHom($\mathbb{Z}_n, +$) are precisely $I_{k,a}$ where $k, a \in \mathbb{Z}$ and $I_{k,a}(\overline{x}) = \overline{ax} + k\mathbb{Z}_n$ for all $x \in \mathbb{Z}$, and $|\text{MHom}(\mathbb{Z}_n, +)| = \sum_{k|n} k$. Our purpose is to show that for $k, a \in \mathbb{Z}$, $I_{k,a}$ is a regular

element of the semigroup MHom(\mathbb{Z}_n , +) if and only if a and $\frac{(n,k)}{(n,k,a)}$ are relatively prime, and MHom(\mathbb{Z}_n , +) is a regular semigroup if and only if n is square-free.

Keywords : Multihomomorphism, regular semigroup2000 Mathematics Subject Classification : 32A12, 20M17

1 Introduction

The cardinality of a set X is denoted by |X|.

By a multifunction from a nonempty set X into a nonempty set Y, we mean a function $f: X \to P^*(Y)$ where P(Y) is the power set of Y and $P^*(Y) = P(Y) \setminus \{\emptyset\}$. For $A \subseteq X$, let $f(A) = \bigcup_{a \in A} f(a)$. Continuity of multifunctions between two topological spaces were studied by

Continuity of multifunctions between two topological spaces were studied by Whyburn [6], Smithson [4] and Feichtinger [2]. Multihomomorphisms between groups were defined naturally in [5] as follows: A multifunction f from a group Ginto a group G' is called a *multihomomorphism* if $f(xy) = f(x)f(y)(= \{ st \mid s \in$ $f(x) and t \in f(y) \})$ for all $x, y \in G$. Denote by MHom(G, G') the set of all multihomomorphisms from G into G', and write MHom(G) for MHom(G, G). Clearly, MHom(G) is a semigroup under composition.

For cyclic groups G and G', the elements of $\operatorname{MHom}(G, G')$ were characterized and $|\operatorname{MHom}(G, G')|$ was determined in [5] and moreover, necessary and sufficient conditions for $f \in \operatorname{MHom}(G, G')$ to be surjective, that is, $\bigcup_{x \in G} f(x) = G'$, were

given in [3]. In [1], the authors provided remarkable necessary conditions for f

belonging to $\operatorname{MHom}(G, G')$ when G' is a subgroup of the additive group $(\mathbb{R}, +)$ and a subgroup of the multiplicative group (\mathbb{R}^*, \cdot) where \mathbb{R} is the set of real numbers and $\mathbb{R}^* = \mathbb{R} \setminus \{0\}.$

Let \mathbb{Z} be the set of integers, $\mathbb{Z}^+ = \{x \in \mathbb{Z} | x > 0\}$ and for $n \in \mathbb{Z}^+$, let $(\mathbb{Z}_n,+)$ be the additive group of integers modulo n. The congruence class modulo *n* of x will be denoted by \overline{x} . Then $\mathbb{Z}_n = \{ \overline{x} \mid x \in \mathbb{Z} \} = \{\overline{0}, \overline{1}, \dots, \overline{n-1} \}$ and $|\mathbb{Z}_n| = n$. For $a_1, a_2, \ldots, a_m \in \mathbb{Z}$, not all 0, the g.c.d. of a_1, a_2, \ldots, a_m is denoted by (a_1, a_2, \ldots, a_m) . It is clearly seen that $k\mathbb{Z}_n = (k, n)\mathbb{Z}_n$ for all $k \in \mathbb{Z}$ and $k\mathbb{Z}_n + l\mathbb{Z}_n = (k,l)\mathbb{Z}_n$ for all $k,l \in \mathbb{Z}$, not both 0. If $k,a \in \mathbb{Z}$, define the multifunction $I_{k,a}$ from \mathbb{Z}_n into itself by

$$I_{k,a}(\overline{x}) = \overline{ax} + k\mathbb{Z}_n \quad \text{for all } x \in \mathbb{Z}.$$

The following results are known.

Theorem 1.1. ([5]) $MHom(\mathbb{Z}_n, +) = \{I_{k,a} | k, a \in \mathbb{Z}\}.$

Theorem 1.2. ([5]) The following statements hold.

- (i) If $k, l \in \mathbb{Z}^+$, $k|n, l|n, a \in \{0, 1, \dots, k-1\}$, $b \in \{0, 1, \dots, l-1\}$ and $I_{k,a} = I_{l,b}$, then k = l and a = b.
- (ii) $MHom(\mathbb{Z}_n, +) = \{ I_{k,a} \mid k \in \mathbb{Z}^+, k \mid n \text{ and } a \in \{0, 1, \dots, k-1\} \}.$ (iii) $|MHom(\mathbb{Z}_n, +)| = \sum_{\substack{k \in \mathbb{Z}^+ \\ k \mid n}} k.$

Note that in Theorem 1.2, (iii) is directly obtained from (i) and (ii).

An element a of a semigroup S is called *regular* if a = aba for some $b \in S$. Denote by $\operatorname{Reg}(S)$ the set of all regular elements of S. If every element of S is regular, that is , $\operatorname{Reg}(S) = S$, S is called a *regular semigroup*. Our purpose is to show that for $k, a \in \mathbb{Z}$, $I_{k,a}$ is a regular element of $MHom(\mathbb{Z}_n, +)$ if and only if a and $\frac{(n,k)}{(n,k,a)}$ are relatively prime, and $MHom(\mathbb{Z}_n,+)$ is a regular semigroup if and only if n is square-free. Recall that n is called square-free if for every $a \in \mathbb{Z}$ with $a > 1, a^2 \nmid n$. Hence n is square-free if and only if either n = 1 or n is a product of distinct primes.

$\mathbf{2}$ The Regularity of $MHom(\mathbb{Z}_n, +)$

Throughout this section, let n be a positive integer. The following three lemmas are needed.

Lemma 2.1. If
$$r, s, t \in \mathbb{Z}$$
, $r \neq 0$ and $t \neq 0$ are such that $r \mid (s, \frac{t}{(s,t)})$, then $r^2 \mid t$.

Proof. From the asympton, $r \mid s$ and $r \mid \frac{t}{(s,t)}$. Then $r(s,t) \mid t$. Hence $r \mid s$ and $r \mid t$ which implies that r|(s,t), and thus $r^2|r(s,t)$. But r(s,t)|t, so $r^2|t$.

Regularity of Semigroups of Multihomomorphisms of $(\mathbb{Z}_n, +)$

Lemma 2.2. For $k, l, a, b \in \mathbb{Z}$,

$$I_{k,a}I_{l,b} = \begin{cases} I_{(k,al),ab} & \text{if } k \neq 0, \\ I_{al,ab} & \text{if } k = 0. \end{cases}$$

Proof. For $x \in \mathbb{Z}$,

$$\begin{split} I_{k,a}I_{l,b}(\overline{x}) &= I_{k,a}(\overline{bx} + l\mathbb{Z}_n) \\ &= \overline{a}(\overline{bx} + l\mathbb{Z}_n) + k\mathbb{Z}_n \\ &= \overline{abx} + al\mathbb{Z}_n + k\mathbb{Z}_n \\ &= \left\{ \frac{\overline{abx} + (k,al)\mathbb{Z}_n = I_{(k,al),ab}(\overline{x}) & \text{if } k \neq 0, \\ \overline{abx} + al\mathbb{Z}_n = I_{al,ab}(\overline{x}) & \text{if } k = 0, \end{array} \right. \end{split}$$

so the lemma is proved.

Lemma 2.3. If $k, l, a, b \in \mathbb{Z}$ are such that $I_{k,a} = I_{l,b}$, then $k\mathbb{Z}_n = l\mathbb{Z}_n$ and (n,k)|(a-b).

Proof. We have that $k\mathbb{Z}_n = I_{k,a}(\overline{0}) = I_{l,b}(\overline{0}) = l\mathbb{Z}_n$. Then $I_{k,a} = I_{k,b}$, so $\overline{a} + k\mathbb{Z}_n = I_{k,a}(\overline{1}) = I_{k,b}(\overline{1}) = \overline{b} + k\mathbb{Z}_n$. Hence $\overline{a-b} = \overline{kt}$ for some $t \in \mathbb{Z}$, thus n|(a-b-kt). Since (n, k)|n and (n, k)|kt, it follows that (n, k)|(a - b).

Theorem 2.4. For $k, a \in \mathbb{Z}$, $I_{k,a}$ is a regular element of the semigroup $MHom(\mathbb{Z}_n, +)$ if and only if a and $\frac{(n,k)}{(n,k,a)}$ are relatively prime.

Proof. First, assume that $I_{k,a}$ is a regular element of $MHom(\mathbb{Z}_n, +)$. Then there are $l, b \in \mathbb{Z}$ such that $I_{k,a} = I_{k,a}I_{l,b}I_{k,a}$. By Lemma 2.2, $I_{k,a}I_{l,b}I_{k,a} = I_{s,a^2b}$ for some $s \in \mathbb{Z}$, and so by Lemma 2.3, $(n,k)|(a^2b-a)$. This implies that $\frac{(n,k)}{(n,k,a)}|\frac{a}{(n,k,a)}(ab-1)$. But $\frac{(n,k)}{(n,k,a)}$ and $\frac{a}{(n,k,a)}$ are relatively prime, thus $\frac{(n,k)}{(n,k,a)}|(ab-1)$. Therefore $ab + \frac{(n,k)}{(n,k,a)}t = 1$ for some $t \in \mathbb{Z}$. Consequently, aand $\frac{(nk)}{(n,k,a)}$ are relatively prime.

Conversely, assume that a and $\frac{(n,k)}{(n,k,a)}$ are relatively prime. Then there are $b, c \in \mathbb{Z}$ such that $ab + \frac{(n,k)}{(n,k,a)}c = 1$. It follows that $\overline{(a^2b-a)x} = \overline{(ab-1)ax} = \overline{(ab-1)ax}$ $\overline{\left(\frac{(n,k)}{(n,k,a)}cax\right)} = (n,k)\overline{\left(\frac{a}{(n,k,a)}cx\right)} \in (n,k)\mathbb{Z}_n = k\mathbb{Z}_n \text{ for every } x \in \mathbb{Z}.$ Consequently, $\overline{a^2bx} + k\mathbb{Z}_n = \overline{ax} + k\mathbb{Z}_n$ for every $x \in \mathbb{Z}$. By Lemma 2.2,

$$I_{k,a}I_{k,b}I_{k,a} = \begin{cases} I_{(k,a(k,bk)),a^2b} = I_{k,a^2b} & \text{if } k \neq 0, \\ I_{0,a^2b} = I_{k,a^2b} & \text{if } k = 0. \end{cases}$$

27

Thus for every $x \in \mathbb{Z}$, $I_{k,a}I_{k,b}I_{k,a}(\overline{x}) = \overline{a^2bx} + k\mathbb{Z}_n = \overline{ax} + k\mathbb{Z}_n = I_{k,a}(\overline{x})$, so $I_{k,a}I_{k,b}I_{k,a} = I_{k,a}$. Hence $I_{k,a}$ is a regular element of $\operatorname{MHom}(\mathbb{Z}_n, +)$, as desired. \Box

Corollary 2.5. Let QF be the set of all square-free positive integers. Then the following statements hold.

(i) $Reg(MHom(\mathbb{Z}_n, +))$

$$= \{ I_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\} \text{ and } (a, \frac{k}{(k,a)}) = 1 \}$$

= $\{ I_{k,a} \mid k \in QF, k \mid n \text{ and } a \in \{0, 1, \dots, k-1\} \}$
 $\cup \{ I_{k,a} \mid k \in \mathbb{Z}^+ \setminus QF, k \mid n, a \in \{0, 1, \dots, k-1\} \text{ and } (a, \frac{k}{(k,a)}) = 1 \}$

(ii) $|Reg(MHom(\mathbb{Z}_n, +))|$

$$= \sum_{\substack{k \in QF \\ k|n}} k + \sum_{\substack{k \in \mathbb{Z}^+ \setminus QF \\ k|n}} |\{a \in \{0, 1, \dots, k-1\} \mid (a, \frac{k}{(k, a)}) = 1\}|$$

Proof. (i) The first equality follows from Theorem 1.2(ii) and Theorem 2.4 and the second equality is obtained from Lemma 2.1.

(ii) is obtained from (i) and Theorem 1.2(i).

Theorem 2.6. The semigroup $MHom(\mathbb{Z}_n, +)$ is regular if and only if n is squarefree.

Proof. From Theorem 1.1 and Theorem 2.4, we have respectively that

$$\operatorname{MHom}(\mathbb{Z}_n, +) = \{ I_{k,a} \mid k, a \in \mathbb{Z} \}$$
$$\operatorname{Reg}(\operatorname{MHom}(\mathbb{Z}_n, +)) = \{ I_{k,a} \mid k, a \in \mathbb{Z} \text{ and } (a, \frac{(n, k)}{(n, k, a)}) = 1 \}$$

First, assume that n is not square-free. Then there exists an integer r > 1such that $r^2|n$. Then $(r, \frac{(n,n)}{(n,n,r)}) = (r, \frac{n}{r}) = r > 1$ which implies that $I_{n,r} \in$ $\mathrm{MHom}(\mathbb{Z}_n, +) \setminus \mathrm{Reg}(\mathrm{MHom}(\mathbb{Z}_n, +))$. This proves that if $\mathrm{MHom}(\mathbb{Z}_n, +)$ is a regular semigroup, then n is square-free.

For the converse, assume that n is square-free. Then k is square-free for every $k \in \mathbb{Z}^+$ with k|n. Therefore we deduce from Corollary 2.5 (i) that

 $Reg(MHom(\mathbb{Z}_n, +)) = \{ I_{k,a} \mid k \in \mathbb{Z}^+, k \mid n \text{ and } a \in \{0, 1, \dots, k-1\} \}.$

By Theorem 1.2(ii), we have $\operatorname{Reg}(\operatorname{MHom}(\mathbb{Z}_n, +)) = \operatorname{MHom}(\mathbb{Z}_n, +)$. Hence $\operatorname{MHom}(\mathbb{Z}_n, +)$ is a regular semigroup. \Box

The following corollary is obtained directly from Theorem 1.2(iii) and Theorem 2.6.

Corollary 2.7. For any prime p, $MHom(\mathbb{Z}_p, +)$ is a regular semigroup of order 1+p.

Example 2.8. By Theorem 1.2(iii) and Theorem 2.6, $MHom(\mathbb{Z}_6, +)$ is a regular semigroup of order 1 + 2 + 3 + 6 = 12.

By Corollary 2.5(ii),

$$|\operatorname{Reg}(\operatorname{MHom}(\mathbb{Z}_{20}, +))| = (1 + 2 + 5 + 10) + |\{a \in \{0, 1, 2, 3\} \mid (a, \frac{4}{(4, a)}) = 1\}| + |\{a \in \{0, 1, \dots, 19\} \mid (a, \frac{20}{(20, a)}) = 1\}| = 18 + (3 + 15) = 36$$

since

for $a \in \{0, 1, 2, 3\}$, $(a, \frac{4}{(4, a)}) = 1 \Leftrightarrow a \in \{0, 1, 3\}$

and

for
$$a \in \{0, 1, \dots, 19\}$$
, $(a, \frac{20}{(20, a)}) = 1 \Leftrightarrow a \in \{0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19\}.$

By Theorem 1.2(iii),

 $|\mathrm{MHom}(\mathbb{Z}_{20}, +) \setminus \mathrm{Reg}(\mathrm{MHom}(\mathbb{Z}_{20}, +))| = (1 + 2 + 4 + 5 + 10 + 20) - 36$ = 42 - 36 = 6.

References

- [1] P. Youngkhong and K. Savettaraserance, Multihomomorphisms from groups into groups of real numbers, *Thai J. Math.*, *ICMAA 2006*, submitted.
- [2] O. Feichtinger, More on lower semi-continuity, Amer. Math. Monthly 83 (1978), 30.
- [3] S. Nentheien and P. Lertwichitsilp, Surjective multihomomorphisms between cyclic groups, *Thai J. Math.*, *ICMAA 2006*, submitted.
- [4] R. E. Smithson, A characterization of lower semi-continuity, Amer. Math. Monthly 75 (1968), 505.
- [5] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, *Set-valued Mathematics and Applications*, to appear.
- [6] G. T. Whyburn, Continuity of multifunctions, Proc. Nat. Acad. Sciences, U.S.A. 54 (1965), 1494-1501.

(Received 25 May 2006)

W. Teparos and Y. Kemprasit Department of Mathematics Faculty of Science Chulalongkorn University Bangkok 10330, THAILAND. e-mail: Yupaporn.K@chula.ac.th