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1 Introduction

Quantile regression is one of the famous regression techniques used in statis-
tics and econometrics. In contrast to linear regression model which estimates the
approximate conditional mean of the response variable given certain values of the
independent variables, quantile regression aims at estimating either the conditional
median or other quantiles of the response variable. One advantage of quantile re-
gression, relative to the linear regression, is that its estimates are more robust
against outliers in the response measurements. The main feature of quantile re-
gression goes beyond that. However, we suspect that among all the quantile levels,
which one is fit to the data? The traditional quantile regression model will be use-
ful if we want to focus on some or particular quantile level. But if we estimate the
quantile model at a given range of quantile, say 0.1, 0.2, · · · , 0.9, we will obtain 9
different regression results, one for each quantile level. The problem that follows is
how to interpret each result and how to find the best fit solution. In addition, it is
sometimes difficult to answer the question which quantile would be the most likely
one to extract the most information from the data. This question can be easily
solved by considering the quantile level as a parameter would be an appropriate
way to solve this problem. Recently, this problem has received increasing attention
in the literature. For instance, Tu, Wang, and Sun [1] also considered the quantile
level as an unknown parameter and estimated it with other parameters in the
model. In other words, they estimated the quantile parameter from the data and
allowed the data to tell their own story. Nevertheless, their purpose is to estimate
the quantile parameter by using Bayesian adaptive Lasso on the maximum entropy
and the flat prior, π(τ) = 1, was placed for quantile parameter τ . The idea behind
this method is that it is defined from the information entropy of the distribution
of probabilities p as an Asymmetric Laplace distribution (ALD) density, f(y|β),
and maximizing entropy measure subject to two moment constraints, therefore

fME(y|β) = max
f
−
∫
f(y|β) log f(y|β)dy (1.1)

subject to

E |y − xβτ | = c1,

E(y − xβτ ) = c2,

where
∫
f(y)dy = 1; c1 and c2 are known constants. Although this entropy esti-

mation in quantile regression has already been proposed and it has been extended
by Tu, Wang, and Sun [1] to estimate quantile regression regarding the quantile
as an unknown parameter, it still adheres to the strong ALD assumption on the
entropy measures. Thus, it is greatly desirable to expand the flexibility of entropy
estimation by relaxing the ALD in the objective function. Moreover, the appro-
priate prior for quantile parameter is what we are also concerned and it might be
difficult to specify. If we specify an inappropriate prior for this parameter, it would
affect the rest of parameters in the model. Thus, this motivates us to develop an
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entropy estimation for quantile regression model without assuming the ALD. Our
purpose is to estimate the quantile parameter by taking expectations of random
variables with M support value hm. Thus, quantile parameter can be expressed
as entropy by

τ =
∑
m

gmhm, (1.2)

where gm is the M -dimensional unknown probability of quantile parameter and
hm is the M -dimensional support for τ .
As we mentioned above, the Generalized Maximum Entropy (GME) estimator of
Golan et al. [2] is employed as an alternative estimator for quantile regression with
unknown quantile level. In this study, we will show the performance of our method
by comparing with Least Square (LS) and Maximum Likelihood (ML) estimators.
Finally, our method is applied to real data to analyse the effect of oil price on the
stock markets of Thailand, Indonesia, and the Philippines which are the emerging
stock markets in Asia.

The rest of this paper is organized as follows. The quantile regression with
unknown quantile model is presented in Section 2. In Section 3, the parameter
estimation is explained. Section 4 is on simulation studies to compare the per-
formance of the various methods under consideration. In Section 5 we use real
data for empirical estimation of quantile regression with unknown quantile model.
Final remarks are provided in Section 6.

2 Quantile Regression with Unknown Quantile
Model

To explain the basic concept of quantile regression, consider the following
model:

yt = x′i,tβ
τ
i + εt ; i = 1, · · · , k and j = 1, · · · , n (2.1)

where x′i,t is n× k independent variables, βτi is 1× k vector of coefficients at given
τ . Note that unlike the traditional quantile regression, we consider the quantile τ
as an unknown parameter and estimate it jointly with other parameters. εt is the
error which does not assume any distributions. Thus, τ th(0 < τ < 1) conditional
quantile of yt given x′i,t is simply

Qy(τ |x) = x′i,tβ
τ
i (2.2)

In this study, we aim to relax the assumption in the conventional quantile regres-
sion by regarding τ as the unknown parameter. In the traditional estimation of
quantile regression model, the focus is on using ordinary least squares (OLS) with
a general technique for estimating families of conditional quantile functions (see,
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[3]). The τ specific coefficient vector βτ can be estimated by minimizing the loss
function:

βτ = arg min
β(τ)

n∑
j=1

ρτ (yt − xi,tβτi ), (2.3)

where ρτ (L) = L (τ − I(L < 0)) is called the check function. L is a loss function
which is corresponding to yt−xi,tβτi and I(·) is the indicator function. In addition,
the quantile regression model can be estimated by maximizing the likelihood based
on the asymmetric Laplace density (ALD):

L(βτ , σ |y ) =
τ(1− τ)

σ
exp

(
−

T∑
t=1

ρτ
(yt − xi,tβτi )

σ

)
, (2.4)

where σ is a nuisance parameter. Note that, the maximization of the likelihood
in Eq.(2.4) with respect to the parameter βτ is equivalent to the minimization of
the objective function in Eq.(2.3). (see, [4]).

3 Parameter Estimation

In this section, we discuss an estimation method for quantile regression with
unknown quantile model based on the primal generalized entropy estimation (GME).
This estimator transforms the estimated parameter of the model to be described by
a discrete probability distribution defined on a certain interval or support bound.
We, then maximize these entropy probabilities of the unknown parameters and er-
ror term subject to the constraints imposed by the data and subsequently recover
estimates of these unknown parameters. Mittelhammer et al. [5] suggested that
GME estimation is the alternative way to avoid making any parametric assump-
tions.
Let us discuss the concept about the entropy approach. The maximum entropy
concept consists of inferring the probability distribution that maximizes informa-
tion entropy given a set of various constraints. Let pk be a proper probabilities of
the random variable with possible k outcomes. Shannon [6] developed his infor-
mation criteria and proposed a classical entropy, that is

H(p) = −
K∑
k=1

pk log pk, (3.1)

where
K∑
k=1

pk = 1. The entropy measures the uncertainty of a distribution and

reaches a maximum when pk =
1

K
.

This entropy concept is applied in the present model by generalizing the maximum
entropy as the inverse problem in the quantile regression framework. Following
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Jaynes [7] on the maximum entropy principle; out of all those distributions consis-
tent with the data-evidence, we choose the one that maximizes Eq.(3.1) and thus
maximizes the missing information.
In this maximization problem, we extend the estimation steps which were pre-
sented in Pipitpojanakarn. et al. [8]. For the point estimates βτ , one can
view these unknown parameters as expectations of random variables with M
support value for each estimated parameter value (k), Z = [z1, · · · , zK ] where
zk = [zk1, · · · , zkm] for all k = 1, · · · ,K. Note that z and z denote the lower
bound and upper bound, respectively, of each support zk. Thus parameter βi can
be expressed as

βτi =


z11 0 z1m
z21 0 z2m
...

...
...

zk1 0 zkm

 ·

p
11

0 p1m
p
21

0 p2m
...

...
...

p
k1

0 pkm

 (3.2)

βτk =
∑
m

pkmzkm, (3.3)

where pkm are the M dimensional estimated probability distribution defined on
the set zkm. Next, similar to the above expression, εt is also constructed as the
mean value of some random variable v. Each εt is assumed to be a random vector
with finite and discrete random variable with M support value, vt = [vt1,··· ,vtM ].
Let wt be an M dimension proper probability weights defined on the set vt such
that

βτi =


v11 0 v1M
v21 0 v2M
...

...
...

vT1 0 vTM

 ·

w11 0 w1M

w21 0 w2M

...
...

...
wT1 0 wTM

 (3.4)

εt = ρτ
∑
m

vtmwtm. (3.5)

Note that the study considers the quantile level as an unknown parameter, there-
fore,

τ =
∑
m

gmhm, (3.6)

thereby obtaining

pτ (εt) = εt

(∑
m

gmhm − I(εt < 0)

)
(3.7)
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Using the reparameterized unknowns βτk , τ , and εt, one can rewrite equation as

Yt =
∑
m

p1mz1m(x′1,t) + · · ·+
∑
m

pKmzKm(x′K,t)

+
∑
m

vtmwtm

(∑
m

gmhm − I(
∑
m

vtmwtm < 0)

)
(3.8)

where the vector support zkm, vtm and hm are convex set that is symmetric around
zero with 2 ≤M <∞.Then, the Generalized Maximum Entropy (GME) estimator
for this model can be constructed as

H(p, w, g) = arg max
p,w,g

{H(p) +H(w) +H(g)}

≡ −
∑
k

∑
m

pkm log pkm −
∑
t

∑
m

wtm logwtm −
∑
m

gm log gm (3.9)

subject to

Yt =
∑
m

p1mz1m(x′1,t) + · · ·+
∑
m

pKmzKm(x′K,t)

+
∑
m

vtmwtm

(∑
m

gmhm − I(
∑
m

vtmwtm < 0)

)
(3.10)∑

m

pkm =1,
∑
m

wtm = 1,
∑
m

gm = 1, (3.11)

where pkm, wtm and gm are on the interval [0, 1]. For simple explanation, suppose
we have one independent variable (k = 1), this optimization problem can be solved
using the Lagrangian method which takes the form of

L =H(p, w, g) + λ′1

(
Yt −

∑
m

p1mz1m(x′1,t)−
∑
m

vtmwtm

(∑
m

gmhm−

I(
∑
m

wtmwtm<0)

))
+a′(1−

∑
m

p1m)+b′(1−
∑
m

wtm)+c′(1−
∑
m

gm) (3.12)

where λ′1, a
′, b′ and c′ are the vectors of Lagrangian multipliers corresponding to

the number of constraints. Thus, the resulting first-order conditions are

∂L

∂p1m
=− 1− log(p1m)−

∑
m

λ1mz1m(x′1,t)− at = 0, (3.13)

∂L

∂wtm
=− 1− log(wtm)−

∑
m

λ1mvtm

(∑
m

gmhm − I(
∑
m

vtmwtm < 0)

)
×

I(
∑
m

vtm < 0)− bt = 0, (3.14)
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∂L

∂gm
=− 1− log(gm)− summλ1mwtmvtm(

∑
m

hm)− cm = 0, (3.15)

∂L

∂λ1
=Yt−

∑
m

p1mz1m(x′1,t)−
∑
m

vtmwtm

(∑
m

gmhm − I(
∑
m

wtmwtm < 0)

)
=0,

(3.16)

∂L

∂ai
=1−

∑
m

p1m = 0, (3.17)

∂L

∂bi
=1−

∑
m

w1m = 0, (3.18)

∂L

∂ci
=1−

∑
m

hm = 0. (3.19)

Thus, we have

p1m = exp

{
−at − 1−

∑
m

λ1mz1m(x′1,t)

}
, (3.20)

wt, = exp

{
−bt − 1−

∑
m

λ1mvtm

(∑
m

gmhm

−I(
∑
m

vtmwtm < 0)

)
I(
∑
m

vtm < 0)

}
(3.21)

and

gm = exp

{
−cm − 1−

∑
m

λ1mwtmvtm(
∑
m

hm)

}
. (3.22)

Due to
∑
m

pkm = 1,
∑
m

wtm = 1,
∑
m

gm = 1, and exp{−at − 1}, exp{−bt − 1},

exp{−cm − 1} are constant, thus by solving the first order conditions, we yield

p1m =

exp

{
−z1m

∑
m
λ1mx

′
1,t

}
∑
m

exp

{
−z1m

∑
m
λ1m(x′1,t)

} , (3.23)

wtm =
exp

{∑
m
λ1mvtm

(∑
m
gmhm−I(

∑
m
vtmwtm<0)

)
I(
∑
m
vtm<0)

}
∑
m

exp

{∑
m
λ1mvtm

(∑
m
gmhm−I(

∑
m
vtmwtm<0)

)
I(
∑
m
vtm<0)

} (3.24)

gm =

exp

{∑
m
λ1mwtmvtm(

∑
m
hm)

}
∑
m

exp

{∑
m
λ1mwtmvtm(

∑
m
hm)

} (3.25)
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4 Simulation Study

In this section, a simulation study was conducted to evaluate performance
and accuracy of GME estimation in qunatile regression with unknown quantile
and compare it with the classical methods, namely Least Squares (LS), Maximum
Likelihood estimation (MLE). We simulated the data from the quantile regression
model where the error term is assumed to have asymmetric Laplace distribution
(ALD), ετi,t ∼ ALD(0, 1). To this end, we consider the quantile regression equation
as follows:

y1,t = βτ0 + βτ1x1,t + ετ1,t, (4.1)

where βτ0 = 2 and βτ1 = 3. We simulated the independent variables x1,t from
N(0, 1).
We consider two scenarios as follows: 1. Case 1: T = 20, 50, 100.
2. Case 2: τ = 0.5, 0.25, 0.75
Our interest is on the bias of the parameters which are obtained from three esti-
mation techniques. We carry out all the experiments with 100 replications.
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Figure 1: Comparison of the Bias of parameters at quantile 0.5



Maximum Entropy Quantile Regression with Unknown Quantile 115

 

 

 

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

β
0

B
ia

s

GME

MLE

LS
0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

β
1

B
ia

s

GME

MLE

LS

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

τ = 0.25

size

B
ia

s

GME

MLE

LS

Figure 2: Comparison of the Bias of parameters at quantile 0.25
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Figure 3: Comparison of the Bias of parameters at quantile 0.75

Figures 1-3 report the results of the Monte Carlo simulation study performed
with samples of different sizes, and quantile levels. In all cases we compute the bias
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with respect to β0, β1 and τ . We observe that our proposed model can perform
well through this simulation study. From these three figures, we observe that the
overall bias of GME estimation of parameters is likely to be low and tends to
approach zero for large observation. Thus, this indicates that GME performs well
with accuracy and asymptotically unbiased in this simulation study.
By comparing the GME and two other estimations at all quantile levels, we note
that when the quantile level is assumed to be located at the median τ = 0.5,
the bias of the GME is higher than those of MLE and LS. However, the bias of
the GME generally gets lower than those of MLE and LS when the true quantile
parameter is assumed to deviate from median, like when τ = 0.25 and τ = 0.75.
This result suggests that when the asymmetric assumption of the error exists
as true, the GME estimation has a smaller risk and is more precise than those
conventional methods.
In summary, the entropy approach to quantile regression modeling is effective and
it generally outperforms MLE and LS when there are considerably biased estimates
at the extreme quantile levels.

5 Real Data Application

5.1 Data Description

The time series data used in this paper include stock indexes of Thailand
(SET), Indonesia (IDX), and Philippines (PSE) and Brent oil price (OIL). These
data are collected from Thomson Reuters datastream.

Table 1: Descriptive statistics

SET IDX PHE OIL
Mean 0.0001 0.0001 0.0002 −0.0001
Median 0.0003 0.0005 0.0001 0
Maximum 0.0328 0.0331 0.0306 0.0483
Minimum −0.0482 −0.0476 −0.0568 −0.0475
Std. Dev. 0.0055 0.0059 0.0061 0.0094
Skewness −0.6962 −0.649 −0.84 −0.0245
Kurtosis 11.0753 11.2608 9.6702 6.7412
Jarque-Bera 6488.317 6756.549 4571.655 1352.652
Probability 0 0 0 0
ADF-test −45.6570∗∗∗ −43.2178∗∗∗ −42.7283∗∗∗ −51.1885∗∗∗

Source: Calculation
Note :∗∗∗ is significant at 1% level

Our time series quantile regression model takes the following form:

SETt = β0 + β1OILt + εt,

IDXt = β0 + β1OILt + εt,
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PHPt = β0 + β1OILt + εt,

The daily data is collected from January, 2, 2008 to June, 30, 2017. The data is
transformed to be log-return. Table 1 gives the descriptive statistics for the series.

5.2 Results

In this section, we illustrate applicability of our proposed model and methods
to the oil price and stock indexes data described in previous section. In this
application, the relationship is between oil price and Thailand, Indonesia, and
Philippines stock indexes.

Table 2: Estimates of the parameters from quantile regression with un-
known quantile model.

Parameter SET IDX PSE
β0 0.0011∗∗∗ 0.0005∗ −0.0011∗∗∗

−0.0002 −0.0002 −0.0001
β1 0.0466∗∗∗ −0.0041 −0.0992∗∗∗

−0.0177 −0.0178 −0.0271
τ 0.5722∗∗∗ 0.5046∗∗∗ 0.3631∗∗∗

−0.0078 −0.0078 −0.0095
SSE of Reg 0.0692 0.082 0.0872

SSE of QReg 0.0625 0.0819 0.0871

Source : Calculation
Note “∗”, “∗∗”, and “∗∗∗” are significant at 1%, 5%, and 10% levels and their
standard errors (in parentheses)

Table 2, reports the estimated coefficients and standard errors, as well as the
sum of squared errors obtained through our proposed model (QReg) and conven-
tional regression model (Reg). The results reveal that the appropriate values for
explaining the effect of oil price on SET, IDX, and PSE are 0.5722, 5046, and
0.3631, respectively. Then, in making a comparison of model fit, we consider the
Sum of Squared errors (SSE) to compare the performance of our model with the
conventional linear regression model. The results in Table 2 reveal that the SSE
of QReg is relatively low compared to linear regression. Therefore, from this ap-
plication study, we can conclude that quantile regression with unknown quantile
could be the appropriate alternative model to linear regression.
In the economic point of view, the results show that oil price has a positive and
significant effect on SET index but it has a negative and significant effect on PSE
index. For IDX index, we cannot obtain the significant effect of oil on IDX index.
Additionally, Figure 1 is constructed to plot the fitted regression lines obtained
from our proposed model and linear regression. We can observe that if the linear
regression is employed to study the effect of oil price on stock markets, it will not
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provide the accurate result and the effect would be underestimated since the slope
of fitted lines of linear regression ( red line) is less steep than the slope of fitted
lines of quantile linear regression with unknown quantile ( blue dotted line).
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6 Final Remarks

In this paper, we consider the quantile level in quantile regression as the es-
timated parameter. This is because researchers often face difficulty selecting an
appropriate quantile level if not estimating a model using all of the various quan-
tile levels. Thus, we consider the quantile level to be an unknown parameter and
estimate it jointly with other parameters in the model. This quantile model with
unknown quantile will provide more flexibility to explore the relationship between
dependent and independent variables in the model. We use the primal generalized
maximum entropy (GME) developed here to estimate the unknown parameters
in the quantile regression model which includes quantile as one of the unknown
parameters.
Although the GME estimation has already been proposed. It still adheres to
the strong Asymmetric Laplace Distribution (ALD) assumption on the entropy
measures. Thus, it is greatly desirable to expand the flexibility of entropy esti-
mation by relaxing the ALD assumption in the objective function. Thus, another
main contribution of this study is to develop an entropy estimation for quantile
regression model without assuming the ALD. In this study, both simulation and
application studies are employed to measure the performance of our estimation.
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In the simulation study, the entropy estimation is compared for performance with
the conventional estimations, Ordinary Least Squares, and Maximum likelihood
methods. The results show that entropy estimation not only performs well but
outperforms those conventional estimations, particularly when there exists in the
model an asymmetric relation between dependent and independent variables.
We subsequently apply our model to investigate the relationship between oil price
and three emerging stock markets in ASEAN consisting Thailand, Indonesia, and
the Philippines. In this application, it is interesting to compare the proposed
model and the linear regression. Therefore, the SSE method is conducted to com-
pare the performance of our model with linear regression and numerical evidence
shows that the proposed model outperforms the linear regression model.
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