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Abstract : As large amount of software repositories are available, the quantifi-
cation of code change process is made possible and software engineering process
had been paced up over a period of time. These repositories which include code
change process information, bugs, and details about developers are abundantly
used by researchers to fetch information which are important for improving soft-
ware quality. We presume that a complex code change procedure incompatibly
affects software quality. Code change process affects the quality of software and
hence the software cost is affected as well. We developed a system in which data
derived from the change history of each software release version is taken under
consideration. This analysis shows that history change complexity metrics are
prominent in predicting bugs in the software system in comparison to classical
predictors of faults i.e., prior alterations, prior defects etc. Source code change
data of software releases has been fetched from github repository for over a fifteen
years of time, which includes 151 releases. History complexity metrics for the code
change and bugs registered are used for predicting the release time and future
bugs in the software release. To the data statistical multilinear regression model
is utilized in predicting the software release time and estimated bugs of a software
based on the history complexity metric in various releases. The performance of
the model had been compared using performance R2, RMSE and MAE values.
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1 Introduction

The modification in the code is carried out by the developer due to introduc-
tion of new features, modification in existing feature or due to fixing bugs. The
changes in the code due to these reasons make source code complex and thus lead-
ing to the introduction of new faults in the system. Bug prediction in software
is demanding and ever growing field of research, it identifies software modules
which are more prone to have bugs before testing schedule, to reduce the testing
period and to optimally allot the resources so as to reduce the total expenditure of
project. The modules which are more prone to have bugs are tested exhaustively
to produce high quality bug free software with low cost and for better quality
assurance, distinctive and reliable bug prediction techniques are to be developed.
It is also beneficial for software administrators as it supports in planning project
quantitatively (Ekanayake et al. [1]).

In the closed source software, release times are fixed at the inception of the
project and further versions are released at the different phases depending upon
the bugs fixed and the introduction of new components according to necessities.
In the open source software source codes are changed frequently with each release
to fix bugs and to accomplish the objectives that concerns the users. Project
administrators have a due date to be followed to release software on time with
profitable financial schemes. (Gyimothy et al. [2]) estimated the effect of object
oriented metrics in predicting bug, they studied the Mozilla software system which
is open source software to reach to their conclusion. However with the growth of
software, uncontrollable complexity grows in it which consequently influence the
release schedule of the project. (Moser et al. [3]) conducted study to conclude
that bug prediction is better carried out using process metrics than code metrics.
(Radjenovic et al. [4]) in their review concluded that object oriented metrics are
better predictor than process metrics and code metrics.

Entropy is basis of the information theory which considers probabilistic ap-
proach and focused primarily around measuring the uncertainty in the framework.
In each new software release latest features are implemented to satisfy consumer
demand with which project grows and hence bugs are introduced in the system
with increase in entropy due to continuous code change. Unpredictability about
code change can be measured utilizing entropy based metrics as done by Hassan
[5]. (Hassan [5]) applied information theoretic principle to set forth the theory
of complexity of code change. He applied Shannon's [6] information theory of
entropy to evaluate the complexity of code change. He further assessed that His-
tory Complexity Metric (HCM) based on entropy theory can predict bugs more
precisely.

We developed a system in which data derived from the change history of each
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software release version is taken under consideration. This analysis shows that
history change complexity metrics are better predictors of fault in the software
system in comparison to other well known historical predictors of faults i.e., prior
modifications and prior faults. Source code change data of software releases has
been fetched from github repository for over a fifteen years of time, which includes
151 releases. Entropy based history complexity metrics for the code change and
bugs registered are used for predicting the release time and future bugs in the soft-
ware release. To the data, after processing multi-linear regression model is applied
for predicting the release time and the estimated bugs of a software based on the
history complexity metric in various releases. The novel approach of predicting
release time and bugs employing entropy based HCM is used. The performance of
the model had been compared using performance R2, RMSE and MAE values.

2 Literature Review

Software organization have reduced the time between the new releases to meet
up the requirement of the customer and inspite of releasing the full fledged release
at once which would be containing the latest features and where all bugs would be
fixed usually after 12 months or more, have started to release a software versions
with only new features and few immediate bug fixes. With this the organizations
can include 100s of new improvements and enhancements in short period of over 2
months. (Xuan et al. [7]) applied BMA (Backbone based Multilevel Algorithm),
it provides optimal result by reducing the scale of subjected problem. (Beck and
Andres [8]) claimed that it is beneficial for both the user and organization if re-
lease cycle of software is short, it made it possible to get the feedback faster about
new improvements and fixed bugs and to implementation becomes effective in new
release. (Gyimothy et al. [2]) implement object oriented code metrics as proposed
by Chidamberer and Kemerer for predicting faults vulnerability, (Nagappan and
Ball [9]) predicted system fault quantity utilizing code metrics. Various researchers
determined that the fault potential can be predicted utilizing prior modification
in the software (D'Ambros et al. [10]; Arisholm and Braind [11]; Graves et al.
[12]; Khoshgoftaar et al. [13]). (D'Ambros et al. [14]) compared bug predic-
tion methods extensively and set a benchmark in fault prediction. (Bagnall et
al. [15]) proved the problem of optimal next release as N-P Hard in his work and
coined the term Next Release Problem. (Garey et al. [16]) estimated that required
number of next releases can never be estimated exactly through any algorithm
in polynomial time. (Cheng et al. [17]) estimated that with the ever increasing
user requirements, new releases of product with optimized cost is difficult to be
decided. (Hassan [5] and D'Ambros [10]), has proposed bug prediction using com-
plexity of code changes by employing linear regression technique. (Li et al. [18])
analyzed that effect on the quality of software by shifting to fast software release
method. They compared the effective quality in terms of bugs fixed in fast release
and usual release methods. (Hassan [5]) utilized the code change metrics and con-
cluded that rapid code change affect the quality of software, he has proposed a



94 Thai J. Math. (Special Issue, 2017)/ T. Parveen and H. D. Arora

method to predict bugs utilizing complexity of code changes, he also estimated
that complexity metrics are better predictors than the fault potential unlike other
history fault predictor such as prior changes and prior faults, he used code change
data of six open source software to validate the hypothesis. The paper is orga-
nized in 5 section, Section 2 illustrates the related work. Section 3 describes the
data collection method, its processing and code change metric. It illustrates the
basic model of history complexity metric and its calculation method. Section 4
describes methodology and displays calculated history complexity metrics. Section
5 discusses results and paper is hence concluded.

3 Code Change Metric

Shannon [6] (1948) introduced the concept of entropy also known as measure of
uncertainty in information theory attributed to his research work A mathematical
theory of communication , popularly known as Shannon's entropy was described
by him as:

Hn(P ) = −
n∑

i=1

(Pi ∗ log2Pi) (3.1)

Whereas
∑n

i=1 Pi = 1 and Pi ≥ 0
The probability Pi is number alteration in ith file in a particular time period

by the total number of changes in all the files in considered period of time. Entropy
measure as defined by Shannon is non-negative, permutationally symmetric and
is additive. Also it is continuous in 0 < Pi < 1. Entropy is maximum when all
events are equally likely to occur i.e., Pi = 1

n ,∀i ∈ 1, 2, 3, ..., n, while when each
event has maximum probability of occurrence i.e., Pi = 1 and ∀i 6= m, Pm = 0
then the entropy is minimum. As the size of each file differ in software systems,
Shannons Entropy Hn measure is normalized such that0 ≤ Hn ≤ 1 enabling the
comparison of entropy measure of distributions of variant sizes, over different time
period.

Hn(P ) =
1

(Maximum entropy for distribution)
∗Hn(P )

=
1

log2(n)
∗Hn(P )

= − 1

log2(n)
∗

n∑
i=1

(Pi ∗ log2Pi)

= −
n∑

i=1

(Pi ∗ lognPi) (3.2)

where Pi ≥ 0 ∀i ∈ 1, 2, 3, , n and
∑n

i=1 Pi = 1
To calculate the complexity of code change in set of files for a specific period

of time (year, half year, month etc.,) probability of each file is calculated and
thereafter entropy is calculated using Shannon's entropy measure.
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f1 �� � 0.4
f2 � ��� � 0.2
f3 � � 0.2
f4 � �� 0.2

file/time t1 t2 t3
Table 1: Changes in files with respect to time

Pi is the probability due to change in the ith file during the defined time duration.
Lets consider that in a system with 4 files total changes occurred are 13 which is
divided over 3 time periods as shown in figure 1. For the time period t1 there are
total 5 changes across 4 files. The probability of change of files f1, f2, f3 and f4
would be 2

5 (= 0.4), 1
5 (= 0.2), 2

5 (= 0.2) and 1
5 (= 0.2) respectively. The Shannons

entropy for time period t1 is calculated as: =-(0.4log2 0.4+0.2 log2 0.2+0.2 log2

0.2+0.2 log2 0.2) = 1.9219576
Now using equation (2) entropy could be normalized, the value of entropy after

normalization for time period t1 is 1.9219576
log24

= 0.9609788

3.1 History Complexity Metric

History Complexity Metric(HCM) in a system is a measure for the complex-
ity of changes assigned to each file in the software system. History complexity
metric are calculated utilizing the entropy concept in code change process, which
estimates the complexity of code change in each file of the release versions. To
compute HCM the History Complexity Period Factor HCPFi(j) for file during
time period is calculated. For period i and entropy Hi with set of files, Fi altered
with probability Pj where j ∈ Fi here HCPFi for file j at time period i is

HCPFi(j) =

{
CijHi j ∈ Fi

0 otherwise
(3.3)

where Hi represents entropy of changes during period i and Cij is the contribution
of entropy for period i assigned to file j, here we are considering HCPF variants
using varying weighting factors Cij . Which are
HCM1

HCPFi with Cij =1 it assigns full complexity of each modified file i.e., equal
weights for all files during ith period
HCM2

HCPFi with Cij = Pj where Pj is probability of changes in file j w.r.t to mod-
ification in ith period.
HCM3

HCPFi with Cij = 1/Fi where Fi is changed file in ith period.

For example HCPF calculated for file f1 in time period t1 for data as shown in
figure 1 , will be different for three HCM versions, for HCM1 the HCPF would
be 10.9609788=0.9609788, for HCM2 the HCPF would be 0.40.9609788=0.38439152
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and for HCM3 the HCPF is 140.9609788=0.2402447. History complexity metric
for a file over a period p,,q is represented as

HCMp,....,q(j) =
∑

i∈p,...,q

HCPFi(j) (3.4)

History complexity metrics imply that complexity of file over the time keep on
increasing due to the modifications in the files, HCM for subsystem S over evo-
lution period p,q is given as sum of HCM of all file:

HCMp,....,q(S) =
∑
i∈S

HCMp,....,q(j) (3.5)

The changes in code of open source software are random due to positioning of
developers at various different locations and thus code changes and bug fixation
are frequent.

3.2 Software Release Data

Bugzilla [19] (1998) is a world's leading free bug tracking system software, so
different organizations uses Bugzilla, its website had listed 136 different companies
which are using public Bugzilla installation and utilizing its bug tracking feature,
it has begun in September, 1998 with its first release version 2.0 has so far has
more than 150 releases

Figure 1: Data Processing Steps

Data has been prepared according to the following rules:
Step1: Release date of each software versions are noted
Step2: All logs from each release are extracted and arranged with date of change.
Step3: Changes are noted according to new feature/improvement/modification.
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Step4: Total changes are recorded.
Step5: Bugs are recorded from each release.
Step6: Changes are arranged monthly and thus history complexity metric (HCM)
calculated.
Step7: Time of all releases is counted in months.

The following figure 2 represents complete data in graphical form, it includes
complexity of code change, time of release and bugs in each software release

Figure 2: Software Release Data

4 Methodology

In this study bug prediction and software release time prediction model are de-
veloped utilizing history complexity metrics HCM1, HCM2 and HCM3 which
are calculated as explained in section 3. Regression analysis is used to establish
the predicted value of a dependent variable using independent variable and value
of regression coefficients which is obtained through the multiple linear regression
method by using software such as SPSS. The prediction model is built using the
Multiple Linear Regression[20] whereas the HCM metrics are used a predictors in
the model, to predict bugs and release time in months, the prediction is carried
out in two stages, for Bugs(p0) prediction, bugs are taken as dependent variable
while HCM(q0) and Time(q1) are taken as independent variables. For predicting
Time (y0), time is taken as independent variable whereas HCM (x0) and Bugs
(x1) are kept as independent variable

y0 = a0 + a1x0 + a2x1 (4.1)

p0 = b0 + b1q0 + b2q1 (4.2)
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In equation 4.1,y0, x0 and x1 represents time, HCM and bugs respectively,
where a0, a1 and a2 are coefficients of regressions and in equation 4.2, p0 , q0
and q1 represents Bugs, HCM and time respectively, where b0, b1 and b2 are
coefficients of regressions, values of regression coefficients can be computed by
applying multiple linear regression method using SPSS software, after estimating
the values of regression coefficients the release time of software and the bugs can
be predicted by putting the values of regression coefficients in equation 4.1 and
4.2.

Here Table 2, represents the value of HCM1, HCM2 and HCM3 computed
using the method explained in section 3, bugs detected, release time in months
and total changes in files. These HCM1, HCM2 and HCM3 values are used
in equation 4.1 and 4.2 along with Bugs and Time to predict the bugs and time
for future release of the software.

Total changes HCM1 HCM2 HCM3 Bug Time
673 7.288517 2.228849 2.235531 62 2.248006
286 2.335229 0.499643 0.405914 22 2.726052
1626 8.931459 3.403958 3.409568 73 2.726317
774 10.07652 3.054259 2.892135 77 3.930522
728 4.034633 0.901954 0.721361 36 2.467219
911 6.545516 1.698779 1.489059 52 3.303372
1542 8.360617 2.31133 2.166155 68 2.812483
302 3.296621 0.804766 0.673605 26 3.421996
2418 10.19242 2.522646 3.072282 73 5.074924
2331 3.539719 0.786362 0.39374 30 3.0589
943 5.795435 1.374203 1.168815 46 3.317826
576 6.463577 1.593775 1.502074 54 2.5627
413 3.453316 0.886149 0.821803 36 1.143094
382 5.178797 1.320193 1.209627 41 3.335681
1833 5.30215 1.411558 1.222241 48 1.895229
234 1.757591 0.309172 0.244562 25 0.663437
500 2.324726 0.366369 0.243563 28 1.080757
898 5.361164 1.27312 0.987591 37 4.918213
1254 5.252608 1.250233 1.111551 42 3.337562
827 7.040074 1.978117 1.917666 59 2.443105
342 1.629479 0.257957 0.179859 24 0.660172
734 5.377818 1.300024 1.257327 45 2.803602
891 5.464644 1.549831 1.272447 45 3.007247
1353 4.795026 1.066377 0.883691 46 1.412296
850 6.447155 1.479778 1.294096 54 2.461565
1135 1.570579 0.143268 0.072186 22 1.128679
334 1.645946 0.214263 0.136435 22 1.1306

43351 1.430351 0.583338 0.569174 16 2.400841
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323 4.038138 0.728585 0.598708 37 2.265876
1506 3.925886 0.912854 0.801948 39 1.356571
509 2.552273 0.406958 0.323325 31 0.750836
210 1.939635 0.468388 0.461211 17 3.286693
312 1.426524 0.248243 0.136561 18 1.762875
1926 7.066981 1.844892 1.491319 60 2.275931
600 2.385077 2.385077 2.385077 19 3.600195
277 3.598072 0.86116 0.711607 29 3.328964
4826 8.673146 2.457049 2.164203 66 4.029041
917 3.598054 0.727378 0.549816 28 3.731827
379 1.29627 0.213824 0.124172 21 0.785967
1814 8.80902 1.605341 1.334055 68 3.663212
626 2.994401 0.624692 0.434423 25 3.179289
3448 5.583121 1.410737 1.1907 43 3.715279
4319 12.31643 2.737755 2.280997 86 6.102649
2427 4.007161 0.530275 0.132605 37 2.030083
4067 9.005605 2.434392 2.243482 65 4.910387
1595 5.234618 1.299534 1.161461 44 2.799952
1381 2.713428 0.599134 0.477675 28 1.929964
3658 6.489944 1.687377 1.39721 49 3.939824
16478 3.787442 0.687284 0.366428 33 2.763066
150 2.85968 1.140937 1.128091 23 3.511576

42387 2.105117 0.461466 0.363296 14 4.264499
378 2.690757 0.897949 0.868911 20 4.01085

10211 4.153746 1.119975 1.020463 22 6.431751
30974 1.967222 0.483385 0.318992 15 3.723833
191 2 1 1 18 3.0868
189 1.670795 0.365831 0.314746 19 2.071249

34010 2.727063 0.620164 0.39543 29 1.661735
2584 1.200153 0.288872 0.342279 4 5.047161
10891 2.784661 0.321013 0.135769 19 4.281819
137339 2.343654 0.301214 0.084696 17 4.102719
83041 6.349193 0.934531 0.411656 18 11.8928
16151 3.82533 0.64179 0.305632 22 5.75194

Table 2: Representing the computed HCM1, HCM2 and
HCM3 values along with total changes in files, bugs detected and
time in months
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5 Main Results

The result thus obtained are represented in following table, R defines the
correlation between the predicted value and the observed value. It measures the
strength and the direction of the linear relationship between two variables, its value
lies between -1 to 1. The values of R2 obtained for predicted values of bugs and
time are represented in table 3. It is observed that the value of R2 thus obtained
for time using HCM1, HCM2 and HCM3 are equal i.e., 0.977 for each history
complexity metric predictor, thus we can say that each metric is equivalent for
predicting the release time of a software. The R2 value obtained for bugs using
HCM1, HCM2 and HCM3 are 0.997, 0.887 and 0.705 respectively, here we
can clearly estimate that the R2 value for HCM1 is best i.e., 0.997 and thus
we estimate that the history complexity metric HCM1 is better estimator for
predicting the bugs than HCM2 and HCM3.

Bug b0 b1 b2 R R2 Adj. R2

HCM1 13.803 7.674 -3.671 0.998 0.997 0.997
HCM2 19.013 22.170 -2.287 0.887 0.887 0.779
HCM3 21.996 -1.579 20.184 0.839 0.705 0.695

Time a0 a1 a2 R R2 Adj. R2

HCM1 3.659 -0.274 2.127 0.988 0.977 0.976
HCM2 8.251 -0.441 9.864 0.989 0.977 0.977
HCM3 13.971 13.007 -0.641 0.988 0.977 0.976

Table 3: Values of regression coefficients and R-square values ob-
tained w.r.t HCM1, HCM2 and HCM3

Further the performance is compared using Root Mean Square Error (RMSE)
and Mean Absolute Error(MAE). The measures RMSE and MAE are defined
as

RMSE =

√√√√ 1

n

n∑
i=1

(pi − ai)2 (5.1)

MAE =
1

n

n∑
i=1

|pi − ai| (5.2)

Where pi represents the predicted value and ai represents the actual value.

MAE1 MAE2 MAE3 RMSE1 RMSE2 RMSE3

BUG 0.003512 0.023732 0.027426 0.006563 0.497804 0.830838
TIME 0.000237 0.0000409 0.000507 0.002109 0.002785 0.00773

Table 4: Mean absolute error and Root mean square value
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Table 4 represents the result obtained for predicting software release time and
bugs using HCM1, HCM2 and HCM3, where MAE1 is Mean Absolute Error
value for HCM1, MAE2 is Mean Absolute Error value for HCM2 and MAE3

is Mean Absolute Error value for HCM3. In case of bugs, it is noted that for
HCM1 the MAE value is minimum i.e., 0.003512 followed by HCM2(0.023732)
and then HCM3(0.027426) then the RMSE value is minimum i.e., 0.006563
for HCM1 followed by HCM2(0.497804) and then HCM3(0.830838). For
time, it is noted that for HCM2 the MAE value is minimum i.e., 0.0000409
followed by HCM1(0.000237) and then HCM3(0.000507) then the RMSE value
is minimum i.e., 0.002109 for HCM1 followed by HCM2(0.002785) and then
HCM3(0.00773). It is noticed that HCM1 is better metric to predict the bugs
and time for the software releases than HCM2 and HCM3

Table 5, represents the result obtained for predicted bugs and time through
the regression, where PB1 is predicted bugs w.r.t to HCM1, PB2 is predicted
bugs w.r.t to HCM2 and PB3 is predicted bugs w.r.t to HCM3 and PT1 is
predicted time w.r.t HCM1, PT2 is predicted time w.r.t HCM2 and PT3 is
predicted time w.r.t HCM3

PB1 PB2 PB3 PT1 PT2 PT3

61.78225 63.47141 63.70039 2.23334 2.245472 2.216601
21.56811 23.76272 25.82401 2.716369 2.70012 2.697538
72.79942 88.53255 86.71292 2.709173 2.784788 2.736269
77.30381 78.11155 74.42688 3.910522 3.931015 3.881366
35.71064 33.36804 32.66468 2.455949 2.432563 2.41568
52.16473 49.2803 46.94933 3.288178 3.275145 3.244668
68.05168 64.08029 61.45798 2.795873 2.790553 2.751618
26.49851 29.00263 30.17442 3.410323 3.399052 3.390783
74.03275 63.73377 76.27344 5.053309 5.027791 5.040897
29.71007 29.43317 25.10457 3.047423 3.027643 3.000339
46.28624 42.00821 40.43289 3.303462 3.280516 3.256291
54.22799 48.6295 48.36995 2.548559 2.526391 2.503331
36.02191 35.99076 36.74471 1.134199 1.12005 1.106836
41.43179 40.73457 41.20402 3.321991 3.309434 3.292847
47.64017 46.03817 43.72184 1.883268 1.871773 1.842986
24.59969 24.1902 25.77791 0.657082 0.63279 0.62838
27.48348 24.54347 25.12615 1.073219 1.041195 1.033167
37.08004 36.10799 34.24866 4.902265 4.885426 4.863199
41.99821 39.18357 39.22445 3.323787 3.303346 3.286074
59.1415 57.4553 56.9688 2.428468 2.425364 2.397078
23.61655 23.05478 24.47195 0.653966 0.628333 0.623912
44.91694 41.50717 43.00893 2.790377 2.769777 2.756334
44.84905 46.58799 42.99831 2.99366 2.993231 2.959806
45.46163 39.45277 37.62541 1.401534 1.371068 1.347275
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54.46907 46.33087 44.33004 2.447574 2.415613 2.387755
21.45142 19.44485 21.56179 1.121932 1.089016 1.088808
22.02979 21.0188 22.8586 1.123765 1.095195 1.093245
15.72538 26.30434 29.59295 2.392602 2.404834 2.405171
36.47174 29.98186 30.50485 2.254863 2.215761 2.204782
38.91422 36.12541 36.02815 1.346864 1.324088 1.307892
30.45334 26.20565 27.26239 0.743469 0.708538 0.701295
16.45209 21.77382 26.04536 3.27673 3.268921 3.274902
18.02098 20.32371 21.86112 1.755468 1.736911 1.734275
59.95981 54.88285 48.62658 2.26148 2.245675 2.198947
18.76912 63.58073 64.40297 3.589321 3.7383 3.711399
29.17894 30.48158 31.09935 3.31707 3.303104 3.292194
66.04482 64.56648 59.52378 4.0105 4.013515 3.96605
27.7104 26.60085 27.20215 3.719411 3.694888 3.685877
20.57004 21.77142 23.13743 0.779975 0.758968 0.755018
68.43355 46.52268 43.34704 3.644992 3.569583 3.537605
25.03584 25.54402 25.7152 3.168273 3.148048 3.138101
43.18854 41.90338 40.24302 3.700639 3.687122 3.662658
86.78374 66.29197 58.77578 6.077299 6.02146 5.964655
37.09059 26.11895 21.46547 2.019411 1.96317 1.93643
65.41458 62.08211 59.75547 4.890327 4.885635 4.848712
43.81803 41.4963 41.07396 2.786894 2.769734 2.749713
27.40721 27.79804 28.53563 1.920885 1.901925 1.892783
49.4133 47.57908 44.09542 3.923868 3.912912 3.879346
32.71239 27.92272 25.02702 2.751692 2.71645 2.694812
22.77832 36.22684 39.18986 3.50028 3.529166 3.523382
14.17337 19.40961 22.54266 4.253081 4.243267 4.246542
19.6465 29.6963 33.16907 3.999098 4.012302 4.011554
22.18544 29.20604 32.49102 6.415205 6.418567 6.417415
15.07303 21.11528 22.49057 3.713271 3.707272 3.703675
17.64953 34.01707 37.23607 3.077028 3.113474 3.109681
18.79421 22.24455 24.9839 2.063166 2.049715 2.050221
28.49078 28.87414 27.29666 1.652989 1.634804 1.6172
4.291871 13.7536 20.85526 5.035752 5.035099 5.054802
19.38819 16.29576 17.95026 4.26961 4.231043 4.23083
16.61574 16.23799 17.18258 4.091241 4.061225 4.058613
19.33227 12.82119 11.72889 11.86669 11.81507 11.80719
22.11252 20.12934 19.11553 5.736648 5.704573 5.693292

Table 5: Predicted values of Bugs and Time using HCM1,
HCM2 and HCM3
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6 Conclusion

In this paper, History complexity metrics (HCM) as explained in section 3 of
the code change are used for predicting the release time and bugs in the software
release. The software entropy concept follows information theory principal which
has solid mathematical establishment. There are no benchmark study utilizing
software entropy based release time prediction till date however several researcher
have utilized software entropy for predicting bugs in software subsystem [5]. This
study also explains the procedure to calculate the entropy from a code change
in various software releases. Code change process affects the quality of software
and hence the software cost is affected as well. To the data statistical multilinear
regression model is applied to predicting the release time and estimated bugs of
a software using history complexity metric of code change for various software
releases. The extensive data from the Bugzilla software releases is taken for the
study, code changes in several files are recorded which are further used to compute
the Shannon's entropy using which further history complexity metric measure are
calculated, bugs in each release and the release time of software are noted. The
history complexity metric HCM1, HCM2 and HCM3 are calculated further
release time and bugs are predicted using multi linear regression model in SPSS
and the performance of the model had been compared using performance R2

criteria, RMSE and MAE. It is estimated that HCM1 is a better predictor
of bugs than HCM2 and HCM3 and HCM1 is a better predictor of release
time than HCM2 and HCM3. In this study we have used large scale data
extracted from github repository for our study in estimating bugs and release
time of software, in future we are aiming for applying our data to various machine
learning techniques to estimate the future bugs and release time of software. This
study supports in optimizing the cost bear by testing phase of software where
the information theoretic approach of entropy measure is applied to code change
process.
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