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Abstract : In the classical maximum likelihood estimation of stochastic frontier
model, a strong assumption on two error components, namely symmetric noise (Vj)
and the non-negative inefficiency (Uj), are required. This could lead to non-reliable
and erroneous interpretations when we misspecify the probability distribution of
the error components. To overcome this problem, we apply the generalized max-
imum entropy (GME) approach to estimate the stochastic frontier model which
allows us to avoid the need for making an ad hoc assumption about the distribu-
tion of the noise and inefficiency components. In this study, we investigate the
technical efficiency of coffee production using generalized maximum entropy. The
results show that the technical efficiency scores obtained from GME estimator
are much smaller than ones from the maximum likelihood method, even though
the estimated parameters are quite indifferent. In addition, we also find that the
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wider support value of the inefficiency component, the lower score of the estimated
technical efficiency.

Keywords : technical efficiency; coffee output; inefficiency; generalized maximum
entropy.
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1 Introduction

Since Aigner et al. [1] and Meeusen and van den Broeck [2] introduced the
stochastic frontier procedure to estimate the producers’ efficiency and productivity
using parametric econometric techniques, the stochastic frontier approach has been
applied in several areas of study and has grown dramatically. Moreover, the basic
idea of stochastic frontier has been extended in many directions, for instance, while
Aigner et al. [1] and Meeusen and van den Broeck [2] assume the distribution of
the efficiency error to be a half-Normal and an exponential, respectively, later
studies include the truncated Normal and the gamma distributions.

In the past few decades, several papers have developed frameworks for ap-
plying in stochastic frontier model in order to relax the model’s assumptions and
improve the accuracy of estimated parameters of the stochastic frontier model.
For example, Griffin and Steel [3] proposed a semiparametric Bayesian frame-
work for stochastic frontiers analysis and efficiency measurement in order to deal
with practically relevant sample sizes. Kumbhakar and Tsionas [4] employed a
simulated maximum likelihood approach and a stochastic frontier model to esti-
mate the input-oriented technical inefficiency and compare with the results from
output-oriented model. Furthermore, Kumbhakar et al. [5] proposed a new ap-
proach based on local maximum likelihood technique to handle nonparametric
stochastic frontier models. The methods presented to be useful for investigating
the production efficiency.

In addition, Tsionas [6] investigated several kinds of stochastic frontier mod-
els, namely, input-oriented stochastic frontier models, output-oriented stochastic
frontier models, two-tiered stochastic frontier models, latent class models with
gamma distributed one-sided error term, and models with the distribution of the
two-sided error component as stable Paretian and the one-sided error as gamma.
Besides, Chen et al. [7] applied a Bayesian stochastic frontier model to analyze
the technical efficiency of Chinese fossil-fuel electricity generation companies and
Amsler et al. [8] studied a stochastic frontier model that contains environmental
variables such as statistical noise, potentially endogenous regressors, and technical
inefficiency.

Although several techniques have been applied in stochastic frontier model,
there is still no conclusion for the dominant model since stochastic frontiers based
on either maximum likelihood estimation or Bayesian method require ad-hoc as-
sumptions on the distribution of the inefficiency component. Generalized maxi-
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mum entropy approach, on the contrary, eases the restriction by avoiding the need
for making assumptions on the inefficiency component. Generalized maximum
entropy method was first introduced by Golan [9], since then it has proven to be
robust under ill-posed and ill-conditioned problems and particularly suited in this
context given the very large number of parameters to be estimated. Additionally,
generalized maximum entropy provides a potential alternative frontier estimation
approach that combines the strengths of both stochastic frontier analysis and data
envelopment analysis as studied by Campbell et al. [10] who developed an effi-
ciency estimation approach by utilizing generalized maximum entropy and com-
pared with stochastic frontier analysis and data envelopment analysis approaches.
Another example is from Tonini and Pede [11]. They developed a stochastic fron-
tier model accounting for spatial dependency using generalized maximum entropy
estimation approach. This method helps reduce multicollinearity issues among
the exogenous variables since the generalized maximum entropy estimator allows
the inclusion of prior information on parameters by defining support bounds and
adding specific consistency constraints. This paper aims to investigate the techni-
cal efficiency of coffee production using generalized maximum entropy approach.
We also compare the results with those from the maximum likelihood estimator.

The structure of this paper is organized as follows. Section 2 describes our
methodology. The empirical results are presented in Section 3, and the final section
contains conclusion.

2 Methodology

2.1 A Stochastic Frontier Model

The general form of the stochastic frontier model (SFM) can be written as

Yj = f(X ′jkβ) · TEj , j = 1, · · · , N (2.1)

or

lnYj = X ′jkβ + εj , (2.2)

εj = Vj − Uj , (2.3)

where Yj represents the output variable and X ′jk denotes N × K matrix of K
different input quantities. The term β is (N ×K) matrix of estimated parameters
of the input variables. The function f(·) is the functional form of the stochastic
frontier model which is imposed to be the Cobb-Douglas production function. The
term TE is technical efficiency and εj denotes the composite error term which
consists of the noise, Vj , and the inefficiency, Uj . In general, the distribution
assumptions in Eq.(2.3) are normal for Vj and half-normal for the random term Uj .
In this study, since the entropy estimation is proposed to estimate the model, thus
we ignore any distribution assumptions for Vj and Uj . Nevertheless, a restriction
on Uj is given as Uj ∈ [0, a], a < ∞. These two error components are distributed
identically and independently from each other and the regressor.
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In the context of the stochastic frontier model, the technical efficiency (TE) is
defined as the ratio of the observed output to the corresponding frontier output,
conditional on the levels of inputs. Therefore, the technical efficiency or TE is
given by

TEj =
exp{Xjk + Vj − Uj}

exp{Xjk + Vj}
= exp{−Uj} (2.4)

2.2 Estimating Technique: Generalized Maximum Entropy
(GME) Approach

We propose the use of maximum entropy estimator to estimate our unknown
parameters in Eq.(2.2). The advantage and the properties of this estimator are
provided at length in Golan [9] and Mittelhammer, Judge, and Miller [12], and
more recently in Tonini and Pede [11].

In summary, the main advantages of the Generalized maximum entropy es-
timator are as follow: First, it efficiently takes into account all the information
contained in each data point. Second, it is less affected by outlier since we can
give the probability weight between signal and noise in the objective function.
Third, it is a robust estimator as it does not require any assumptions regarding
the error terms. Finally, the Generalized maximum entropy estimator does not
require strong behavioral assumptions on the underlying data generating process.

The maximum entropy concept consists of inferring the probability distribution
that maximizes information entropy given a set of various constraints. Let pk be
a proper probability mass function on a finite set of β. Shannon [13] developed
his information criteria and proposed a classical entropy, that is:

H(p) = −
K∑
k=1

pk log pk (2.5)

where
K∑
k=1

pk = 1. The entropy measures the uncertainty of a distribution and

reaches a maximum when pk is uniformly distributed (Wu [14]). With the stochas-
tic frontier model, the objective entropy function can be written as

H(p, v, w) = H(p) +H(v) +H(w)

=−
K∑
k=1

M∑
m=1

pkm log pkm−
N∑
i=1

Q∑
q=1

viqlog viq−
N∑
i=1

U∑
u=1

wiu logwwiu (2.6)

where pkm, viu, and wiq are the probability of estimated parameters βk, noise Vi,
and inefficiency Ui. The constraint of this objective function is given by

Yj =

K∑
k=1

M∑
m=1

pkmzkmXjk +

M∑
m=1

vjmgjm −
M∑
m=1

wjmhjm, j = 1, · · · , N (2.7)
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and

M∑
m=1

pkm = 1,

M∑
m=1

vkm = 1,

M∑
m=1

wkm = 1. (2.8)

The support values zkm, gtm , and htm, are needed to estimate the unknown pa-
rameters, noise Vj , and inefficiency Uj in the stochastic frontier model. Therefore,

βk =

M∑
m=1

pkmzkm (2.9)

Vj =

M∑
m=1

vtmgtm (2.10)

Uj =

M∑
m=1

wtmhtm (2.11)

Suppose that stochastic frontier model has one regressor k = 1; thus, the
optimization problems from Eq. (2.7) and (2.9) are solved by the Lagrangian
method, which takes the form

L =H(p, v, w) + λ′1

(
Yj −

M∑
m=1

pkmzkmX
k
j −

M∑
m=1

vtmgtm +

M∑
m=1

wtmhtm

)

+ λ′2

(
1−

M∑
m=1

pm

)
+ λ′3

(
1−

M∑
m=1

vm

)
+ λ′4

(
1−

M∑
m=1

wm

)
(2.12)

where λ′i, i = 1, 2, 3, 4 are the vectors of Lagrangian multiplier. The first-order
conditions are:

∂L

∂pm
= − log(pm)−

M∑
m=1

λ1mzmXt − λ2t = 0 (2.13)

∂L

∂vtm
= − log(vtm)−

M∑
m=1

λ1mgtm − λ3t = 0 (2.14)

∂L

∂wtm
= − log(wtm)−

M∑
m=1

λ1mhtm − λ4t = 0 (2.15)

∂L

∂λ1
= Yt −

M∑
m=1

pkmzkmX
k
t −

M∑
m=1

vtmgtm +

M∑
m=1

wtmhtm = 0 (2.16)

∂L

∂λ2
= 1−

M∑
m=1

pm (2.17)

∂L

∂λ3
= 1−

M∑
m=1

vm (2.18)
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∂L

∂λ4
= 1−

M∑
m=1

wm (2.19)

Solving the optimization of this problem, we yield the optimal and unique
solution as in the following:

pm =

exp[−zm
∑
t
λ1Xt]

M∑
m=1

exp[−zm
∑
t
λ1Xt]

(2.20)

vtm =
exp[−λ1gtm]
M∑
m=1

exp[−λ1gtm]

(2.21)

wtm =
exp[−λ1htm]
M∑
m=1

exp[−λ1htm]

(2.22)

In this study, the supports for zkm are given as

[β̂k − 3ak, β̂k − 1.5ak, β̂k, β̂k + 1.5ak, β̂k + 3ak], (2.23)

the supports for htm as

[−3av, − 1.5av, 0, 1.5av, 3av], (2.24)

and the supports for gtm as

[0, .75au, 1.5au, 2.25au, 3au]. (2.25)

We estimate β̂k, ak, av and au by using package frontier in program R [15] for
estimating the parameters in stochastic frontier model via maximum likelihood
approach, where β̂k is the parameter estimation of βk. ak is the standard error of
β̂k, av is the σv of v ∼ N(0, σ2

v) and au is the σu of u ∼ HN(0, σ2
v). We can find

σv and σu from the relationship that

γ =
σu
σv
,

σ2 = σ2
v + σ2

u.

However, if the values of ak, av, and au are too small, we will consider the
values of ak, av, au such that ak is greater than standard error of β̂k, av > σv and
au > σu.

By maximum entropy we can estimate standard error (σβk
)of each βk, k =

0, 1, 2, · · · , 5 by

σβk
=

√√√√ 5∑
m=1

(zkm − βk)
2
pkm.
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3 Empirical Results

In this section, we investigate the technical efficiency of coffee output by using
stochastic frontier model. Then, we compare the results of technical efficiency es-
timated from the maximum likelihood method and generalized maximum entropy
(GME) approach. The data used in this study were collected from 376 coffee
farmers in Chiang Mai, Thailand, by Wiboonpongse et al. [16]. The descriptive
statistics of this data set is presented in Table 1.

Table 1: Descriptive statistics

ln(Y ) ln(L) ln(F )

mean 10.5535 1.9375 6.1697

median 10.5699 1.9081 6.2201

std 0.6999 0.9526 0.666

min 8.4124 −0.5108 4.0518

max 12.4868 4.8097 8.0392

skewness 0.1483 0.1482 −0.0277

kurtosis 2.8955 2.7825 2.8399

obs. 376

Following Wiboonpongse et al. [16], the translog form for coffee production
model can be written as

ln(Yi) =β0 + β1 ln(Li) + β2 ln(Fi) + β3
(ln(Li))

2

2
+ β4

(ln(Fi))
2

2
+ β5(ln(Fi)× ln(Li)) + Vi − Ui

where Yi represents coffee output of farmer i, which depends on fertilizer Fi and
labor Li, respectively. Vi and Ui are statistical noise and inefficiency terms, which
are assumed to be normally and half-normally distributed, respectively.

Table 2 presents the estimated results under the maximum likelihood method.
The overall results show that all of the parameters are statistically significant. We
find that an increase in the number of labors creates a positive impact on the
coffee production and leads to higher output, whereas increasing use of fertilizer
just creates a negative effect on the output. However, the parameter γ, which is
equal to 1.24× 10−5, is close to boundary, indicating that there is no inefficiency,
therefore the estimated technical efficiency (TE) score is equal to 1. This is very
difficult to, or perhaps never, happen in reality. Thus, as an alternative method, we
perform this experiment again using the generalized maximum entropy estimator.
The results are discussed as follows.
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Table 2: Estimated results from Maximum likelihood

Estimate Std. Error z value Pr(> |z|)
β0 8.8033 0.9154 9.6170 2.2× 10−16 ∗ ∗∗
β1 0.74593 0.1839 4.0570 4.972× 10−5 ∗ ∗∗
β2 −0.68577 0.3399 −2.0176 0.0436∗
β3 0.0088 0.0030 2.9111 0.0036 ∗ ∗
β4 0.3179 0.0064 4.9780 6.425× 10−7 ∗ ∗∗
β5 −0.1443 0.0036 −4.0036 6.238× 10−5 ∗ ∗∗
σ2 0.0032 0.0002 13.5876 < 2.2× 10−16 ∗ ∗∗
γ 1.2478× 10−5 0.0006 0.0023 0.9982

Log likelihood 111.4526
RMSE 0.1801

Table 3: Estimated results from Maximum Entropy

model 1 model 2 model 3
Est. coef. std Est. coef. std Est. coef. std

β0 11.5641 0.6434 9.3827 2.0695 9.2848 2.0856
β1 1.3459 0.0040 0.8309 0.4187 0.7670 0.4239
β2 −1.4689 0.5899 −0.6965 0.8485 −0.5791 0.8442
β3 0.2070 0.1898 0.1031 0.2118 0.0939 0.2121
β4 0.4350 0.1905 0.3187 0.2121 0.3007 0.2117
β5 −0.2527 0.1936 −0.1594 0.2118 −0.1485 0.2121

Entropy 1,148.42 1,195.75 1,200.85
RMSE 0.2184 0.1808 0.1803

model 4 model 5
Est. coef. std Est. coef. std

β0 9.3570 2.0740 9.4458 2.0575
β1 0.7619 0.4241 0.7640 0.4240
β2 −0.5250 0.8386 −0.4801 0.8322
β3 0.0925 0.2121 0.0918 0.2121
β4 0.2941 0.2113 0.2897 0.2109
β5 −0.1483 0.2121 −0.1494 0.2121

Entropy 1,202.48 1,203.19
RMSE 0.1804 0.1808

As maximum entropy allows for containing prior information on parameters,
this study makes use of this approach and modifies the support values of the
inefficiency component. Here we have five different support spaces for model 1 to
model 5, and the estimated results of these models are presented in Table 3. From
Eq. (2.23), we define ak = (a0, a1, · · · , a5) = (1, .2, .4, .2, .1, .1) for the model 1 to
model 5 according to the standard error of βk obtained from maximum likelihood
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estimator. In addition, av = au = 0.18 for model 1, av = au = 0.36 for model
2, av = au = 0.54 for model 3, av = au = 0.72 for model 4, and av = au = 0.90
for model 5. In other words, we let model 5 have the widest range of the support
values of inefficiency and model 4 hold the second widest range of the supports,
followed by model 3, 2, and 1, respectively. The estimated coefficients appear to
be stable to different choices of support values except for model 1.

The modified supports of the inefficiency component appear to influence the
estimated technical efficiency (TE) scores, which are displayed in Figure 1 and
Figure 2. We find that the highest TE score is obtained from model 1, followed
by the scores obtained from model 2, 3, and 4, respectively, while the lowest TE
score is measured from model 5. This indicates that the wider support values of
the inefficiency component, the lower score of the estimated technical efficiency.

Additionally, the comparative performance of each model is evaluated through
the root mean square error (RMSE), which is used to assess how effectively the
model can explain the behavior of data set. As presented in Table 3, the lowest
value of RMSE is in model 3, equals to 0.1803, meaning that this model is best
explaining the empirically observed behavior over other models. Moreover, the
RMSE value of model 3 is slightly different from one obtained from using the
maximum likelihood estimator as well as the estimated coefficients (as shown in
Table 2). The technical efficiency scores, however, present a huge difference.
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Figure 1: Technical efficiency calculation
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Figure 2: Technical efficiency from 5 models

4 Conclusions

The Stochastic Frontier Model (SFM) is a linear regression model in which
the error consists of two components, namely the symmetric noise Vj and the
non-negative inefficiency, Uj . In the classical maximum likelihood estimation for
the SFM, the standard maximum likelihood requires ad-hoc assumptions on both
the noise component and the inefficiency component. If the distributions are un-
known and improperly specified, the results obviously are not reliable and lead to
erroneous interpretations.

In this study, the generalized maximum entropy (GME) estimator is consid-
ered as an estimator for SFM in order to avoid the need for making unnecessary
assumptions on both the noise and inefficiency components. Maximum entropy
estimator allows us to estimate a model with a relatively large number of param-
eters and also include prior information on parameters by specifying the support
bounds and adding some useful constraints. The advantage of this prior informa-
tion is that it can help decrease multicollinearity among the exogenous variables
and restrict the estimated parameters to be within the bounds. Hence, in this
study, we employ an entropy based approach for the estimation of the SFM model
on a different range of prior bound information.

We cast the SFM problem into the generalized maximum entropy framework.
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The estimator allows us to express the SFM on a distribution-free basis, making it
easy to work in any patterns of real data analysis. In this paper, we investigate the
technical efficiency of coffee output by using stochastic frontier model. Further-
more, we compare the results of technical efficiency estimated from the maximum
likelihood method and generalized maximum entropy (GME) approach. With the
real data application, we found that the estimated coefficients and RMSE obtained
from the primal GME estimator are quite similar to those obtained from the clas-
sical maximum likelihood estimator. Nevertheless, the technical efficiency scores
from GME approach are much lower than ones obtained from maximum likeli-
hood method. Finally, we also compare the performance of the estimator with
different choices of support bound. The results reveal that the wider the support
values of the inefficiency component, the lower the score of the estimated technical
efficiency.
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