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1 Introduction

For many decades, Capital Asset Pricing Model (CAPM) has become a suc-
cessful model in financial econometrics. The CAPM was proposed by [1] and [2]
based on the pioneer work of Markowitz on modern portfolio diversification the-
ory. CAPM revolves around the linear combination between expected return and
risk. The concept of the CAPM is that an investor can expose him/herself to a
reasonable amount of risk through CAPM equation. CAPM emphasizes that the
formation of the optimal portfolio relies on the investor’s evaluation of the future
prospects of various assets. The formula for calculating the CAPM is as follows:

(rt − rf ) = (rM − rf )β + εt, (1.1)

where rt is return of stock, rf is risk free rate, rM is return of market, and β is the
beta risk parameter. This beta represents a marginal contribution to the risk of the
whole market portfolio of risky assets. This implies that asset nominated with high
beta coefficient bigger than one indicates that the asset’s price is apparently more
volatile than the market. On the contrary, a beta of smaller than 1 implies that
the asset is less volatile than the market. In efficient market application of CAPM,
risk premium and expected return of a security will vary in direct proportion to
the beta coefficient. With this successful model, many applications of CAPM have
been found such as the work of [3], [4], [5], [6], [7], [8].

In general, the least squares method with a normality assumption is applied
to estimate the beta coefficient in the CAPM. Alternatively, in this paper, we
consider a quantile regression using a maximum entropy approach to compute
parameters in CAPM. This is due to prospect theory of [9], which postulates that:
(i) investors exhibit “loss-aversion” in a gain; and (ii) investors exhibit “risk-
seeking” in a loss. On the other hand, investors could prefer lower beta risk after
they have experienced a gain and higher beta risk after they have experienced a
loss. Thus, if we can distinguish different beta risks of the stocks in the market,
it would be a useful information for an investor’s decision. To achieve this aim,
we replace the familiar concept of conditional expectation (mean) by the concept
of conditional median, and more generally, conditional quantiles. A number of
studies on quantile regression, have been undertaken such as [4], [6], [10], [11],
[12].

In a sense, maximum entropy is a nonparametric estimation of probability
density functions, consistent with data and prior information. We relate entropy to
quantitative measure of uncertainty (information) through the beta in the CAPM.
The difference between probability and entropy is this: probability measures are
quantitative measures of chances of occurrences of events but entropy is a measure
of a global uncertainty about a random variable (or stochastic system). Thus, by
using a method of entropy in CAPM model may leads us to a new finding in the
financial risk management field.

This paper is structured as follows. In Section 2 we give a review of quantile
regression model. Section 3 presents the formulation of generalized maximum en-
tropy estimation in quantile regression model. Section 4 presents simulation stud-
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ies of finite sample performance and robustness of our proposed method. While,
Section 5 discusses the results, and Section 6 concludes.

2 Review of Quantile Regression Model

Quantile regression is one of the most successful technique used in statistics
and econometrics. In contrast to the linear regression method which estimates
the conditional mean of the response variable given certain values of the predictor
variables, quantile regression aims at estimating either the conditional median or
other quantiles of the response variable. [13] mentioned that quantile regression
is useful if conditional quantile functions are interested. The main advantage of
quantile regression is that its estimation is more robust against outliers in the re-
sponse measurements, compared to linear regression. Different measures of central
tendency and statistical dispersion can be used to obtain a more comprehensive
analysis of the relationship between variables. The model structure of quantile
regression model can be written as follows:

yt = x′i,tβ
τ
i + εt ; i = 1, ..., k and t = 1, ..., n (2.1)

where yt is dependent variables, x′i,t is (n× k) independent variables, βτi is (1× k)
vector of coefficients and εt is an the error term without any assumed distribution.
Thus, τ th(0 < τ < 1) a conditional quantile of yi given x′i,t is defined as

Qy(τ |x) = x′i,tβ
τ
i (2.2)

Why do we need to employ entropy estimator?
In the estimation context, the classical estimation of quantile regression model

focused on least squares (LS) which is a general technique for estimating families
of conditional quantile functions (see, [14]).The τ specific coefficient vector βτ can
be estimated by minimizing the loss function through check function ρτ (εt) =
εt(τ − I(εt < 0)), thus

β̂τ = arg min
βτ

n∑
j=1

ρτ (yt − xi,tβτi ) (2.3)

The further extended estimation of this model is the Maximum likelihood estima-
tion (MLE). It was investigated by [15] and proved that the MLE outperforms the
competing conventional simplex(BR) of [16] and Lasso Penalized Quantile Regres-
sion (LPQR) of [17]. In this approach, the estimated βτ is obtained by maximizing
the likelihood based on the asymmetric Laplace density (ALD):

L(βτ , σ |y) =
τn(1− τ)

n

σn

(
−

n∑
t=1

ρτ
(yj − xi,tβτi )

σ

)
, (2.4)

where σ is a sigma parameter. Note that, the maximization of the likelihood in
(2.4) with respect to the parameter βτ is equivalent to the minimization of the
objective function in (2.3).
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In contrast to the frequentist approach, an estimation method called Bayesian
approach has been proposed to combine a prior density distribution to the frequen-
tist approach have been proposed. In this direction, recent developments include,
[18] who considered median regression and suggested non-parametric modeling for
the error distribution based on either Plya tree or Dirichlet process priors. [19]
who proposed the ALD and improper uniform priors to produce a proper joint pos-
terior, and [20] who developed a Gibbs sampling method to estimate the quantile
regression model based on a location-scale mixture representation of the ALD. In
this Bayesian estimation, Markov Chain Monte Carlo (MCMC) algorithm is em-
ployed for sampling the conditional posterior distributions of unknown parameters
βτ and this provides a convenient way to incorporate a parameter uncertainty into
predictive inferences. The posterior distribution of βτ can be written as

P (βτ , σ|y) ∝ L(βτ , σ|y)p(βτ , σ), (2.5)

where p(βτ , σ) is prior distribution of βτ and σ. In general, we can choose a prior
distribution depending on our belief to produce a proper conditional posterior.
The further extension of the model estimation is carried out by [21]. The entropy
estimation is proposed to estimate the quantile regression model by defining the
information entropy of the distribution of probabilities as continuous function and
maximizing entropy measure subject to two moment constraints :

fME(y) = arg max
f
−
∫
f(y) ln f(y)dy (2.6)

subject to

E|y − xβτ | = c1,

E(y − xβτ ) = c2,

where f(y) is ALD and
∫
f(y)dy = 1; c1 and c2 are known constants. Even

though the entropy estimation has already been proposed as estimator of quantile
regression, it still adheres to the strong ALD assumption on the entropy measures.
In the other word, the existing approach assumes that the distribution is ALD,
but in practice, it may be different, so we need to make this method more flexible.
Thus, it is greatly desirable to expand the flexibility of entropy estimation by
relaxing the ALD in the objective function. Therefore, in this study, we also
proposed to use a primal maximum entropy approach and add a quantile regression
as a constraint in the Lagrangian method (see, [22]).

3 Methodology

3.1 Generalized Maximum Entropy Estimation

In this study, we applied a maximum entropy estimator to estimate the un-
known parameters in equation (1). As this estimator for quantile regression and
its statistical properties were already discussed, now it is the turn of the concept
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about the entropy approach. The maximum entropy concept consists of inferring
the probability distribution that maximizes information entropy given a set of
various constraints. Let p be a proper probability, [23] developed his information
criteria and proposed a classical entropy as

H(p) = −
K∑
k=1

pk log pk, (3.1)

where
∑K
k=1 pk = 1. The entropy measures the uncertainty of a distribution and

reaches a maximum when pk is uniform distribution [24]. This concept of en-
tropy is applied in the present model by generalizing the maximum entropy as
the inverse problem in the quantile regression framework. Rather than searching
for the point estimates βτi , we can estimate unknown parameter βτk as the ex-
pectation of random variables with M support value zk = [zk1, ..., zkm] and M
dimension pk = [pk1, ..., pkM ] for all k = 1, ...,K. Note that z and z denote the
lower bound and upper bound, respectively, of each support zk. Thus parameter
can be computed by

βτi =


z11 . . . 0 . . . z1m
z21 . . . 0 . . . z2m
...

...
...

. . .
...

zk1 . . . 0 . . . zkm



p11 · · · · · · . . . p1m
p21 · · · · · · . . . p2m
...

...
...

. . .
...

pk1 · · · · · · . . . pkm

 (3.2)

βτk =
∑
m

pkmzkm, (3.3)

where pkm are the M dimensional estimated probability distribution defined on
the set zk,. Then, similar to the above computation, εt is also constructed as the
expectation of random variables with M support value, vt = [vt1, · · · , vTM ], and
M dimension proper probability weights wt = [wt1, · · · , wTM ]. Thus error εt can
be computed by

εt = ρτ


v11 . . . 0 . . . v1M
v21 . . . 0 . . . v2M
...

...
...

. . .
...

vT1 . . . 0 . . . vTM



w11 · · · · · · . . . w1M

w21 · · · · · · . . . w2M

...
...

...
. . .

...
wT1 · · · · · · . . . wTM

 (3.4)

εt = ρτ
∑
m

wtmvtm (3.5)

Using the reparameterized unknowns βτk and εj , one can rewrite equation as

yt =
∑
m

p1mz1m(x′1,t) + · · ·+
∑
m

pKmzKm(x′K,t) + ρτ
∑
m

wtmvtm (3.6)

where the vector support zk and vt are convex set that is symmetric around zero
with 2 ≤M ≤ ∞. And

ρτ (εt) = εt(τ − I(εt < 0)), (3.7)
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is the check function; this gives the τ th sample quantile with its solution.

Then, the Generalized Maximum Entropy (GME) estimator for this model can
be constructed as

H(p, w)=arg max
p,w
{H(p)+H(w)} ≡−

∑
k

∑
m

pkmlog pkm−
∑
t

∑
m

wtmlogwtm (3.8)

subject to

yt =
∑
m

p1mz1m(x′1,t) + · · ·+
∑
m

pKmzKm(x′K,t) + ρτ
∑
m

wtmνtm (3.9)∑
m

pkm = 1,
∑
m

wtm = 1, (3.10)

where p, and w are on the interval [0,1]. To make it easy for derivation, let us
consider quantile regression with one covariate (k = 1), then this optimization
problem can be solved using the Lagrangian method

L=H(p, w)+λ′(yt−
∑
m

p1mz1m(x′1,t)−ρτ
∑
m

wtmνtm)+a′(1−
∑
m

p1m)+b′(1−
∑
m

wtm)

(3.11)
where λ′, a′, b′ are the vectors of Lagrangian multipliers. Thus, resulting in first-
order conditions, we have

p1m = exp(−1− a) exp(
∑
m

λmz1m(x′1,t)), (3.12)

and wtm = exp(−1− bt) exp(
∑
m

ρtλmνtm) (3.13)

Since the constraint requires that
∑
m pkm = 1,

∑
m wtm = 1, exp(−1 − a) and

exp(−1 − bt) is constant for a given parameter and error, respectively. Thus,
solving the first order conditions yields

p̂1m =
exp(−z1m

∑
t λ̂x

′
1,t)∑

m exp(−z1m
∑
t λ̂(x′1,t))

(3.14)

ŵtm =
exp(ρτ λ̂ν1m)

ρτ
∑
m exp(ρτ λ̂tnν1m)

(3.15)

4 Simulation Study

In this section, we carry out several Monte Carlo experiments to compare the
GME estimator and compare it with the classical estimations, including Least
Squares (LS), Bayesian (BAY) and Maximum Likelihood estimation (MLE). We
simulate the data from the quantile regression model where the error term is
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assumed to be asymmetric Laplace distribution (ALD), for three different quantile
levels τ = (0.25, 0.50, 0.75). Hence, the simulation model takes the following form:

y1,t = βτ0 + βτ1x1,t + ετt (4.1)

In the simulation, we set βτ0 = 1 and βτ1 = 2 . We simulate the independent
variables x1,t from N(0, 1). We evaluate the estimators in terms of the bias of the
parameter estimates. We carry out all the experiments with sample size 20 and 40.
For each sample size, we generated 100 datasets. Computations are performed in
the R environment (R Development Core Team, 2012) using the package quantreg
for LS, written by [25], and bayesQR written by [26]. For MLE, we follow the
estimation technique of [15] and maximize the likelihood based ALD to obtain the
parameters.

Table 1: Bias of quantile regressions

Bias(%)

N Par. true par GME1 GME2 GME3 Bayes MLE LS
20 β0.250 1 0.1089 0.1332 0.1438 0.1265 0.0761 0.0642

β0.251 2 0.2096 0.0361 0.0072 0.0857 0.1798 0.1603
40 β0.250 1 0.0738 0.1438 0.1253 0.0156 0.0372 0.0265

β0.251 2 0.0826 0.0072 0.0252 0.0271 0.0217 0.0247

N Par. true par GME1 GME2 GME3 Bayes MLE LS
20 β0.500 1 0.0232 0.0498 0.0536 0.1799 0.1992 0.1992

β0.501 2 0.5524 0.3629 0.4121 0.0180 0.0151 0.0150
40 β0.500 1 0.0250 0.0500 0.0601 0.0271 0.0362 0.0334

β0.501 2 0.0734 0.3989 0.4746 0.0093 0.0232 0.0244

N Par. true par GME1 GME2 GME3 Bayes MLE LS
20 β0.750 1 0.1762 0.1147 0.1337 0.2118 0.2749 0.2699

β0.751 2 0.0047 0.0195 0.0466 0.0401 0.1031 0.0863
40 β0.750 1 0.0581 0.1188 0.1253 0.0769 0.1088 0.0991

β0.751 2 .01722 0.0974 0.0252 0.0293 0.0385 0.0431

Source: Calculation

Note: GME1, GME2, GME3 are the GME estimator using M=3, M=5, and

M=7, respectively.

Table 1 reports the results of the Monte Carlo simulation. In all cases we
compute the percentage relative bias with respect to βτ0 = 1 and βτ1 = 2. We
also aim to examine whether or not the estimated parameter is sensitive to the
number of support or not. Therefore, we estimate three different GME models
using different number of supports {M = 3, 5, 7}. The support space of estimates
βτ and εt is specified as z = [−10, · · · , 10] and ν = [−5, · · · , 5], respectively. Here,
we specify the support values around the true values.
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According to the results, we observe that GME estimation can perform well
through this simulation study. The overall bias values of parameter at different
quantile levels are lower than 10%. In addition, when the number of support
is increased from 3 to 7, the biases of the estimated parameters are not quite
stable. This result corresponds to the study of [27] which also found that when
the number of support increase but the bias of the parameters are not quite stable.
Nonetheless our results demonstrate that the GME performs well with accuracy in
this simulation study. We expect that when support bound is precisely specified,
the GME estimator has a smaller risk. Intuitively, if the support bound covers the
true values, the estimated parameters are accurate at any numbers of support.

Comparing the GME and three other estimations at all quantile levels, we
observe that the biases of the GME are mostly smaller than those of Bayesian,
MLE and LS, when the number of observation T=20. However, the bias of the
GME are mostly larger than those of Bayesian, MLE and LS when the number
of observations is large, T=40. This result suggests that when the number of
observation increases, GME performance seems to be a little better when compared
with the conventional estimators. In addition, regarding the performance across
quantiles, GME gave better estimates for lower and upper quantiles, τ = 0.25 and
τ = 0.75.

As the simulation study has demonstrated, entropy approach to quantile re-
gression modeling is effective and it generally outperforms Bayesian, MLE and LS
when the number of observations is small. In addition, GME can obtain a low
bias at the extreme quantile levels.

5 Empirical Results and Discussion

In this study, we apply our model to Capital Asset Pricing Model (CAPM)
which has been intensively studied in financial economics in the last decade. The
main contribution of this approach is to identify how the risk of a particular
stock is related to the risk of the overall stock market using the risk measure
Beta coefficient. If the relationship between individual stock’s returns and market
return exhibits heteroskedasticity, then the estimates of Beta for different quantiles
of the relationship can be quite different. The study focus on AAPL which is one
of the biggest and the most active stocks in NASDAQ market of United States.
The data collected are from January 2008 to November 2015 which gives us 95
monthly data points. The stock data were obtained from Thomson Reuter Data
Stream. In this study, we use Treasury bills as a proxy of the risk free rate. Table
2 gives the summary of our variables.

To illustrate the GME estimator introduced in Section 3, we consider the
following CAPM quantile regression model

AAPLt = βτ0 + βτ1NASDAQt + εt (5.1)

Note that we have focused on the relationship between NASDAQ and AAPL.
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Table 2: Descriptive Statistics

AAPL NASDAQ

Mean 0.006 0.003
Median 0.008 0.007
Maximum 0.092 0.051
Minimum -0.185 -0.085
Std. Dev. 0.045 0.024
Skewness -1.123 -0.749
Kurtosis 6.273 4.010
Jarque-Bera 61.715*** 12.778***
ADF-test -8.917*** -8.252***

Source: Calculation
∗∗∗Significant level at 0.05

In this data set we compare the entropy estimator to relevant benchmark
estimators in terms of mean square error (MSE). We fit quantile regression using
estimators in Section 4, namely LS (black thick line), MLE (red dashed line),
and Bayesian (green dotted line), and Entropy (blue dashed-dotted line). Figure
1 presents the obtained results for each estimator. According to these results,
it can be concluded that entropy estimator is slightly the better than the other
estimator, with a few minor exceptions in the quantile level around the middle
levels (τ = 0.4, 0.5). However, this makes sense in light of the high performance
of the GME in real data analysis.
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Figure 1: Model comparison for nine different quantile regression MSEs over the
grid τ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.90}

Finally, we investigate the beta risk of the CAPM in each quantile level. As it
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can be observed in Figure 2, all of the estimated beta risks for CAPM are positive.
This indicates a positive relationship between AAPL and NASDAQ returns in all
quantile levels. Particularly, we find an evidence of high beta risk at quantile 0.2,
0.5, and 0.8. For the low quantile level, risk is strongly observed at quantile 0.4.
This finding provides important evidence for clarifying the sign of the beta risk of
stock returns. 
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Figure 2: Quantile Regression Estimation (95%) CI

We then further illustrate the scatter plots between the AAPL and NAS-
DAQ returns. In Figure 3, we present the quantile regression lines labeled τ =
{0.1, 0.2, · · · , 0.9}. The quantile regression lines labeled in all qauntile levels dis-
play an upward slope, suggesting that as NASDAQ return increases, AAPL dis-
plays a greater return. However, the risk-return relation evolves into a fluctuated
positive as the quantile increases.
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6 Conclusion

In this paper, we aim to distinguish different beta risks of the AAPL stock
in the NASDAQ market and have proposed an entropy-based approach for the
estimation of the qunatile regression model. By using quantile regression check
function, we can cast the quantile regression problem into the primal maximum
entropy framework. This estimator allows us to relax the assumption of para-
metric distributions in quantile regression, making easy the implementation of a
Lagrangian method for obtaining the entropy estimates of the model probabilities
subject to some useful constraints. The Generalized Maximum Entropy (GME)
estimator is found to be a robust estimator that is resistant to multicollinearity
and ill-posed problem such as limited, partial, or incomplete data. With Monte
Carlo simulations, we have shown that the primal GME estimator is a better al-
ternative to classical least squares, maximum likelihood, and Bayesian estimators
especially in extreme quantile regime.

Last but not least, our model is applied to distinguish different beta risks of
the AAPL returns in the NASDAQ market. We find that the beta risk evolves into
fluctuated positive when the quantile increases. Finally, the proposed method can
be extended to a more general framework, by employing a quantile regression to
analyze the different data sets and also extending to dual maximum entropy which
may be solved with simpler and more widely available unconstrained numerical
methods. The dual algorithm involves fewer parameters in primal framework thus
it will reduce the computation time of this model.

References

[1] W. F. Sharpe, Capital asset prices: A theory of market equilibrium under
conditions of risk, The journal of finance 19 (3) (1964) 425-442.

[2] J. Lintner, Security prices, risk, and maximal gains from diversification, The
journal of finance 20 (4) (1965) 587-615.

[3] N. Barberis, R. Greenwood, L. Jin, A. Shleifer, X-CAPM: An extrapolative
capital asset pricing model, Journal of Financial Economics 115 (1) (2015)
1-24.

[4] K. Autchariyapanitkul, S. Chanaim, S. Sriboonchitta, Quantile regression un-
der asymmetric Laplace distribution in capital asset pricing model, In Econo-
metrics of Risk, Springer International Publishing (2015), 219-231.

[5] S. Piamsuwannakit, K. Autchariyapanitkul, S. Sriboonchitta, R. Ouncharoen,
Capital asset pricing model with interval data, In International Symposium
on Integrated Uncertainty in Knowledge Modelling and Decision Making,
Springer, Cham (2015), 163-170.

[6] K. Autchariyapanitkul, S. Chanaim, S. Sriboonchitta, T. Denoeux, Predicting
stock returns in the capital asset pricing model using quantile regression and



64 Thai J. Math. (Special Issue, 2017)/W. Yamaka et al.

belief functions, In International Conference on Belief Functions, Springer,
Cham (2014), 219-226.

[7] K. Autchariyapanitkul, S. Piamsuwannakit, S. Chanaim, S. Sriboonchitta,
Optimizing stock returns portfolio using the dependence structure between
capital asset pricing models: a vine copula-based approach, In Causal Infer-
ence in Econometrics, Springer International Publishing (2016), 319-331.

[8] K. Autchariyapanitkul, K. Kunasri, S. Sriboonchitta, Robust Regression for
Capital Asset Pricing Model Using Bayesian Approach, Thai Journal of Math-
ematics (2016) 71-82.

[9] D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under
risk, Econometrica: Journal of the econometric society (1979) 263-291.

[10] M. Geraci, M. Bottai, Quantile regression for longitudinal data using the
asymmetric Laplace distribution, Biostatistics 8 (1) (2006) 140-154.

[11] J. W. Taylor, Using exponentially weighted quantile regression to estimate
value at risk and expected shortfall, Journal of Financial Econometrics 6 (3)
(2007) 382-406.

[12] T. J. Kniesner, W. K. Viscusi, J. P. Ziliak, Policy relevant heterogeneity in the
value of statistical life: New evidence from panel data quantile regressions,
Journal of Risk and Uncertainty 40 (1) (2010) 15-31.

[13] R. Koenker, Quantile regression, Cambridge university press 38 (2005).

[14] R. Koenker, G. Bassett Jr, Regression quantiles, Econometrica: journal of
the Econometric Society (1978) 33-50.

[15] B. L. Sanchez, H. V. Lachos, V. F. Labra, Likelihood based inference for
quantile regression using the asymmetric Laplace distribution, Journal of Sta-
tistical Computation and Simulation 81 (2013) 1565-1578.

[16] I. Barrodale, F. Roberts, Algorithms for restricted least absolute value esti-
mation, Communications in Statistics-Simulation and Computation 6 (1977)
353363.

[17] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society, Series B (1996) 267288.

[18] A. Kottas, M. Krnjajic, Bayesian semiparametric modelling in quantile re-
gression, Scandinavian Journal of Statistics 36 (2009) 297319.

[19] K. Yu, R. A. Moyeed, Bayesian quantile regression, Statistics & Probability
Letters 54 (4) (2001) 437-447.

[20] H. Kozumi, G. Kobayashi, Gibbs sampling methods for bayesianquantile
regression, Journal of Statistical Computation and Simulation 81 (2011)
15651578.



Capital Asset Pricing Model Through Quantile Regression ... 65

[21] A. K. Bera, A. F. Galvao Jr, G. V. Montes-Rojas, S. Y. Park, Which quan-
tile is the most informative? Maximum likelihood, maximum entropy and
quantile regression, Econometric Methods and Their Applications in Finance,
Macro and Related Fields (2014) 167-199.

[22] V. Pipitpojanakarn, P. Maneejuk, W. Yamaka, S. Sriboonchitta, How does
economic growth affect the well-being in asia? International Journal of Eco-
nomic Research 14 (6) (2017) 231-244.

[23] C. E. Shannon, A mathematical theory of communication, Part I, Part II.
Bell Syst. Tech. J. 27 (1948) 623-656.

[24] X. Wu, A weighted generalized maximum entropy estimator with a data-
driven weight, Entropy 11 (4) (2009) 917-930.

[25] R. Koenker, Quantreg: quantile regression, R package version, 5 (2013).

[26] D. Benoit, R. Al-Hamzawi, K. Yu, D. Van den Poel, Bayes QR: Bayesian
quantile regression (2011) ID 3050268.

[27] S. Sriboochitta, W. Yamaka, P. Maneejuk, P. Pastpipatkul, A Generalized
Information Theoretical Approach to Non-linear Time Series Model, In Ro-
bustness in Econometrics, Springer International Publishing (2017), 333-348.

(Received 31 August 2017)
(Accepted 30 October 2017)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction
	Review of Quantile Regression Model
	Methodology
	Generalized Maximum Entropy Estimation 

	Simulation Study
	Empirical Results and Discussion
	Conclusion

