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Abstract : In expert systems, we elicit the probabilities of different statements
from the experts. However, to adequately use the expert system, we also need
to know the probabilities of different propositional combinations of the experts’
statements – i.e., we need to know the corresponding joint distribution. The
problem is that there are exponentially many such combinations, and it is not
practically possible to elicit all their probabilities from the experts. So, we need
to estimate this joint distribution based on the available information. For this
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purpose, many practitioners use heuristic approaches – e.g., the t-norm approach
of fuzzy logic. However, this is a particular case of a situation for which the
maximum entropy approach has been invented, so why not use the maximum
entropy approach? The problem is that in this case, the usual formulation of the
maximum entropy approach requires maximizing a function with exponentially
many unknowns – a task which is, in general, not practically feasible. In this
paper, we show that in many reasonable example, the corresponding maximum
entropy problem can be reduced to an equivalent problem with a much smaller
(and feasible) number of unknowns – a problem which is, therefore, much easier
to solve.
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1 Formulation of the Problem: Maximum En-
tropy Is Needed, but the Corresponding Op-
timization Problem Does Not Look Feasible

Need for expert systems. In many application areas, ranging from finance to
medicine to geosciences to law enforcement, a large portion of knowledge and skills
comes from experts.

Some of these experts are more skilled, some are somewhat less experienced
and less skilled. In the ideal world, everyone should have their finances managed
by the best financial consultants and their illnesses treated by the world’s best
doctors. In the ideal world, all the crimes should be investigated by the world’s
best detectives. Unfortunately, there are few world’s best financial consultants,
doctors, etc., and they do not have enough time to help everyone.

A natural idea is thus to incorporate the knowledge of the best experts in a
computer-based system, so that other experts – and maybe even non-expert users
– can use the knowledge of the top experts. Such systems are known as expert
systems.

Need to take uncertainty into account. Expert statements are rarely ab-
solutely certain. For most of their statements, experts understand that the cor-
responding conclusion is valid only with a certain probability. For example, in
finance, even a top expert cannot always guarantee that his or her investment ad-
vice will always lead to good gains, there is always a possibility that the investment
will fail. In general, the difference between the top expert and a regular expert is
not that the top expert guarantees the outcomes – no one can do that – but that
for the rules formulated by the top expert, probability of success is higher. Simi-
larly, even a top surgeon sometimes fails – but for the top surgeon, the probability
of success is higher than what would have been achieved by a regular surgeon in
a similar situation.



Maximum Entropy as a Feasible Way to Describe Joint Distribution ... 37

To make proper recommendations, it is therefore important not only to de-
scribe the expert’s statements rules in the expert system, but also to describe the
probabilities with which different statements and rules are true.

Where do we get these probabilities from. In some cases, we can get these
probabilities by analyzing the real-life experience of following these rules: e.g., the
experience of investing money or the experience of medical doctors in treating the
corresponding disease.

However, such cases are rare – usually, if we have related data, then we can
extract rules from this data, and the need for experts is not as critical. In most
other situations, we have to reply on the experts themselves to provide us with
the probabilities of different statements.

Need to consider a joint distribution. Experts rarely make decisions based on
just one rule – such experts can be easily replaced by automatic systems. Usually,
experts take into account many rules when making a decision. For example, a
financial expert, on observing the behavior of a certain stock, concludes that this
stock, if taken by itself, is about to be appreciated. However, before the expert
gives the advice to invest in this particular stock, he/she also takes into account:

• the state of the economy as a whole – maybe investing in bonds is currently
better – and

• the economic state of different countries – maybe an international investment
is better for the client.

Similarly, when a skilled medical doctor proposes a cure, this doctor usually takes
into account the patient’s symptoms, the patient’s history, the patient’s allergies,
etc.

In all these cases, the conclusion is based on considering several different expert
statements and rules. To gauge our confidence in the corresponding recommen-
dation, we therefore need to know the probability that all the used statements
are correct. In other words, if we used statements S1, . . . , Sk, we need to find the
probability that a composite statement S1 & . . . &Sk is correct.

Often, the conclusion has several justifications. In this case, we are interested
in the probability that at least one of these justifications is true, i.e., the probability
of a complex statement of the type (S1 & . . . &Sk)∨(S′1 & . . . &S′k′). We can have
more complex situations.

In general, we may be interested in the probability of different Boolean com-
binations of the original statements S1, . . . , Sn.

It is not possible to extract all possible probabilities from an expert.
We can (and do) extract the probabilities p(Si) of different expert’s statements Si

from the experts themselves. However, it is not realistic to expert that experts
can also provide the probabilities of all possible Boolean combinations. Indeed, a
complete description of all such probabilities means knowing the probabilities of
all 2n atomic statements Sε1

1 & . . . &Sεn
n , where εi ∈ {−,+}, S+ means S, and

S− means the negation ¬S. These probabilities should add up to 1, but other



38 Thai J. Math. (Special Issue, 2017)/ T. Dumrongpokaphan et al.

than that, there are no restrictions. Thus, to fully describe the joint distribution
of n statements, we need to describe 2n − 1 numbers. Even for a small knowledge
base, with n ≈ 30, this means that we need more than a billion numbers. There
is no way that we ask a billion question to the expert and thus elicit all these
probabilities.

Since we cannot directly determine the joint distribution, we must esti-
mate it based on available information. Since we cannot elicit all the values
describing the joint probability distribution from the experts, we therefore need
to estimate this probability based on the available information.

How the joint distribution is usually estimated. Since we cannot directly
elicit the probability of the “and”-combination Si & . . . &Sj of different state-
ments, a natural idea is therefore to estimate this probability based on the known
probabilities p(Si), . . . , p(Sj) of the corresponding statements.

In other words, we need an algorithm that, given the probabilities a and b of
two statements A and B, returns an estimate for the probability of A&B. Let us
denote this algorithm by f&(a, b).

It is easy to formulate natural properties of this algorithm. For example,
since A&B and B&A mean the same thing, it is reasonable to require that our
estimates for the probability of these two composite statements be the same, i.e.,
that f&(a, b) = f&(b, a) for all a and b. Similarly, since A& (B&C) means the
same as (A&B) &C, it is reasonable to require that our estimates for these two
combinations are the same, i.e., that f&(a, f&(b, c)) = f&(f&(a, b), c) for all a, b,
and c. We can formulate several similar properties. This approach has been used
by MYCIN, historically the first expert system (see, e.g., [1]), and it is one of the
main ideas behind the fuzzy logic approach to uncertainty; see, e.g., [2, 3, 4]. In
the fuzzy logic approach, the corresponding function f&(a, b) is called an “and”-
operation or, alternatively, a t-norm.

Fuzzy logic had many successful applications. However, there is a problem,
the problem is that this approach is heuristic: in general, there are no good rules
for selecting an appropriate t-norm (and many different t-norms are possible), and
there is no guarantee that the results of applying this or that t-norm will indeed
adequately reflect the expert knowledge.

Why not use maximum entropy? A natural question is: why not use the
maximum entropy approach [5]? Our situation is a particular class of situations
for which the maximum entropy approach has been invented:

• we have several possible probability distributions consistent with our knowl-
edge (e.g., consistent with the marginal probabilities P (Si)), and

• we want to select the most reasonable of these distributions.

The recommendation of the maximum entropy approach is to select a distri-
bution with the largest possible value of entropy, i.e., in this case, with the largest
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possible value of the quantity

S = −
∑

ε1,...,εn

P (Sε1
1 & . . . &Sεn

n ) · ln(P (Sε1
1 & . . . &Sεn

n )) (1)

under the constraints that P (Sε1
1 & . . . &Sεn

n ) ≥ 0, that∑
ε1,...,εn

P (Sε1
1 & . . . &Sεn

n ) = 1, (2)

and that, for each i from 1 to n, the probability of each statement Si is equal to
the known value p(Si):∑

ε1,...,εi−1,εi+1,...,εn

P (Sε1
1 & . . . &S

εi−1

i−1 &Si &S
εi+1

i+1 & . . . &Sεn
n ) = P (Si), (3)

This idea was first proposed by P. Cheeseman [6] and has indeed been successfully
used in many applications; see, e.g., [7].

Example. In the simplest case when we have no logical relation between different
quantities Si, the above constraint optimization problem is easy to solve. Indeed,
it is known that if we have no information about the relation between two random
variables, then the maximum entropy approach concludes that these variables are
independent. In this case, this means that for each combination Sε1

1 & . . . &Sεn
n ,

the probability is equal to the product of the corresponding probabilities

P (Sε1
1 & . . . &Sεn

n ) =

n∏
i=1

P (Sεi
i ), (4)

where P (S−i ) = P (¬Si) = 1− P (Si).
This makes sense – and, by the way, this can be viewed as an example of the

fuzzy approach, with the “and”-operation f&(a, b) = a · b.

So why not use it in general? The maximum entropy approach works well if
we have no logical relations between the statements, i.e., when all 2n combinations
Sε1
1 & . . . &Sεn

n are logically possible. In practice, however, we often have some
logical relations between the statements: e.g., we may have implications of the
type S1 & . . . &Sk → S relating some of these statements.

In this case, we can no longer use the simple independence solution (4), we
have to solve the corresponding optimization problem – and since this problem
has 2n unknowns, and we know that this number is in billions, this becomes a
complicated computational problem.

Shall we give up on maximum entropy? No. So, shall we abandon hope
and use heuristic methods instead? In this paper, we show that we should not
do that, that even with logical relations between the statements, it is possible to
reduce the number of unknowns to a reasonable one – and thus, effectively apply
the maximum entropy approach.
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2 In Many Situations, It Is Possible to Make the
Maximum Entropy Approach Feasible

Analysis of the problem. Let us consider a situation when there is a logical
relation between the statements S1, . . . , Sn. Because of this relation, not all logical
combinations Sε1

1 & . . . &Sεn
n are possible. Let us denote, by W , the set of all

the vectors ε = (ε1, . . . , εn) for which the corresponding combination is logically
possible. In this case, for ε 6∈ W , the probability of the corresponding logical
combination is 0. So, we only need to consider the probabilities of combinations
corresponding to ε ∈W .

In this setting, the constraint optimization problem (1)-(3) takes the following
form: maximize

S = −
∑
ε∈W

P (Sε1
1 & . . . &Sεn

n ) · ln(P (Sε1
1 & . . . &Sεn

n )) (5)

under the constraints that P (Sε1
1 & . . . &Sεn

n ) ≥ 0, that∑
ε∈W

P (Sε1
1 & . . . &Sεn

n ) = 1, (6)

and that, for each i from 1 to n, the probability of each statement Si is equal to
the known value p(Si):∑

ε∈W : εi=+

P (Sε1
1 & . . . &S

εi−1

i−1 &Si &S
εi+1

i+1 & . . . &Sεn
n ) = P (Si). (7)

We can now use the Lagrange multiplier method to reduce this constraint optimiza-
tion problem to the following easier-to-solve unconditional optimization problem:

Maximize J
def
= −

∑
ε∈W

P (Sε1
1 & . . . &Sεn

n ) · ln(P (Sε1
1 & . . . &Sεn

n ))+

λ ·

(∑
ε∈W

P (Sε1
1 & . . . &Sεn

n )− 1

)
+ (8)

n∑
i=1

λi ·

( ∑
ε∈W : εi=+

P (Sε1
1 & . . . &S

εi−1

i−1 &Si &S
εi+1

i+1 & . . . &Sεn
n )− P (Si)

)
.

Let us denote Sε1
1 & . . . &Sεn

n by Sε. Differentiating the expression J (as described
by the formula (8)) by P (Sε), we conclude that

− ln(P (Sε))− 1 + λ+
∑

i: εi=+

λi = 0. (9)

Thus,

ln(P (Sε)) = −1 + λ+
∑

i: εi=+

λi, (10)
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and, applying exp(x) to both sides of this equality, we get

P (Sε) = C ·
∏

i: εi=+

ri, (11)

where we denoted C
def
= exp(λ− 1) and ri

def
= exp(λi).

We can simplify this formula is we represent C as

C =
A

n∏
i=1

(1 + ri)
, (12)

where

A
def
= C ·

n∏
i=1

(1 + ri).

Substituting the expression (12) into the formula (11), we conclude that

P (Sε) = A ·

( ∏
i: εi=+

ri
1 + ri

)
·

( ∏
i: εi=−

1

1 + ri

)
. (13)

If we denote qi
def
=

ri
1 + ri

and take into account that

1

1 + ri
= 1− ri

1 + ri
= 1− qi,

we thus conclude that

P (Sε) = A ·

( ∏
i: εi=+

qi

)
·

( ∏
i: εi=−

(1− qi)

)
. (14)

Discussion: so we indeed have a feasible system. Interestingly, we get
almost the same formula as in the independence case, with two differences:

• first, we have unknown values qi instead of the original probabilities p(Si);

• second, all the probabilities P (Sε) are now multiplied by some constant A.

The constant A can be determined from the condition (6) which, in this case, takes
the form

A ·
∑
ε∈W

( ∏
i: εi=+

qi

)
·

( ∏
i: εi=−

(1− qi)

)
= 1,

so

A =
1∑

ε∈W

( ∏
i: εi=+

qi

)
·
( ∏

i: εi=−
(1− qi)

) . (15)
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Thus, instead of the original unfeasible set of 2n − 1 unknowns P (Sε), we now
have a much smaller – and much more feasible – set of n unknowns q1, . . . , qn
(with n� 2n− 1). These n unknowns have to be determined from n equation (7)
that now take the following form:

∑
ε∈W : εi=+

 ∏
j: εi=+

qi

 ·
 ∏

j: εi=−
(1− qi)

 =

p(Si) ·

(∑
ε∈W

( ∏
i: εi=+

qj

)
·

( ∏
i: εi=−

(1− qj)

))
. (16)

Examples. In practice, we can often reduce the number of unknowns even further.
Let us consider two such examples. The first example if when we have a rule of
the type S1 & . . . &Sk → Sk+1, i.e., equivalently, a clause

S′1 ∨ . . . ∨ S′k ∨ S′k+1,

where we denoted S′i
def
= ¬Si for i ≤ k and S′k+1 = Sk+1. Another case when we

have such a clause is when we know that something is wrong, we have at least one
fault, but we do not know which of the faults it is.

In the maximum entropy approach, unaffected variables are independent, so
in this example, we can ignore all the statements Sk+2, . . . , and safely assume that
n = k + 1. In this case, the only sequence ε which is excluded from the set W of
possible sequences is the sequence (−, . . . ,−). Thus, the formula (16) takes the
form

qi = p(S′i) · α, (17)

where we denoted

α = 1−
n∏

i=1

(1− qi). (18)

Substituting the expression (17) for qi into the formula (18), we conclude that

α = 1−
n∏

i=1

(1− α · P (S′i)). (19)

Here, we have only one unknown α, and one equation (19) to find this unknown.
For n = 3, the situation is even simpler: if we explicitly multiply the three dif-
ferences, cancel out 1 and −1, and divide both sides by α, we get the following
quadratic equation from which we can explicitly find α:

P (S′1) · P (S′2) · P (S′3) · α2 − (P (S′1) · P (S′2) + P (S′1) · P (S′3) + P (S′2) · P (S′3)) · α+

(P (S′1) + P (S′2) + P (S′3)− 1) = 0.
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What if we know there are at least two faults, i.e., we know that at least
two statements Si must be true? In this case, to form the set W of possible
combinations, we dismiss not only the vector ε = (−, . . . ,−), but also vectors
(−, . . . ,−,+,−, . . . ,−) in which only one statement is true. Thus, the equation
(16) takes the form

P (Si) = A ·

qi − qi ·∏
j 6=i

(1− qj)

 .

The product
∏
j 6=i

(1− qj) can be represented as

∏
j 6=i

(1− qj) =
1

1− qi
· b,

where we denoted

b
def
=

n∏
j=1

(1− qj).

Thus, we have

P (Si) = A ·
(
qi − b ·

qi
1− qi

)
,

i.e., equivalently,

P (Si) = A · qi −B ·
qi

1− qi
,

where B
def
= A · b. If we bring all the terms to a common denominator, we get the

following quadratic equation for qi for which we can find an explicit solution for
qi in terms of only two unknowns A and B:

A · q2i − qi · (P (Si) +A−B) + P (Si) = 0.

How to compute qi in the general case: an iterative procedure. In both
examples, a relatively small number of sequences ε is dismissed (at least small
in comparison with the overall number of 2n such sequences). Let us consider a
general such case.

For any number qi, let q+i denote qi, and let q−i denote 1−qi. For every sequence
of numbers q = (q1, . . . , qn) and for every sequence of signs ε = (ε1, . . . , εn), let qε

denote the product

qε
def
=

n∏
i=1

qεii .

In these terms the formula (16) takes the form

qi −
∑

ε 6∈W : εi=+

qε = P (Si) ·

1−
∑
ε 6∈W

qε

 . (20)
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Thus, we conclude that

qi =
∑

ε 6∈W : εi=+

qε + P (Si) ·

1−
∑
ε 6∈W

qε

 . (21)

In situations when few vectors ε are dismissed, the sums over such vectors are

relatively small. Thus, in the first approximation, we can take q
(0)
i = P (Si), and

in the following iterations, use the previous value q
(k)
i in the right-hand side of the

formula (21) to compute the next iteration q(k+1):

q
(k+1)
i =

∑
ε 6∈W : εi=+

(q(k))ε + P (Si) ·

1−
∑
ε 6∈W

(q(k))ε

 . (22)

When this process converges, we get the desired formula (21).
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