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Abstract : In many practical situations, the Maximum Entropy (MaxEnt) ap-
proach leads to reasonable distributions. However, in an important case when all
we know is that the value of a random variable is somewhere within the interval,
this approach leads to a uniform distribution on this interval – while our intuition
says that we should have a distribution whose probability density tends to 0 when
we approach the interval’s endpoints. In this paper, we show that in most cases
of interval uncertainty, we have additional information, and if we account for this
additional information when applying MaxEnt, we get distributions which are in
perfect accordance with our intuition.
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1 Formulation of the Problem

General problem: we often have partial information about the prob-
abilities. Most practically used statistical methods assume that we know the
probability distribution – or at least that we know a finite-dimensional class of
distributions that contains the actual (unknown) distribution; see, e.g., [1]. For
example, we may know that the distribution is normal or that the distribution is
uniform, but we do not necessarily know the parameters describing this particular
distribution.

In practice, however, we often encounter situations when we only have partial
information about the probabilities – and not enough information to specify a
finite-parametric family containing the distribution. For example, we may know
only the first two moments of the distribution, and/or we may know only that the
distribution is located somewhere on an interval [x, x], but we do not have any
additional information about the distribution.

A natural idea: select the most reasonable distribution. In such situations,
when we have many possible probability distributions which are consistent with
our knowledge, a reasonable idea is:

• to select the most “reasonable” of these distributions, and

• to use statistical methods corresponding to this selected distribution.

This natural idea leads to the maximum entropy approach. How can we
select this “most reasonable” distribution? A reasonable requirement for such a
selection is to make sure that this distribution properly represents the original
class of possible distributions as much as possible.

A natural way to formalize this requirement is to require that narrowing down
from the class of distributions to a single distribution minimally changes our un-
certainty.

For example, if we started with the situation in which we know only that the
random variable has two values v1 and v2, but we do not know the probabilities
p1 and p2 of these values, it would be not right to select a distribution in which
v1 appears with probability 1 – or even with probability 0.99, since this would
drastically decrease our original uncertainty.

How can we gauge uncertainty? In situations when we know only that our
alternative is one of n possible alternatives, a reasonable measure of uncertainty is
the smallest possible number of binary (“yes”-“no”) questions needed to determine
the actual alternative; this number is equal to dlog2(n)e [2, 3].

In situations in which we know the probabilities p1, . . . , pn of different un-
certainties, it is reasonable to minimize the average number of binary questions
needed to select the actual alternative. One can show (see, e.g., [3]) that this

average number of binary question is equal to the entropy S = −
n∑
i=1

pi · log2(pi).

For a continuous random variable with probability density ρ(x), we can, for
each ε, estimate the mean number N(ε) of binary questions which are needed to
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determine the actual value with accuracy ε. It turns out that for small ε > 0, this
number of questions has the form S−log2(2ε), where S(ρ) = −

∫
ρ(x)·log2(ρ(x)) dx

is the entropy of the corresponding distribution [3].

When we only know that the distribution belongs to a certain class C, then
for each way of asking questions, the average number of question may depend
on the actual distribution. It is therefore reasonable to look for the worst-case
average number of questions. It turns out that the smallest value of this worst-
case average number of questions is asymptotically equal to S(C)− log2(2ε), where

S(C) def
= max

ρ∈C
S(ρ) is the largest entropy among all distributions from the class C;

see, e.g., [2, 3].

From this viewpoint, selecting a distribution that maximally represents uncer-
tainty means selecting a distribution S(ρ) is maximally close to S(C) = max

ρ
S(ρ).

In other words, out of all possible distributions, we need to select the distribution
with the maximum possible value of the entropy. This is the main idea behind the
Maximum Entropy (MaxEnt) approach to uncertainty [2].

MaxExt approach: successes. The MaxEnt approach has many successful
applications; see, e.g., [2]. Suffice is to say that for the case when we know only
the first two moments of the probability distribution, the MaxEnt approach leads
to Gaussian (normal) distribution – the distribution which is indeed ubiquitous in
practice.

Similarly, in situations when we only know the marginal distributions ρ1(x1)
and ρ2(x2), but we have no information about the relation between different ran-
dom variables, the MaxEnt approach selects the joint distribution ρ(x1, x2) =
ρ1(x1) · ρ2(x2) according to which these variables are independent – which also
makes perfect sense.

MaxEnt approach: challenges. While in many situations, the MaxEnt ap-
proach indeed select a reasonable distribution, a distribution agreeing with our
intuition, in many other situations, the MaxEnt selection is not in full agreement
with our intuition.

Let us give a very simple example of such a situation. Let us assume that all
we know is that a quantity x is always located within the known bounds x and x:
x ≤ x ≤ x.

This is a very widely spread situations. Indeed, the information about the
quantity x usually comes from measurements. Measurement are never absolutely
accurate, the measurement result x̃ is, in general, somewhat different from the

actual (unknown) value x, and thus, the corresponding measurement error ∆x
def
=

x̃ − x is, in general, different from 0. In many practical situations, the only
information that we have about the measurement error is the upper bound ∆ on
its absolute value: |∆x| ≤ ∆; see, e.g., [4]. This upper bound is usually provided
by the manufacturer of the measuring instrument. In such situations, after we
get the measurement result x̃, the only information that we have about the actual
value x is that x is between x = x̃−∆ and x = x̃+ ∆.
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From the common sense viewpoint, what would be the reasonable probability
distribution on the interval [x, x]? Intuitively, since we know that the values below
x are strictly prohibited, we expect the values equal to x and slightly larger than
x to have a low probability, with probability increasing as we increase x – until we
get closer to the upper bound, in which we also expect the probability to decrease.
In other words, we expect a continuous probability density function ρ(x) that it
equal to 0 for x = x and for x = x and that increases as x increases from x = x
and decreases as we approach x = x.

However, when we apply the MaxEnt approach to this situation, we get a
uniform distribution, with a discontinuous probability density ρ(x) which is equal

to a constant ρ(x) =
1

x− x
on the interval [x, x] and is equal to 0 outside this

interval.

Resulting problem. On the one hand, the MaxEnt approach sounds reasonable,
in good accordance with our intuition on how to select a probability distribution.
On the other hand, when we apply this seemingly reasonable approach to a simple
case of interval uncertainty, we get counter-intuitive results. How can we reconcile
these two intuitions? What do we need to modify to make sure that for the case
of interval uncertainty, the MaxEnt approach leads to a more intuitive result?

In this paper, we show that such a reconciliation is indeed possible, and that
a slightly deeper analysis of the corresponding practical problems leads to an
intuitively acceptable results of applying MaxEnt to interval uncertainty.

2 Let Us Recall How Other Intuition-Friendly Un-
certainty Techniques Treat Interval Uncertainty

Let us look at other techniques. Since for interval uncertainty, the result of
MaxEnt-based probabilistic analysis is not in perfect accordance with our intu-
ition, it may be a good idea to see how other intuition-motivated approaches to
uncertainty deal with the interval-uncertainty case.

Fuzzy technique – a technique specifically designed to describe human
intuition. A natural idea is look at fuzzy techniques, techniques specifically
designed to deal with human statements – especially statements that use imprecise
(“fuzzy”) words from natural language, such as “small”, “approximately 5”, etc.;
see, e.g., [5, 6, 7]. In fuzzy logic, to translate the expert’s imprecise statement
into precise terms, for every real number x, we describe the expert’s degree of
confidence µ(x) that this particular value x is in agreement with the expert’s
statement (e.g., the degree of confidence that x is small).

This degree of confidence µ(x) can be determined, e.g., by asking the expert
to mark his or her degree by a mark on a scale, e.g., form 0 to 10. If the expert
selects 7 on a scale from 0 to 10, we take µ(x) = 7/10.

The resulting function function µ(x) is known as a membership function. For
two close values x and x′, the corresponding degrees µ(x) and µ(x′) should be
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close; thus, usually, we consider continuous membership functions.

How fuzzy techniques treat interval uncertainty. In this formalism, an
expert’s interval-related statement – that x is always in between x and x – is
usually interpreted by a continuous function µ(x) which is equal to 0 on both ends
of the corresponding interval.

A typical choice is a triangular membership function µ(x) which:

• linearly increases up to a midpoint of the corresponding interval, and then

• linearly decreases from there.

Another widely used choice is a trapezoidal membership function, which:

• linearly increases from 0 to 1,

• then stays at 1, and

• then linearly decreases back to 0.

Fuzzy techniques only keep one of the two intuitions, but we want
to keep both. We started this paper by saying that there are two reasonable
intuitions:

• an intuition on how to select a distribution, and

• an intuition on what to do in the case of interval uncertainty,

and that the problem is that these two intuitions seem to conflict with each other.
One way to deal with this situation is to ignore one of the intuitions. This is

exactly what happens now:

• The current MaxEnt approach keeps the intuition about selecting a distri-
bution, but ignores the intuition about the interval uncertainty.

• The fuzzy approach keeps the intuition about interval uncertainty, but ig-
nores the intuition about selecting a distribution.

In this paper, we show that we can do better: we can keep both intuitions practi-
cally intact.
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3 How to Reconcile the Two Intuitions: General
Idea

The problem arises when we apply MaxEnt to a situation in which the only
information that we have about the desired quantity x is that this quantity is
between the two known bounds x and x. For example, in case of measurement
uncertainty, we have bounds x = x̃−∆ and x = x̃+ ∆.

But is this indeed the only information we have? Let us consider the case
of measurement uncertainty. We get the bound ∆ from the manufacturer of the
measuring instrument, but where does the manufacturer gets this value? There
are two possible way to determine such a bound (see, e.g., [4]):

• In some cases, the manufacturer can empirically calibrate the measuring
instrument. Specifically, in some cases, there exists a much more accurate
(“standard”) measuring instrument, and so we can estimate ∆ experimen-
tally, by comparing the results of using this instrument with the results of
using the standard measuring instrument.

• In other cases, e.g., when the corresponding instrument is itself a state-of-
the-art one, we do not have any much more accurate measuring instruments
that we can use for calibration. In such cases, we need to perform some
theoretical analysis to come up with an appropriate bound ∆.

Let us consider these two situations one by one.

4 Cases When the Upper Bound ∆ Comes from
Calibration

Analysis of the problem. The fact that the manufacturer provides us with
an upper bound ∆ definitely means that values of ∆x which are larger that this
bound are not possible (or at least have a very very small probability) – otherwise,
the misleading upper bound may lead to a disaster, and the manufacturer of the
measuring instrument will be sued into bankruptcy.

However, by the same logic, it does not mean that all the values below ∆ are
possible. Indeed, how can the manufacturer know this bound?

The manufacturer performs some tests, in which we compare the measurement
result with the result of measuring the same quantity by a much more accurate
(“standard”) measuring instrument – whose measurement results can be therefore
taken as actual values of the corresponding quantities. Bases on the results of each
test, we can determine the absolute value of the measurement error

|∆xi| = |x̃i − xi|,

and we can then calculate the largest of these absolute values δ
def
= max

i
|∆xi|. It

is well known that, based on finitely many tests, we cannot determine the exact
upper bound, so we need to use some statistical methods, e.g.:
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• get a confidence interval for max |∆x| corresponding to the allowed very
small probability of exceeding this bound, and

• use the upper endpoint of this confidence interval as ∆.

We have an additional information. In this case, we have some additional
information about uncertainty. Namely:

• we know that there is the actual (unknown) bound B on the absolute value
of the measurement error, the bound which can take any value from δ to ∆,
and

• we know that the actual value x is somewhere between x̃−B and x̃+B.

How does this help? From the purely mathematical viewpoint, it is
the same statement. At first glance, one may ask: how can this additional
information help? We use more words than before to describe what we know, but,
from the purely mathematical viewpoint, the result is the same:

• values x inside the interval [x̃−∆, x̃+ ∆] are possible, while

• values x outside the interval are not possible.

Indeed, it is possible that B = ∆, in which case all values from the interval
[x̃ − B, x̃ + B] = [x̃ − ∆, x̃ + ∆] are possible. On the other hand, we know that
B ≤ ∆, so from the fact that |∆x| ≤ B we conclude that |∆x| = |x̃− x| ≤ ∆ and
thus, that any value outside the interval [x̃−∆, x̃+ ∆] are not possible.

In spite of this mathematical equivalence, we will show that from the MaxEnt
viewpoint, this idea does help.

From the MaxEnt viewpoint, the above more detailed description of
uncertainty leads to a different – and more intuitive – result. In the
detailed description, we have two unknown: B and x (or, equivalently, B and ∆x).

For B, the only information that we have is that B is between δ and ∆. So,
if we apply MaxEnt to this information to select a probability distribution for the
unknown B, we conclude that B is uniformly distributed on the interval [δ,∆], with

probability density ρb(B) =
1

∆− δ
for B ∈ [δ,∆] and ρb(B) = 0 for B 6∈ [δ,∆].

For each possible bound B ∈ (δ,∆), we know that ∆x is located in the interval
[−B,B]. If we apply the MaxEnt to the information to select a probability for
the unknown ∆x, we conclude that that for each B, the unknown ∆x is uniformly

distributed on the interval [−B,B], with the probability density ρ(∆x |B) =
1

2B
for ∆x ∈ [−B,B] and ρ(∆x |B) = 0 for ∆x 6∈ [−B,B].

To get the final distribution for ∆x, we need to combine the probabilities
corresponding to different values B. Thus, we end up with the following pdf:

ρ(∆x) =

∫ ∆

δ

ρb(B) · ρ(∆x |B) dB =

∫ ∆

δ

1

∆− δ
· ρ(∆x |B) dB.
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For each ∆x, the value ρ(∆x |B) is only different from 0 when |∆x| ≤ B.
When |∆x| ≤ δ, the inequality |∆x| ≤ B holds for all possible valuesB ∈ [δ,∆],

thus we get

ρ(∆x) =

∫ ∆

δ

1

∆− δ
· 1

2B
dB =

1

2(∆− δ)
· (ln(∆)− ln(δ)).

On the other hand, when |∆x| is between δ and ∆, the inequality |∆x| ≤ B is only
satisfies from values B ≥ |∆x|; thus, only for these values, ρ(∆x |B) are different
from 0, and we get:

ρ(∆x) =

∫ ∆

|∆x|

1

∆− δ
· 1

2B
dB =

1

2(∆− δ)
· (ln(∆)− ln(|∆x|)).

Thus, we arrive at the following pdf:

• when |∆x| ≤ δ, we get ρ(∆x) =
1

2(∆− δ)
· (ln(∆) − ln(δ)), i.e., the distri-

bution is uniform here; however,

• when δ ≤ |∆x| ≤ ∆, we get ρ(∆x) =
1

2(∆− δ)
· (ln(∆)− ln(|∆x|).

One can easily check that when |∆x| tends to ∆, the value of this pdf ρ(x) tends
to 0. Thus, this MaxEnt-related function is indeed in good accordance with our
intuition.

5 Cases The Upper Bound ∆ Is Estimated Theo-
retically

Analysis of the problem. Let us now consider the cases when the upper bound
∆ is determined theoretically.

How is it determined? Usually, there are several different sources of the mea-
surement error. As a result, the overall measurement error ∆x is a sum of several
components corresponding to these different sources:

∆x = ∆1x+ . . .+ ∆mx.

So, specialists in different types of uncertainty estimate the bounds ∆i on the
(absolute value of the) corresponding component ∆ix of measurement error, and
then we add these bounds to get a bound ∆ = ∆1 + . . . + ∆m for the overall
measurement error.

We have an additional information. In this case, we have some additional
information about uncertainty. Namely:

• we know that there are actual value ∆ix corresponding to different compo-
nents of measurement error; each of these components can take any value
from −∆i to ∆i; and
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• we know that the actual value ∆x is equal to the sum of all these compo-
nents: ∆x = ∆1x+ . . .+ ∆mx.

How does this help? From the purely mathematical viewpoint, it is
the same statement. Similarly to the previous section, at first glance, one may
ask: how can this additional information help? We use more words than before to
describe what we know, but, from the purely mathematical viewpoint, the result
is the same:

• values ∆x inside the interval [−∆,∆] are possible, while

• values ∆x outside this interval are not possible.

Indeed, since |∆ix| ≤ ∆i, we can conclude that

|∆x| = |∆1x+ . . .+ ∆mx| ≤ |∆1x|+ . . .+ |∆mx| ≤ ∆1 + . . .+ ∆m = ∆.

Vice versa, every value ∆x for which |∆x| ≤ ∆ can be described as the sum
∆x = ∆1x + . . . + ∆mx of value ∆ix for which |∆ix| ≤ ∆i: indeed, we can take

∆ix =
∆x

∆
·∆i.

In spite of this mathematical equivalence, we will show that from the MaxEnt
viewpoint, this idea does help.

From the MaxEnt viewpoint, the above more detailed description of
uncertainty leads to a different – and more intuitive – result. In the
detailed description, m unknown: ∆1x, . . . , ∆mx. For each of these components
∆ix, we know that it can take any value between −∆i and ∆i. So, if we apply
MaxEnt to this information to select a probability distribution for the unknown
B, we conclude that ∆ix is uniformly distributed on the interval [−∆i,∆i], with

probability density ρi(∆xi) =
1

2∆i
for ∆ix ∈ [−∆i,∆i] and ρi(∆ix) = 0 for

∆ix 6∈ [−∆i,∆i].
We have no information about the correlation between different components

∆ix. Thus, if we apply MaxEnt, we conclude that all these components are inde-
pendent. So, ∆x is the sum of m independent unform distributions.

Such distributions are well known, and for them, ρ(∆x) tends to 0 as ∆x
approaches ∆ or −∆. In particular, for m = 2, we have

ρ(∆x) =

∫
ρ1(∆1x) · ρ2(∆x−∆2x) d(∆1x).

The product is different from 0 – and equal to
1

4∆1 ·∆2
– when both pdfs are

different from 0, i.e., when −∆1 ≤ ∆1x ≤ ∆1 and −∆2 ≤ ∆x − ∆1x ≤ ∆2.
By combining these inequalities, we conclude that the product is different from 0
when

max(−∆1,∆x−∆2) ≤ ∆1x ≤ min(∆1,∆x+ ∆2).
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Thus, the value ρ(∆x) is equal to

ρ(x) =
min(∆1,∆x+ ∆2)−max(−∆1,∆x−∆2)

4∆1 ·∆2
.

For ∆x = ∆, the numerator turns into ∆1 − (∆ − ∆2) = 0. So, this pdf is
continuous on the whole real line – in good accordance with our intuition.

What is the shape of this distribution? We can see that it is a sum of two
distributions symmetric relative to changing sign ∆ix→ −∆ix, so their sum is also
symmetric, and it is thus sufficient to consider only values ∆x ≥ 0. Without losing
generality, we can always assume that ∆1 ≤ ∆2. In this case, min(∆1,∆x+∆2) =
∆1, and −∆1 ≥ ∆x−∆2 when ∆x ≤ ∆2 −∆1. So:

• when |∆x| ≤ ∆2 −∆1, we get ρ(∆x) =
2∆1

2∆1 ·∆2
=

1

2∆2
;

• when |∆x| ≥ ∆2 −∆1, we get ρ(∆x) =
∆1 − |∆x|+ ∆2

4∆1 ·∆2
=

∆− |∆x|
4∆1 ·∆2

.

So:

• when |∆x| ≤ ∆2−∆1, we have a uniform distribution, with a constant pdf,
and

• when ∆1 −∆1 ≤ |∆x| ≤ ∆, the pdf ρ(x) linearly decreases to 0.

So, in general, we get the trapezoidal distribution – exactly what describes interval
uncertainty in the fuzzy approach. Since the whole idea of fuzzy uncertainty is to
describe our intuitive (imprecise) knowledge, the fact that we get the same result
is a very good sign.

Why cannot we apply the same idea to the case of normal distribution?
Indeed, why cannot we apply the same idea to situations when we only know
the first two moments. In these situations, similarly, the measurement errors
usually consists of several independent components, and the overall mean and
variance are obtained by adding the means and variances corresponding to different
components: E = E1 + . . .+ Em and V = V1 + . . .+ Vm.

A short answer to this question is: yes, we can, but for normal distributions,
it will not change anything. Indeed, if we apply the above approach, and apply
MaxEnt to each of the components, we conclude that each of the error components
is normally distributed with mean Ei and variance Vi. The overall error is thus the
sum of several independent normally distributed random variables and is, thus,
itself, normal with the mean E = E1 + . . .+Em and variance V = V1 + . . .+ Vm.
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