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Abstract : Privacy means that not everything about a person is known, that
we need to ask additional questions to get the full information about the person.
It therefore seems to reasonable to gauge the degree of privacy in each situation
by the average number of binary (“yes”-“no”) questions that we need to ask to
determine the full information – which is exactly Shannon’s entropy. The problem
with this idea is that it is possible, by asking two binary questions – and thus,
strictly speaking, getting only two bits of information – to sometimes learn a large
amount of information. In this paper, we show that while entropy is not always an
adequate measure of the absolute loss of privacy, it is a good idea for gauging the
average loss of privacy. To properly evaluate different privacy-preserving schemes,
so also propose to supplement the average privacy loss with the standard deviation
of privacy loss – to see how much the actual privacy loss cab deviate from its
average value.
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1 Formulation of the Problem

Statistical databases: tradeoff between privacy and benefits. Current
data mining techniques enable us to extract a lot of useful information from data.

For example, by analyzing information about different medical patients – what
were the symptoms, what treatment was applied, what were the results – we can
uncover new dependencies and thus, potentially, come up with new recommenda-
tions that would lead to a better cure. E.g., in situations where there are two or
more possible treatments, by taking into account the patients’ age, gender, ethnic
origin, habits,, etc., we may be able to describe for which patients which treatment
is more promising.

Similarly, by analyzing people’s reaction to different movies, books, or foods,
researchers have found unexpected correlations that enable them, based on the
user’s previous selections, to recommend new books (movies, foods, etc.) that will
be, with high probability, enjoyed by the user.

However, these benefits come at a price: to be able to achieve them, users
need to disclose a large amount of information that they would normally keep
private – e.g., details of their illnesses, their vices and habits. This information
can be potentially used to harm the person – e.g., insurance companies can use
information about a person’s health to increase the payments. companies may
want to fire people in imperfect health, etc. No matter how we try to anonymize
the data, if a database contain enough information about a person, this information
can often narrow the person down.

The more detailed information, the larger the benefits – but at the same time
the larger the corresponding loss of privacy. Then, the designers and users of large
databases must decide how much privacy they are willing to sacrifice to get the
corresponding benefits.

To maintain an appropriate tradeoff, we need to be able to gauge privacy
and benefits. To be able to formulate the corresponding problem in precise terms,
it is necessary to be able to gauge both the loss of privacy and the corresponding
gains.

Benefits are the easiest to gauge: simply by asking how much money the user is
willing to pay for the corresponding benefit. The monetary equivalents of different
benefits have been used in economics, in particular, in economics of medicine and
in economics of entertainment.

In contrast, gauging loss of privacy is not easy. Most people have a good
understanding how much they are willing to pay to improve their health or to
watch a good movie, but they do not have a good feeling for a loss of privacy: in
contrast to health and entertainment, the amount of money that people are willing
to pay for a certain loss of privacy varies widely.
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Since we cannot gauge the loss of privacy based on people’s reactions, it is
desirable to come up with an objective measure for a loss of privacy.

Entropy as a natural measure of the amount of information. Privacy meas
that an outsider is uncertain about the state of the person. Loss of privacy means
that this uncertainty decreases – and a complete loss of privacy means that there
is no uncertainty left, an outsider knows everything about the given person. Thus,
as a measure of privacy, it is reasonable to consider the amount of uncertainty –
i.e., the entropy of the corresponding distribution; see, e.g., [1, 2].

Entropy can be defined as the average number of binary (“yes”-“no”) questions
that we need to ask to uniquely determine the alternative. If we have n alterna-
tives, and we do not the probability of each of these alternatives, then the entropy
is equal to S = log2(n): since after k questions, we have 2k possible combinations
of answers and thus, we can determine 2k different alternatives.

If we know the probability p(ai) of different alternatives a1, . . . , an, then the

entropy is equal to S = −
n∑

i=1

p(ai) · log2(p(ai)).

Problem with using entropy to gauge privacy. At first glance, entropy
sounds like a reasonable measure of loss of privacy. However, it has a problem;
see, e.g., [3, 4]. For example, suppose that a person – e.g., a celebrity – wants to
hide her address. We know that she lives in a certain town, on a street where all
rich people live, but we do not her house number. The street is long, it has houses
numbered from 1 to 2000, with all the numbers used.

The entropy of this situation is S ≈ 11. In other words, we need 11 binary
questions to uniquely determine the celebrity’s address.

A user can ask a simple “yes”-“no” question: Is the house number where she
lives smaller than 1000 or greater or equal than 1000? Upon receiving the answer,
the user get exactly 1 bit of information. This information does not provide the
user with much help in finding the desired house: no matter what is the answer,
yes or no, the user, instead of a very difficult task of searching through 2,000
possible homes, now has a slightly simpler but still very difficult task of searching
through 1,000 possible home. In this case, disclosing one bit of the information
did not lead to a big loss of privacy. This makes sense.

But suppose now that the user asks a second question: is the house number
smaller than 1001 or greater than or equal to 1001? This is also a one-bit question,
and if this was the only question the user asked, it would not bring the user much
information.

However, if it so happens that the celebrity lives in the house number 1000,
then, by asking these two one-bit questions, the user will learn the celebrity’s
address: indeed,

• from the answer to the first question, the user will learn that the address is
greater than or equal to 1000, and

• from the answer to the second question, the user will learn that it is smaller
than 1001,
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so 1000 is the only option.
Thus, by asking two simple open-bit questions, each of which does not decrease

the privacy much, we can get a serious breach of privacy.

What we show in this paper. In this paper, we show that while entropy may
not be a good measure of exact loss of privacy, it is a perfect measure of the average
loss of privacy.

2 Describing the Problem in Precise Terms and
the Desired Result

Original situation. In the original situation, we have n possible alternatives
a1, . . . , an describing a person, with probabilities p(a1), . . . , p(an) of different al-

ternatives. These probabilities should of course add up to 1:
n∑

i=1

p(ai) = 1.

The amount of privacy in this situation can be described by the entropy

S0 = −
n∑

i=1

p(ai) · log2(p(ai)). (1)

What is a query and how it decreases privacy. Let us consider a generic
query, not necessarily a binary question. Let m denote the number of possible
answers to this query. For each alternative ai, we get one of these m answers.

For every j from 1 to m, let us denote by Ej the set of all the alternatives ai for
which, as a result of this query, we got the j-th answer. The sets E1, . . . , Em form
a partition of the original set of n alternatives, in the sense that every alternative
ai belongs to one and only one of these sets.

Thus, after receiving the j-th answer, we know that the actual alternative ai
characterizing the person belongs to the set Ej . What is the resulting privacy?

Once we know that the alternative ai belongs to the set Ej , then the probabil-
ities of all alternatives from outside Ej become zeros, while the probabilities of all
alternatives inside Ej change from the original probabilities p(ai) to new values

p(ai |Ej). Here, by definition of conditional probability, p(ai |Ej) =
p(ai)

p(Ej)
, where

p(Ej) =
∑

k:ak∈Ej

p(ak).

Thus, in this case, the privacy decreases to the new value

Sj = −
∑

i:ai∈Ej

p(ai |Ej) · log2(p(ai |Ej)). (3)

So, in the case of the j-th answer, the privacy decreases from the original value
S0 to the new value Sj , with a decrease of S0−Sj . We are interested in the average
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decrease of privacy, i.e., in the average value of this difference

∆S({Ej})
def
=

m∑
j=1

p(Ej) · (S0 − Sj). (4)

We want to prove that entropy is a reasonable way of describing the
average loss of privacy. In view of the above example, we want to make sure
that if we ask two queries, the resulting average loss of privacy cannot exceed the
sum of the two average privacy losses corresponding to each of the queries.

In precise terms, we consider two possible queries:

• a query corresponding to a partition E1, . . . , Em, and

• a query corresponding to a different partition E′
1, . . . , E

′
m′ .

If we ask both queries, then possible answers to both queries are possible pairs
(j, j′) of answers to both queries. For each such pair, we know that the alternative
belongs to both sets Ej and E′

j′ and thus, that it belongs to the intersection
Ej ∩ E′

j′ of these two sets. So, asking the two queries means that we consider a
new partition {Ej ∩ E′

j′} formed by such intersections.
What we want to prove is that the average loss of privacy corresponding to ask-

ing both queries does not exceed the sum of average privacy losses corresponding
to each of these queries, i.e., that

∆S({Ej ∩ E′
j′}) ≤ ∆S({Ej}) + ∆S({E′

j′}). (5)

Discussion. In the celebrity example, if we assume all 2,000 homes to be equally
probable, with probability of each home being the actual celebrity’s address equal
to 1/2,000, then by asking the corresponding two questions, we can sometimes gain
a lot of information. However, the probability of this situation is small (1/2,000),
so the average loss of privacy will still be small – on average, it will even less than
2 bits.

3 Proof of Our Main Result

To prove our result, let us find an easier-to-analyze expression for the average
privacy loss ∆S({Ej}). This value is computed in terms of entropies Sj corre-
sponding to different possible answers j. For each j, substituting the expression

p(ai |Ej) =
p(ai)

p(Ej)
for conditional probability into the formula (3) for Sj , we con-

clude that

Sj = −
∑

i:ai∈Ej

p(ai)

p(Ej)
· log2

(
p(ai)

p(Ej)

)
. (6)

The denominator p(Ej) is a common denominator for all the terms in this sum, so
we can simplify the expression by moving this common denominator outside the
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sum:

Sj = − 1

p(Ej)
·
∑

i:ai∈Ej

p(ai) · log2

(
p(ai)

p(Ej)

)
. (7)

Logarithm of the ratio is equal to the difference between the logarithms, so we
have

Sj = − 1

p(Ej)
·

 ∑
i:ai∈Ej

p(ai) · log2(p(ai))−
∑

i:ai∈Ej

p(ai) · log2(p(Ej))

 . (8)

In the second sum, the term log2(p(Ej)) does not depend on i and is, thus, a
common factor that can be taken out of the sum. The remaining sum is equal to∑
i:ai∈Ej

p(ai), i.e., equal to p(Ej). Thus, the formula (8) takes the following form:

Sj = − 1

p(Ej)
·

 ∑
i:ai∈Ej

p(ai) · log2(p(ai))− p(Ej) · log2(p(Ej))

 . (9)

The average loss of privacy is defined as

∆S({Ej}) =

m∑
j=1

p(Ej) · (S0 − Sj). (10)

We can separate this sum into a difference of two sums: corresponding to S0 and
corresponding to Sj . Thus, we get

∆S({Ej}) =

m∑
j=1

p(Ej) · S0 −
m∑
j=1

p(Ej) · Sj . (11)

In the first term in the right-hand side, S0 is a common factor, so this sum takes

the form S0 ·
m∑
j=1

p(Ej). The sum of these probabilities is simply 1, so the first sum

in the right-hand side of the formula (11) is simply S0. Thus, the formula (11)
takes the following simplified form:

∆S({Ej}) = S0 −
m∑
j=1

P (Ej) · Sj . (12)

Substituting the expression (9) instead of Sj in the formula for the sum, we con-
clude that

m∑
j=1

P (Ej) · Sj = −
m∑
j=1

∑
i:ai∈Ej

p(ai) · log2(p(ai)) +

m∑
j=1

p(Ej) · log2(p(Ej)). (13)

The first sum in the right-hand side of the formula (13) covers all possible alterna-
tives, no matter what answer we got to the query. Thus, this sum is simply equal
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to −
n∑

i=1

p(ai) · log2(p(ai)), i.e., to the original entropy S0. Hence, the formula (13)

takes the simplified form

m∑
j=1

P (Ej) · Sj = S0 +

m∑
j=1

p(Ej) · log2(p(Ej)). (14)

Substituting this expression into the formula (12), we conclude that

∆S({Ej}) = −
m∑
j=1

p(Ej) · log2(p(Ej)). (15)

Thus, after answering the query, the average amount of privacy that we lose is
equal to the entropy of the probability distribution of possible answers to the cor-
responding query.

Let us use this fact to prove the desired property (5). Indeed, according to
what we have just found, the left-hand side ∆S({Ej∩E′

j′}) of this inequality is the
entropy of the joint distribution of pairs (j, j′) of indices. The two terms ∆S({Ej})
and ∆S({E′

j′}) are, similarly, the entropies of the corresponding marginal distri-
butions:

• the distribution of the index j corresponding to the first query and

• the distribution of the index j′ corresponding to the second query.

It has been proven (see, e.g., [1]) that if we know the two marginal distribu-
tions, then the largest possible entropy corresponds to the case when the joint
distribution is independent, and the entropy of such independent joint distribu-
tion is equal to the sum of the entropies of the original marginal distributions.
Thus, for every possible joint distribution, its entropy cannot exceed the sum of
the entropies of the two marginal distributions – and this is exactly the desired
inequality (5). The statement is thus proven.

4 Beyond Average Privacy Loss

Need to go beyond the average privacy loss. In general, when we make
a decision, we take into account the expected gain or expected loss; see, e.g.,
[5, 6, 7, 8]. However, it is known that it is also important to take into account
risk: there is a difference between earning a dollar and participating in a lottery
in which we get nothing or two dollars with equal probability 0.5. To take this
difference into account, it is important to consider not just average gain or average
loss but also some characteristic describing how different the actual gain or loss
can be from the average value.

Idea. In statistics, the most widely used way to gauge this difference is by using
the standard deviation σ, which described the mean square deviation from the
mean: for a random variable ξ with the mean value µ, standard deviation is
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defined by the formula σ2 = E[(ξ−µ)2], where E[·] denotes the mean value. This
formula can also be equivalently written as σ2 = E[ξ2]− µ2; see, e.g., [9].

Resulting suggestion. It is therefore reasonable to use a similar characteristic,
to gauge not just the mean value of the privacy loss, but also the standard deviation
of the privacy loss S0 − Sj .

The standard deviation the difference between the constant S0 and the result-
ing privacy Sj is simply equal to the standard deviation of the privacy values, i.e.,
to the value σ for which

σ2 =

m∑
j=1

p(Ej) · S2
j − (S)2, (16)

where

S =

m∑
j=1

p(Ej) · Sj = S0 +

m∑
j=1

P (Ej) · log2(Ej).
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