
EDITORIAL

This special issue is devoted to the application of the Maximum Entropy Prin-
ciple (MaxEnt), especially in econometrics. In a sense, MaxEnt is a nonparametric
method for estimation of probability density functions, consistent with data and prior
information. It is one principle among other estimation principles in statistics.

Entropy is a quantitative measure of the uncertainty of a stochastic system.The
terminology ”entropy” in Shannon’s work was inspired from the famous formula given
by L. Boltzmann (Vorlesungen uber Gastheorie, Leipzig, 1895-1898)

H = −
∫ ∫ ∫

f(u, v, w)[log f(u, v, w)]dudvdw

to define the ”entropy” of a gas, when the velocity of the molecules is distributed
with probability density f . (in Statistical Mechanics).

The MaxEnt principle was rationalized by E. T. Jaynes (1982) as an estimation
principle. It was introduced into econometrics by the works of A. Golan, G. Jude and
D. Miller (1996) and G. Judge and R. Mittelhammer (2012).

What is a ”principle?”. Roughly speaking, a principle is a guide to a plausible way
of doing things. It is not a law, such as the law of large numbers, or the power law,
which asserts that, in most of situations, some fact is true. The best way to explain
the notion of principle is to look at some familiar principles in statistical estimation.

a) Maximum Likelihood Principle

Considering the random experiment of tossing a biased coin X with unknown
θ = P (X = 1). In addition, suppose we know that θ ∈ Θ = { 1

4
, 2

4
, 3

4
}. We toss that

coin 4 times, look at the outcomes then make an ”educated” guess as what is the most
likely value of θ among { 1

4
, 2

4
, 3

4
}. The density of X is

f(x, θ) = θx(1− θ)1−x1{0,1}(x)

For a given θ ∈ { 1
4
, 2

4
, 3

4
}, the joint density of the random sample X1, X2, X3, X4 is

g(x1, x2, x3, x4|θ) =

4∏
j=1

f(xj , θ) = θx1+x2+x3+x4(1− θ)4−(x1+x2+x3+x4 )

Let’s tabulate this probability for each θ:

θ 1
4

2
4

3
4

∑4
j=1 xj
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256
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256
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256
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256

1
g(.|θ) 9

256
16
256

9
256
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256
16
256
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256
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1

256
16
256
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256

4

From this table, we see that the probability of observing
∑4
j=1 xj = 0 is greatest

when θ = 1
4
, hence, in a kind of reverse logic, when

∑4
j=1 xj = 0, θ = 1

4
is a ”most

likely” value. Thus, we should ”guess” (estimate) θ to be 1
4

when we observe
∑4
j=1 xj =

0.
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By similar reasoning, we estimate θ by 1
4
, when

∑4
j=1 xj = 1. In summary,

ˆ

θ = 1
4
,

when
∑4
j=1 xj = 0 or

∑4
j=1 xj = 1;

ˆ

θ = 2
4

when
∑4
j=1 xj = 2; and

ˆ

θ = 3
4

when∑4
j=1 xj = 3 or

∑4
j=1 xj = 4. In other words,

ˆ

θ is the value θ∗ in Θ = { 1
4
, 2

4
, 3

4
} such

that
g(x1, x2, x3, x4|θ∗) = max

θ∈Θ
g(x1, x2, x3, x4|θ)

The estimator
ˆ

θ so obtained is called the maximum likelihood estimator (MLE) of θ.
This ”principle” is applied to general cases (when the parametric form of a density

is known) as follows.
Let X have density f(x, θ) for x ∈ Rm, θ ∈ Θ ⊆ Rd. Let X1, X2, ..., Xn be a

random sample from X. The joint density of the Xj
′s , as a function of θ, is called

the likelihood function, denoted as

Ln(θ|X1, X2, ..., Xn) =
n∏
j=1

f(Xj , θ)

The MLE of θ is defined to be a value
ˆ

θn(X1, X2, ..., Xn), if it exists, for which

Ln(
ˆ

θn|X1, X2, ..., Xn) = max
θ∈Θ

Ln(θ|X1, X2, ..., Xn)

Important remarks

(i) The above concept of estimators came from the plausible observation in our
simple example. It does not depend on the existence of moments. It only depends
on a specific form of the density function, with finitely dimensional unknown param-
eters. However, a priori, there is no reasons why this principle should lead to ”good”
estimators. In other words, with this principle as a guidance to search for estimators
(it provides a systematic method for constructing estimators), we still need to find
out whether or not MLEs are good (e.g., satisfying desirable properties, such as con-
sistency, asymptotically normal). As we will see, all this depends on more analytic
information about the model densities.

(ii) The MLEs are solutions of maximization problems. But maximization prob-
lems might not have solutions! i.e., MLEs might not exists! In such cases, we have
to look for other methods of estimation. The point is this. In nice situations, MLE
is a popular way to find good estimators. But it is by no means that it is a universal
method of estimation.

Rather than giving examples of MLEs, we provide a negative one, namely a real
situation where we cannot use MLE since simply its MLE does not exist!

A change-point model

Let X have density

f(x, θ) = ae−ax1(0≤x≤τ)(x) + be−aτ−b(x−τ)1(x>τ)(x)

where x ∈ R, θ = (a, b, τ) ∈ Θ = (0,∞)3.
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Given a random sample X1, X2, ..., Xn from X, let the random variable W (τ) be
the number of Xj ≤ τ . The log-likelihood is

logLn=

n∑
j=1

1(0≤Xj≤τ) log a−a
n∑
j=1

Xj1(0≤Xj≤τ)+

n∑
j=1

[1−1(0≤Xj≤τ)][log b−(a−b)τ ]

− b
n∑
j=1

Xj [1− 1(0≤Xj≤τ)]

can be put in terms of W (τ) and the order statistics X(1), X(2), ..., X(n) as

W (τ) log a− a
W (τ)∑
j=1

X(j) + (n−W (τ))[log b− (a− b)τ ]− b
n∑

j=W (τ)+1

X(j)

n!

For X(n−1) ≤ τ < X(n), the above expression is effectively

(n− 1) log a− a
n−1∑
j=1

X(j) − aτ + log b− b(X(n) − τ)

If we take
ˆ

b = 1

X(n)−
ˆ
τ
> 0 and let

ˆ
τ get close to X(n), logLn will tend to∞. Obviously,

an unbounded function cannot have a maximum. MLE for θ does not exist.

Remarks

(i) In a situation such as in the above example, when a method of estimation like
MLE cannpt be used, you should look for other methods of estimation (see a below
section for some other methods). The point is this. When ”considering” any method
of estimation, you have to make sure that the method is ”valid” in your problem under
investigation, and not just ”apply” some formulae!

(ii) Why MLE is a popular method for estimation?
Roughly speaking, for a class of ”nice” models (called regular models), the MLE

method provides consistent and asymptotically normal (asymptotically efficient) esti-
mators.

b) Excess Mass Principle

The above MLE principle is useful for finding good estimators of finitely dimen-
sional parameters of populations. For infinitely dimensional parameters, here is an-
other principle for nonparametric estimation, especially for high dimensions.

Let X be a random vector with values in Rd, having the unknown probability
density function f : Rd → R+. Given a random sample X1, X2, ..., Xn from X, we
wish to estimate f(x) at each given point x ∈ Rd.

While there are methods such as kernel methods or orthogonal functions (which
assume analytic properties of the unknown density), another approach, suggested by
J.A. Hartigan (1987), could be used when qualitative information about the unknown
density (such as its shape, geometric properties of its contour clusters) is available
rather than analytic information.

For α > 0, the α− level set of f is

Aα(f) = Aα = {x ∈ Rd : f(x) ≥ α}
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Since

f(x) =

∫ ∞
0

1Aα(x)dα

an estimator of f(x), say, fn(x;X1, X2, ..., Xn) could be obtained, by plug-in, if we can
estimate the sets Aα, for each α > 0. But then, what is a plausible way to estimate Aα
(of course, by some random set estimator) ? Again, by a plausible way, or a principle,
we mean a way of estimation which could lead to a good estimator.

Let dF (x) = f(x)dµ(x), where dµ(x) denotes the Lebesgue measure on Rd. Clearly,
(dF −αµ)(Aα) is the ”excess mass” of the set Aα at level α. Thus, we can consider the
signed measure dF − αµ = εα on Rd with εα(A) being the excess mass of A ∈ B(Rd)
at level α. Writting

A = (A ∩Aα) ∪ (A ∩Acα)

we see that, for any A ∈ B(Rd),

εα(A) ≤ εα(Aα)

i.e., the level set Aα has the largest excess mass at level α among all Borel sets. This
suggests a way to estimate Aα by using the empirical counterpart of dF −αµ, namely

εα,n = dFn − αµ

where

dFn =
1

n

n∑
i=1

δXi

with δx being the Dirac measure at the point x ∈ Rd.
The empirical excess mass, at level α, of A is εα,n(A) = (dFn − αµ)(A).
It is expected that, as n → ∞, εα,n(A) should converge to εα(A), so that maxi-

mizing εα,n(A) over A ∈ C (some subclass of Borel sets) could lead to good estimators
of Aα.

Note that, while this principle is an optimization problem, it is an optimization
of set-functions since A→ (dFn − αµ)(A) is a function whose argument A’s are sets,
and not a vector, or a function. It needs special optimization technique!

c) Maximum Entropy Principle

This is a principle for choosing a canonical probability distribution density function
among a set of relevant ones. It started with Laplace (see E.T. Jaynes, ”Where do
we stand on maximum entropy?” in R. D. Levine and M. Tribus, Eds., The Maximum
Entropy Formalism, MIT Press, Cambridge, Massachusetts, 1979, pp. 15-118). If
your unknown distribution has support on a finite set or on a bounded interval, and
no other information is available, then it makes sense to put the elements of the support
on an equal footing, that is to endow it with a uniform distribution. This is referred
to as Laplace’s insufficient reason principle. Now (see below) the uniform distribution
has the highest entropy among all densities on that support, the insufficient reason
principle is equivalent to the principle of maximum entropy.

Motivated by the success of statistical mechanics, the principle of maximum en-
tropy has been formalized as an inference procedure by Jaynes (Information theory and
statistical mechanics, Physical Review (106), 620-630, (109), 171-127, 1957). Thus, if
information about your distribution is that it is in a set F of densities, then the Max-
imum Entropy Principle postulates that you should seek the density whose entropy is
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maximum over F , i.e., solve

max
f∈F

H(f) = max{−
∫
f(x) log f(x)dx : f ∈ F}

Note that the class F is formed by constraints or evidence on possible densities.
Stochastic systems are expected to evolve into states with higher entropy as they

approach equilibrium. The entropy of a probability density f is interpreted as a mea-
sure of information carried by f , where higher entropy means less information (more
uncertainty or more lack of information). The main idea behind the maximum entropy
principle is this. We should select a probability distribution which is consistent with
our knowledge and introduce no unwarranted information. Any distribution (satisfy-
ing known constraints) which has smaller entropy will contain more information (less
uncertainty) and hence says something stronger than what we know. The distribution
with maximum entropy (satisfying our known constraints) is the one which should be
least surprising in terms of the predictions it makes. The maximum entropy principle
guides us to the best distribution which reflects our current knowledge and it tells
us what to do if experimental data do not agree with predictions coming from our
chosen distribution: look for previously unseen constraints and maximize entropy over
all available constraints, including the new ones.

The Maximum Entropy Principle is useful in a variety of situations (e.g., in Econo-
metrics) with several advantages such as:

(i) it incorporates as much (or as little) information as there is available,
(ii) it makes no assumption on a particular form of the joint distribution,
(iii) it can be applied to both numerical and qualitative random variables (as it

only involves the distributions and not the ”values” that the random ”elements” take,
for example, categorical variables such as those take ”values” as ”low, middle, high”),

(iv) it can take into account of any form of constraints, not only moments and
linear correlations.
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