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Abstract : Probabilistic graphical models are a very efficient machine learning
technique. However, their only known justification is based on heuristic ideas,
ideas that do not explain why exactly these models are empirically successful. It
is therefore desirable to come up with a theoretical explanation for these models’
empirical efficiency. At present, the only such explanation is that these models
naturally emerge if we maximize the relative entropy; however, why the relative
entropy should be maximized is not clear. In this paper, we show that these models
can also be obtained from a more natural – and well-justified – idea of maximizing
(absolute) entropy.
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1 Formulation of the Problem

Need to know probabilities. To fully describe the state of an object or a
system, we need to know the values of the large number of quantities x1, . . . , xn.
It is desirable to know which combinations x = (x1, . . . , xn) of values of these
values are possible, and what is the frequency with which different combinations
appear. In other words, we need to know the probability density ρ(x) of different
combinations x.

Bayesian models. In some situations, we know causal relation between the
components of the system and thus, between different quantities. For example, we
know that:

• x1 directly influences x2,

• x2 directly influences x3, and

• x4 and x5 jointly influence x6.

This influence can be described by describing the conditional probability densities
ρ2|1(x2 |x1), ρ3|2(x3 |x2, and ρ6|4,5(x6 |x2, x4) corresponding to different combina-
tions of the values xi. Based on these conditional probabilities, we can find the
joint distributions of the corresponding sets of quantities:

ρ1,2(x1, x2) = ρ2|1(x2 |x1) · ρ1(x1),

ρ2,3(x2, x3) = ρ3|2(x3 |x2) · ρ2(x2),

thus
ρ1,2,3(x1, x2, x3) = ρ3|2(x3 |x2) · ρ2|1(x2 |x1) · ρ1(x1),

and
ρ4,5,6(x4, x5, x6) = ρ6|4,5(x6 |x4, x5) · ρ4,5(x4, x5).

It is reasonable to assume that quantities which are not thus related are inde-
pendent. For example, since we did not assume any relation between x4 and x5,
it is reasonable to assume that

ρ4,5(x4, x5) = ρ4(x4) · ρ5(x5).

Since we did not assume any dependence between the variables from the first
group (x1, x2, and x3) and the variables from the second group (x4, x5, and x6),
we conclude that

ρ(x1, x2, x3, x4, x5, x6) = ρ1,2,3(x1, x2, x3) · ρ4,5,6(x4, x5, x6).

Thus, we get
ρ(x1, x2, x3, x4, x5, x6) =

ρ3|2(x3 |x2) · ρ2|1(x2 |x1) · ρ1(x1) · ρ6|4,5(x6 |x4, x5) · ρ4(x4) · ρ5(x5).
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In general, the whole function ρ(x1, . . . , xn) is then represented as a product of
several functions, each of which depends only on a small number of directly related
quantities. Such probabilistic distributions are known as Bayesian models.

Probabilistic graphical models. Bayesian models are applicable if the direct
influence relation is a strict order, without cycles:

• if x1 influences x2, then x2 cannot influence x1;

• if x1 influences x2 and x2 influences x3, then x3 cannot directly influence
x1, etc.

In many other situations, we know that several quantities are influencing each
other. In this case, we cannot use the Bayesian models.

To cover such situations, researchers decided to follow the same pattern:
namely, the corresponding probability distribution has the form

ρ(x1, . . . , xn) =
∏
C

fC(xC),

where C are small-size subsets of the set {1, . . . , n} and xC is a combination of
variables xi corresponding to i ∈ C. In this description, each set C represents the
set of variables xi which affect each other.

For example, for C = {3, 5, 6}, the notation fC(xC) means fC(x3, x5, x6). Such
probabilistic models became known as probabilistic graphical models; see, e.g., [1].

Probabilistic graphical models: successes and challenges. Probabilistic
graphical models turned out to be very efficient: until the recent emergence of
deep learning, they were one of the most empirically successful tools in machine
learning.

While from the pragmatic viewpoint, probabilistic graphical models have been
a great success, from the theoretical viewpoint, they remained a mystery. Yes, we
have a heuristic justification – similarity to Bayesian networks. However, usually,
each such heuristic justification can be used to justify several slightly different
models. So why are necessarily theses models empirically successful?

Natural approach to selecting a single model under uncertainty: max-
imum entropy approach. In our situation, we only have partial information
about the probability distributions – namely, we only have information (in general,
partial) about the marginal probability distributions of the combinations of vari-
ables xC corresponding to several small sets C of mutually dependent quantities.

In situations in which we only have partial information about the probability
distribution – and thus, several different probability distributions are consistent
with this information – a reasonable idea is to select a distribution that retains this
uncertainty as much as possible. For example, if all we know about a probability
distribution of a single variable is that this variable is always located on the interval
[0, 1], and we have no reason to assume that one of the values from this interval is
more probable than others, it is reasonable to consider a uniform distribution for
which all the values from this interval are equally probable.
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In general, the uncertainty of a probability distribution ρ(x) can be described

by its entropy S
def
= −

∫
ρ(x) · ln(ρ(x)) dx; see, e.g., [2, 3]. From this viewpoint, the

distribution with the largest uncertainty is the distribution with the largest en-
tropy. Thus, if several probability distributions are consistent with our knowledge,
it is reasonable to select a distribution with the largest possible entropy.

What is known. To the best of our knowledge, until now, there has been no
justification for these models in terms of the maximum entropy principle. What
is known is that these models can be obtained if we maximize relative entropy∫

ρ(x) · ln
(
ρ(x)

ρ0(x)

)
dx

for some distribution ρ0(x); see, e.g., [4, 5, 6, 7].

Remaining problem and what we do in this paper. The main remaining
problem is that, in contrast to the (absolute) entropy S whose maximization is
well-justified, the reason for maximization of relative entropy is much less clear.

In this paper, we show that the probabilistic graphical models can be justified
based on the general maximum entropy principle, without the need to involve
relative entropy.

2 Definitions and the Main Result

What partial information we can have: examples. We may have different
information about the marginal distribution ρC(xc) =

∫
ρ(xC , x−C) dx−C , where

−C denotes a complement to the set C. For example:

• We may know moments of this distribution

Mni,...,nj

def
=

∫
xni
i · . . . · x

nj

j · ρC(xC) dxC .

• Alternatively, we may know the conditional probability distribution

ρi |C−i(xi |xC−i) =
ρC(xi, xC−i)∫
ρC(x′i, xC−i) dx

′
i

.

What partial information we can have: a general description. In general,
for each of the given small sets C of mutually dependent variables, we have one of
more constraints of the type

FC,α = vC,α (1)

corresponding to different indices α, where vC,α is a known value and FC,α is a
known functional depending only on the marginal distributions

ρC(xC) =

∫
ρ(xC , x−C) dx−C . (2)
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Maximum entropy approach. We want to maximize the entropy

S = −
∫
ρ(x) · ln(ρ(x)) dx (3)

under:

• the constraints (1) corresponding to different C and α and

• the constraint that the overall probability is 1:
∫
ρ(x) dx = 1.

By applying the Lagrange multiplier method to this constraint optimization
problem, we can reduce it to the following unconstrained optimization problem of
maximizing the expression

−
∫
ρ(x) · ln(ρ(x)) dx+ λ ·

∫
ρ(x) dx+

∑
C

∑
α

λC,α · (FC,α − vC,α), (4)

for some constants λ and λC,α (Lagrange multipliers).
Differentiating the maximized expression with respect to ρ(x), taking into

account that the derivative of a constant is 0, and equating the derivative to 0, we
conclude that

− ln(ρ(x))− 1 + λ+
∑
C

∑
α

λC,α ·
∂FC,α
∂ρ(x)

= 0. (5)

Since each expression FC,α depends only on the marginal probabilities ρC(xC),
we can use the chain rule and conclude that

∂FC,α
∂ρ(x)

=
∂FC,α
∂ρC(xC)

· ∂ρC(xC)

∂ρ(x)
. (6)

Due to the formula (2), we have

∂ρC(xC)

∂ρ(x)
= 1,

hence
∂FC,α
∂ρ(x)

=
∂FC,α
∂ρC(xC)

. (7)

Thus this derivative depends only on the values xC . Hence, for each set C, the
partial sum

sC
def
=
∑
α

λC,α ·
∂FC,α
∂ρ(x)

(8)

also depends only the values xC : sC = sC(xC). Substituting the expression (8)
into the formula (5), we conclude that

− ln(ρ(x))− 1 + λ+
∑
C

sC(xC) = 0.
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Thus,

ln(ρ(x)) = −1 + λ+
∑
C

sC(xC).

We can move the constant −1 + λ into one of the terms sC0(xC0), so we get

ln(ρ(x)) =
∑
C

s′C(xC), (9)

where:

• s′C0
(xC0) = sC0(xC0)− 1 + λ and

• s′C(xC) = sC(xC) for C 6= C0.

By applying exp to both sides of the formula (9), we get the desired expression

ρ(x) =
∏
C

fC(xC),

where fC(xC)
def
= exp(s′C(xC)). The statement is proven.
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