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Abstract : From the concept of generalized mixed equilibrium problems, we intro-
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space. We also apply our main result for generalized equilibrium problems and
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1 Introduction

The fixed theory plays an important role in nonlinear functional analysis and
becomes a very useful tool in various fields. In applications to neural networks,
fixed point theorems can be used to design a dynamic neural network in order
to solve steady state solutions (see [I]) and consider the stability of impulsive
cellular neural networks with time-varying delays (see [2]). Some methods have
been proposed to solve the fixed point theorem; see, for example, [3 [4] and the
references therein. Let H be a real Hilbert space and C be a nonempty closed
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convex subset of H. A point z € C' is called a fized point of T if Tx = x. The set
of fixed points of T' is denoted by set Fiz:(T) := {x € C : Tx = z}.
A mapping T of C' into itself is called nonezpansive if

[Tz =Tyl < [l =y, Yo,y € C.

Definition 1.1. Let A: C' — H be a mapping. Then A

(i) is called monotone if

(Az — Ay, xz —y) > 0,Va,y € C.
(ii) is called p-strongly monotone if there exists a positive constant p such that
2
11) 1s called p-Lipschitzian 1f there exists a positive constant p such that
iii) is called p-Lipschitzian if th i iti h th

[Az = Ayl < plle =y, v,y € C.

(iv) is called a-inverse strongly monotone if there exists a positive real number
a > 0 such that

(Az — Ay, z — 1) > a||Az — Ay||* Yo,y € C.

Let A: C — H be a mapping. The variational inequality problem is to find a
point w € C such that
(Au,v —u) >0 (1.1)

for all v € C. The set of solutions of the variational inequality is denoted by
VI(C,A). The applications of the variational inequality problem has been ex-
panded to problems from economics, finance, optimization and game theory, see
[5] and the references therein.

Let F': CxC — R be a bifunction and A : C — H be a nonlinear mapping and
¢ : C'— R be a real-valued function. The generalized mized equilibrium problem
is to find 2 € C' such that

Fla,y) + ¢(y) — ¢(x) + (Az,y — x) > 0, (1.2)

for all y € C, see [6]. The set of solutions of (IL2)) is denoted by GM EP(F, ¢, A),
that is

GMEP(F,p,A) ={z € C: F(z,y) + p(y) — p(z) + (Az,y —x) > 0,Vy € C}.

If o = 0, then (L2) reduces to the generalized equilibrium problem. The set
of solution of generalized equilibrium problem is denoted by EP(F, A); see, for
example, [7] and [§]. If F = 0, = 0, then problem ([[2) reduces to (LI). If
A =0, then ([[2) reduces to the mized equilibrium problem. The set of solutions
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of mixed equilibrium problem is denote by M EP(F, ¢); see, for example [9] and
[10). If ¢ =0, A = 0, then problem (2] reduces to the equilibrium problem. The
set of solutions of the equilibrium point is denoted by EP(F'). Finding a solution
of equilibrium problem can be applied to many problems in physics, optimization
and economics. Several people have proposed some useful methods for solving the
generalized mixed equilibrium problem, generalized equilibrium problem, mixed
equilibrium problem and equilibrium problem; see, for example, [7} 1T} 12} T3] [14]
and the references therein. In the past few years, many authors studied the systems
of equilibrium problems and systems of generalized equilibrium problems. Several
iterative methods have been proposed to solve the solution sets of such problems
and the solution sets of various nonlinear operator problems in Hilbert spaces; see,
for example, [15, [16] (17, [I8, 19] and the references therein.

In 2008, Jian-Wen Peng and Jen-Chih Yao [6] defined a mapping VRS2 - SN
C as follows: For r > 0 and =z € H,

1
TFD(@) ={z € C: F(z,y) +¢(y) —¢(2) + ~{y — 2,2 —7) > 0,¥y € C}.
They showed that TT(F“'O) is single-valued and firmly nonexpansive and satisfies
Fiz(T"¥)) = MEP(F, ).

In 2011, Gang Cai and Shangquan Bu [20] introduced a new iterative algorithm
by hybrid method for finding a common element of the set of solutions of finite
general mixed equilibrium problems and the set of solutions of a general variational
inequality problem for a finite family of inverse strongly monotone mappings and

the set of common fixed points of infinite family of strictly pseudocontractive
mappings as follows:

Un, :TT(A};%’(FM)(I—TM,nBM)Tr(JSN_I;;WM_1)(I—TMfl,nBMfl) . 'Tr(fijm)(f —r1,nB1)Tn,
yn = Poc(I = ANAN)Pc(I = AN_1AN_1)-- Pc(I — A2 A2)Pc(I — A1 A1)un,

zn = anyYn + (1 — an)Snyn,

Cnt1={2€Cn:|zn — 2| < |lzn — 2|1},

Tpt1 = Pcn+1xo,Vn > 1,

and proved a strong convergence theorem of the sequence {x,,} under suitable
conditions.

Recently, Gang Cai and Shangquan Bu [2I] studied a new general iterative
scheme for finding a common element of the set of solutions of finite general mixed
equilibrium problems, the set of solutions of finite variational inequalities for coco-
ercive mappings, the set of solutions of common fixed points of an infinite family of
nonexpansive mappings and the set of solutions of fixed points of a nonexpansive
semigroup in Hilbert space as follows:

r1 =x € C,
FM_1,0M—
on :Tr(;%’vM)(I*TM,nBM)Tr(MAZL}L oM 1)(17TM_1,nBM—1) .. 'Tr(f},b’vl)(l — 110 B1 ),
un = Po(I = ANnAN)Pc(I — AN—1nAN-1) - Pc(I — A2,nA2)Pc(I — A1,nA1)zn,
Tn41 = anf(snmn) + BnTn + (1 — Bn — Oén)W(Tn)Snun,Vn >1,
(1.4)
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and proved a strong convergence theorem of the sequence {x,,} under appropriate
conditions of parameter {c,} and {3,}.

Very recently, Gang Cai and Shangquan Bu [22] introduced two iterative algo-
rithms for finding a common element of the set of solutions of finite general mixed
equilibrium problems and the set of solutions of finite variational inequalities for
inverse strongly monotone mappings and the set of common fixed points of an
asymptotically k-strictly pseudocontractive mapping in the intermediate sense in
a real Hilbert space as follows:

Un, =Tr(]€],\fl’wM)(I*TM,nBM)Tr(ﬂﬁfi,va*l)(I*TM—l,nBM—l) - -Tr(ffl’m)(l —71,nB1)zn,

Zn = Pc(] - )\N,nAN)PC(I —_ )\N—l,nAN—l) o Pc(l —_ /\Q,nAQ)Pc(I —_ /\l,nAl)Zru

kn = 6nzn + (1 — 6,)T"2n,

yn = (1 — an)zn + ankn,

Cnt1={2€Cn:|lyn — 2> < lzn — 2[1> + 60},

T4l = Pcn+1:vo,Vn > 1.

(1.5)
Under suitable conditions, they proved the sequence {x,} converges strongly to
an element of a set ﬂf\ik GMEP (Fg, pr, Ax) N ﬂivzl VI(C,A;)F(T) where By
and A; is uy -inverse strongly monotone and 7; -inverse-strongly monotone, re-
spectively, for every k € {1,2,..., M}, i€ {1,2,...,N}.
After we have considered these research, we have the following questions.

1. Can we prove a strong convergence theorem for finding a common solution
of the set of a finite family of generalized mixed equilibrium problems by

not using the composite form of mappings 7,""% in @3), @C4) and @TH)?

2. Can we use the different method from [20], [2I] and [22] to prove a strong
convergence theorem for finding a common solution of the set of a finite
family of generalized mixed equilibrium problems?

Let F: C x C — R be a bifunction. For every i =1,2,.... N ;let A; : C — H
be mappings and ¢ : C' — R be a real-valued function. From ([2)), we introduce
the new problem is to find x € C' such that

N
Pla,y) +ply) = ¢(z) + (O aidia.y ) = 0, (16)

for all y € C' and Zivzl a; = 1. This problem is called the modified gener-
alized mized equilibrium problem. The set of solutions of (6] is denoted by
GMEP(F, o, a;A;), that is,

N
GMEP(F,p, Z a; A;) :{:c €C: F(x,y)+¢(y) — p(x)

N N
+ (Y aidiny—2) 0,9y € CY ai=1}.

i=1 i=1
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N
If A= A, for every i =1,2,..., N, then GMEP(F, ¢, Z%‘Ai) reduces to
i=1

GMEP(F,p,A).

In this paper, using (L), we prove a strong convergence theorem for finding
a common element of the set of fixed point of an infinite family of nonexpansive
mappings and the set of a finite family of generalized mixed equilibrium problems
in Hilbert space. We also utilize our main result to prove a convergence theorem for
a finite family of generalized equilibrium problems and a finite family of variational
inequalities problems.

2 Preliminaries

Let H be a real Hilbert space and C' be a nonempty closed convex subset
of H. We denote weak and strong convergence by notations “ — 7 and “ — 7,
respectively. In a real Hilbert space H, it is well known that

2 2 2 2
ez + (1 = a)y[” = alz” + (1 =) [yI” — a(l =) [z —y]",

for all 2,y € H and « € [0,1]. It is well known that H satisfies Opial’s condi-
tion[23], i.e., for any sequence {z, } with x,, — x, the inequality

lim inf ||z, — | < lim inf ||z, — ¥y,
n—o0 n—oo
holds for every y € H with y # x.

Let P be the metric projection of H onto C i.e., for x € H, Pcx satisfies the
property

— P = mi — |l
lz = Pl = min [l — y|

The following lemmas are needed to prove the main theorem.

Lemma 2.1 (See [24]). Given z € H and y € C. Then, Pocx = y if and only if
there holds the inequality

(x —y,y—2) >0,VzeC.

Lemma 2.2 (See [25]). Let {sn} be a sequence of nonnegative real numbers sat-
isfying
Spy1 < (1 - an)sn +6,,Yn >0,

where oy, is a sequence in (0,1) and {6,} is a sequence such that
oo

(1) Z Qy, = 00;
n=1

On =
2) li — <0 On| < 0.
(2) limsup > = 0r2| | < o0

n—oo
n=1
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Then lim s, = 0.
n—oo
Lemma 2.3. Let H be a real Hilbert space. Then, the following inequality holds
lz+ylI* < ll2[* + 2{y. @ +y),

forall x,y € H.

Lemma 2.4 (See [24]). Let H be a Hilbert space, let C be a nonempty closed
convex subset of H and let A be a mapping of C into H. Let w € C. Then, for
A >0,
u=Poc(I —A)u<suecVIC, A),

where Po is the metric projection of H onto C.
Definition 2.5 (See [26]). Let C be a nonempty convex subset of a real Banach
space X. Let {T;}52,; be an infinite family of nonexpensive mappings of C' into
itself and let A1, Ao, ..., be real numbers in [0, 1]. Define the mapping K, : C — C
as follows:

Un,O :Ia

Un1 =MT1Upo+ (1 —A)Uno,

Un,2 =2ToUp 1+ (1 — Ao)Up 1,

Unke = TkUp =1 + (1 — X)Up k-1,
Unk+1 =M1 Th+1Un i + (1 — X 1) Un s

Un,nfl :)\nflTnflUn,n72 + (]- - )\nfl)Un,n72;
Kn :Un,n = )\nTnUn,n—l + (1 - )\n)Un,n—l-

Such a mapping K, is called the K-mapping generated by 11,75, ..., T, and
A1, A2y Ap.

For solving the generalized mixed equilibrium problem for a bifunction F :
C x C — R, let us assume that F,p and C satisfy the following conditions:
(A1) F(z,z) =0 for all z € C;
(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;
(A3) For each z,y,z € C,
lig)lF (tz+ (1 —t)z,y) < F(z,y);
t
(A4) For each z € C,y — F(x,y) is convex and lower semicontinuous;
(B1) For each x € H and r > 0 there exist a bounded subset D, CC and y, € C
such that for any z € C'\ Dy,

F(e,2) + 9(0a) = 9(2) + 1 (g = 2,2 — ) <O
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(B2) C is a bounded set.
Then, we have following lemma.

Lemma 2.6 (See [0]). Assume that F': C x C' — R satisfies (A1) — (A4) and let
@ : C — R be a proper lower semicontinuous and convex function. Assume that
either (B1) or (B2) holds. Forr > 0andx € H , define a mapping T H = C
as follows:

T () = {zeC:F(z,y)+¢y) — o(z) + %(y— z,z—x) > 0,VyeC} (2.1)

for all z € H. Then, the following hold:
1. for each x € H, T ) #£0;
2. T,SF"P) is single-valued;
3. TT(F"P) is firmly nonexpansive, i.e., for any x,y € H,

ITS9 (@) = T (y)|? < (TP (@) = TP (y), @ —y);

4. Fiz(T"9)) = MEP(F, ¢);
5. MEP(F, ) is closed and convez.

Lemma 2.7 (See [20]). Let C be a nonempty closed convexr subset of a strictly
convex Banach space. Let {T;}32, be an infinite family of nonexpanzive mappings
of C into itself with ;2| Fiz(T;) # 0 and let A1, Xa, ..., be real numbers such that
0 < A\ <1 for everyi =1,2,..., with Zf; Ai < o0. For everyn € N, let K,
be the K-mapping generated by T1,T5,...,Ty and A\, A2, ..., \n. Then for every
x € C and k € N,lim,, . K,x exists.

For every k € Nand z € C. Kangtunyakarn[26] defined a mapping K : C — C
as follows:

Kz = lim K,x. (2.2)

n—oo

Such a mapping K is called the K-mapping generated by 11,75, ... and A1, Ag, .. ..

Remark 2.8 (See [20]). For every n € N, K,, is a nonexpansive mapping and
limy, 00 SUPzep || Knx — Kx|| = 0, for every bounded subset D of C.

Lemma 2.9 (See [20]). Let C' be a nonempty closed convexr subset of a strictly
convex Banach space. Let {T;}52, be an infinite family of nonexpanzive mappings
of C into itself with (;o, Fiz(T;) # 0 and let A1, s, ..., be real numbers such
that 0 < A\; < 1 for every i = 1,2,..., with Zfil)\i < oo. Let K, be the K-
mapping generated by Ty, Ts, ..., T, and A1, A2, ..., A\, and let K be the K-mapping
generated by T1,Ts, ... and A1, Aa,.... Then Fiz(K) = (2, Fiz(T;).



778 Thai J. Math. 14 (2016)/ W. Khuangsatung and A. Kangtunyakarn

Lemma 2.10. Let C' be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C x C to R satisfy (Al) — (44) and ¢ : C — R|J{+o0}
be a real value function. For everyi=1,2,...,N, let A; be «;-strongly monotone
with & = min{a;} and ﬂfvzl GMEP(F,p,A;) # 0. Then

N N
=1

i=1
where Zivzl a; =1,0<a; <1 for everyi=1,2,..,N.

Proof. 1t is easy to see that ﬂivzl GMEP(F,p,A;) C GMEP(F, @,Z?}:l a;A;).
Next, we will show that GMEP(F, ¢, | a;A;) C iy GMEP(F, ¢, A;).

Let 20 € GMEP(F, 0, Y~ | a;A;) and z* € (N, GMEP(F,p, A;). Then we
have

N
F(zo,y) + »(y) — ¢(x0) + <Z a;Aixo,y — x0) > 0,Vy € C. (2.3)

i=1
Since ﬂivzl GMEP(F,p,A;) CGMEP(F,p, Zivzl a;A;), we have
N
F@a*y) + o) — o) + O aidia”,y—a") > 0,¥y € C. (2.4)
i=1

Since xg, z* € C, (Z3) and (24), we have

N
F(zo,2%) + (") — p(wo) + (Y aidizo, & — z0) >0 (25)
i=1
and
N
F(z*,20) + o(x0) — p(z*) + (Z a; Az xg — ) > 0. (2.6)
i=1

Summing up 23), (Z8) and (Az), we have

N N
0 §<Z a;Aix* kg — ) + <Z a;Aixg, x* — o)
i=1 i=1

N N
=<Z a; Az xg — ) — (Z a; A;xo, ko — ")
i=1 i=1

N
= Z a; <AIL$* — AiIQ, o — I*>

i=1
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ai<Aix* — Aixo, $* — IQ)

|
.MZ

i=1

<= aaifa” — o
=1

=~ allwo — |
It implies that
o =2 .

By (27), then we have

N
o € [|GMEP(F, ¢, A;).

=1
Hence
N N
GMEP(F,¢,» aiA;) C [ |GMEP(F, ¢, A;).
=1 =1

Remark 2.11. For everyi=1,2,..., N,

1. vazl a; A; is a-strongly monotone .

779

2.7)

2. If A; is a;-strongly monotone and L;- Lipschitzian with & = min{c;} and
L = max{L;}, respectively, then vazl a;A; is %—inverse strongly monotone

mapping.

Proof. To prove (1), since A; be a;-strongly monotone mappings for every i =

1,2,..,N and @ = min;=12,.. n{a;}. Let z,y € C, then we have

.....

N N N
<Z a;A;x — Z a; Ay, v —y) = Z ai(Aix — Ay, x — )
i—1 im1

=1
N

> aaillz -yl
=1

>al|lz — y||.

Hence Ziv=1 a;A; is a a-strongly monotone mapping.

To prove (2), since A; is a L;-Lipschitzian mapping for every ¢ = 1,2,..., N

and L = mazi—12, n{Li}, then

N N
Z aiAix — Z aiAiy
i=1 i=1

N
= ai|Aix — Ay
i=1

N
<Y aili|e -yl
=1

<Llz—yl-

(2.8)
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From (1) and (Z8)), we have

Z%AIE*ZGZ Y, T —Y) =

az<Ai1' - Azya T — y>

Mz

s
Il
—

p“qz

ai{Aix — Ay, x —y)

.
Il
-

aiail|z —yl*

'tlqu

s
Il
-

Y2
Qi

[z yH2

ZE ZazAx—Zaz awl?.

N . &
Then )i, a;A; is F5-inverse strongly monotone. O

3 Main Results

In this section, we introduce the following iterative algorithm and prove a
strong convergence for solving a common element of the set of fixed point of an in-
finite family of nonexpansive mappings and the set of a finite family of generalized
mixed equilibrium problems in Hilbert space.

Theorem 3.1. Let C be a nonempty closed conver subset of a real Hilbert space
H. For every i = 1,2,...,N, let F : C x C — R be a bifunction satisfing
(A1) — (A4) and ¢ : C — RY{+o0} be a proper lower semicontinuous function
and convex function. Let A; be «;-strongly monotone and L;-Lipschitzian map-
pings from C into H where & = min;=1,2, . n{o;} and L= mazxi=12,. N{L:}.
Let {T;}52, be an infinite family of nonexpansive mapping of C into itself with
Mooy Fiz(T;) # 0 and Ay, g, ... be real numbers such that 0 < X\; < 1 for every
i=1,2,... with 221 Ai < 0o. For every n € N, let K,, be the K-mapping gen-
erated by Ty, To, ..., T, and A1, A, ..., An and let K be the K-mapping generated
by T1,To,... and A\, Ao, ..., i.e., Kx = lim, o K,z for every x € C. Assume
F =, anc(Tl)ﬂﬂfil GMEP(F,p,A;) # 0. For every n € N, assume the
either (B1) or (B2) holds and let the sequences {xn} and {u,} be generated by
z1,u € C and

n

N
) 1
F(unay) + cp(y) - cp(un) + <Za7ﬁA1xnay - un> + 7“_ <y — Un, Up — xn> Z 07
=1
Tpi1 = QpU + BnTn + Tn (bnun + (1 - bn)Knun) ,Vn > 1, (3'1)

where the sequence {an}, {Bn}, {1}, {bn} C [0, 1] with op + Br + v = 1, for all
n > 1. Suppose the following conditions hold:
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(7) Zan = m,nlgrxgo o =0;

n=1
(#7) 0 <a < Bp,by <b<1, for some a,b € R and for alln > 1;

(#ii) 0<c<r, <d< %—g‘,for some ¢,d € R and for alln > 1;

N
(iv) ZafI =1, foralln >1;
i=1
[ee] oo [e.e]
(v) Z [Ppt1 — ra| < 00, Z a1 — | < 00, Z [Vn+1 — Yn| < 00,
n=1 n=1 n=1

o0 ) oo
Z Uy 1 — 5| < 00, Z |Bn+1 — Bnl < oo

n=1 n=1

Then the sequence {x,} converges strongly to zo = Pru.

Proof. First, we show that I —r, Zivzl al,A; is a nonexpansive mapping. Since
N

Zi]\il a},A; is £5-inverse strongly monotone mapping. Put S = 3.", af, A; for

all n € N. For any z,y € C, we have
|7 = rusi)e ~(1 = Syl = ||(@ = 5) = ra(SNe — SVy)||”
=l = yll* + 72 ||SN e = SYy||” - 2ralw —y, SNz — SNy)
< llz =yl + 72 [|SNe = SYy||* = 275 [|SNw - S2y|°
%

o =l 4 7 (0 = 35 ) 185 = 8
<l —y|*.

Then, I — 7, SY is a nonexpansive mapping for all n > 1.

The proof can be divided into 5 steps.
Step 1. We will show that {z,} is bounded. Since

1
F(un, y) + @(y) — @(un) + (Sy an,y — un) + - (Y — Un, un — ) > 0,¥y € C,

n
by Lemma 2.6, we have u,, = Tr(f"p)(l — 7, 8Nz, and
Fix (T}f"/’)([ — a8 )) = GMEP(F,,SY). (3.2)

Let z € F. From Lemma 210 and (3:2)), we have

N
z € [VGMEP(F, ¢, A;) = GMEP(F, ¢, SY) = Fia(T\""?)(I - r,S)).

i=1
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. F,
By nonexpansiveness of Tr(n ‘P), we have

[#n41 — 2] = llanu + Buzn + Y (bnun + (1 = bn) Knun) — 2

an(u = 2) + Bn(@n — 2) + Yn (bn(un — 2) + (1 = b)) (Knun — 2))||
anllu—zll + Bullzn = 2] +vn (bnllun — 2] + (1 = bn) | Knun — 2]])
an|u—z[| + Bllzn — 2l + Yallun — 2|

= anllu = 2| + Bullzn — 2| +7n||T1Sf7<P)(I - TnSr]LV)xn o

< anflu— 2|l + Bullzn — 2| + Yallzn — 2|

= anllu—z[| + (1 — an)||zn — 2] (3.3)

IN

Put My = maz{||lu — z||, ||z1 — z||}. From 3] and mathematical induction, we
have ||z, — z|| < My, for all n > 1. It implies that, {z,} is bounded and so is

Step 2. We will show that nh_}n;o |zn+1 — zn|l = 0.
1 2l = | (00— a1t B(n =) + (B = Bum1 ) 30 (Bt = t0-1)
+ (b= bn-1)ttn-1 + (1= b)) (Kt — Konttn1) + (bu1 = ba) K11 )
+ (9 = Yn—1) (bn—1un—1 + (L = by—1) K 1un—1) ||
<lan—an-1lllull + Bullzn — Tn-1ll + [Bn = Ba-1lllzn-1ll + ¥n (an“n — Un—1]|
+10n = br 1 |||t 1|+ (1 — bn)”Knun*anlunfl”+|bn*bn71|||Kn71unfl||)
+m = -1l (b flun—1ll + (1 = bn 1) [ Kn—ytn-1])
<lan—an-1lllull+Bnllzn — n-1ll + |Bn = Bu-1lllzn-1l + 7 (an“n — Un—1]
+10n = br | [[tn1 ]|+ (1= bp) | Kb, — Ky ti—1 || 4 (1 =0y [ Kty 1 — Ky 12|
+|bn_bn—1|||Kn—1“n—1||) + Y= Yn-1] (bn-1lltn—1[+ (1 =bn—1)[[ Kn-1un—1]|)
<lan—an-1lllull + Bullzn — zn-1ll + [Bn = Ba-1lllzn-1ll + 1n (an“n — Un—1]|
+ [bn = bp—1[[[wn—1] +(1 = bp)[Jun — wn—1[[+(1=bn)|[[ Kntin-1 — Kp-1un—1]|
+ |bn_bn—1|||Kn—lun—1||) + [ =Yl (bt lun—1 |+ (1= bp—1) | Knatnl)
<lan — anallJull + Bullen — n1ll +18n = Bu-alllzn-ll + %(llun — U1
+ [bn = bp—1|[[un—1]l + [ Kntn—1 — Kn—1tn-1| + [bn — bn71|||Kn71Un71||)
+ [ = Yn-al (lun—all + 1 Kn—1tun-a]).- (3-4)

Applying the method of [26], Lemma 2.11, we have

Kpup 1 — Ky qup1 = )\n(TnKn—lun—l - Kn—lun—l)-
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It follows that

||Knun—1 - Kn—l“n—l” =An ||TnKn—1un—1 - Kn—lun—lll . (35)
Since u, = T(f’@)(l — oSNz, where S = Zf\il al, A;. By the definition of
Tr(f’w), we have

1
F(un,y) + @(y) = 9(un) + —{y = tn, un — (I =105 )an) 2 0,¥y € C. (3.6)

Tn

Similarly
1

F(tnt1, y)+<P(y)—@(Un+1)+ﬁ<y—un+1, Unt1— (I =rnpSpiy )Tni) > 0,Vy € C.
nt

(3.7)
From (30) and (1), we obtain
1

F(un, unt1) + @(uny1) — o(un) + T_<Un+1 — Un,y Up — (I — TnSq]zV)In> >0 (3.8)

n

and

(U = Ut 1, Uns1— (I_Tn+15711v+1)$n+1> > 0.

(3.9)

F(unt1, un) +@(un) —p(unt1) +
Tn41

Summing up &8), (39) and A2, we have

% <Un+1 —Unp, Un — (I_rnsrzlv)xn> + ﬁ <Un —Un+41, Unt+1— (I—’I“n+1S,]LV+1)In+1> > 0.
It follows that
Uy — (I =S )z _ Uni1 — (- 7’n+15711\[+1)93n+1

Tn Tn+1

(Upt1 — Unp, )y >0.

Since r, > 0, we have

r
0 < (Ung1 — Un, Up — (I - TnSrle)xn T nl (Un+1 - (I - Tn+151]zv+1)$n+1)>
n+
= <Un+1 — Unp,Un — Un+1> + <Un+1 — Up, Un+1 — (I - Tn‘s’yjy)xn

'n
(Unt1— (I = 7"nJrISr]varl)szrl»~

Tn41
It follows that

Tn
Tntl

[wnir —wunl® <(upsr—tn, wnpg = (I = 1Sy )0 — (Una — (I_Tn+1sr]:-]|-1)xn+1)>
:<Un+1 — Un, (I - TnJrlSq]zVJrl)szrl - (I - TnS,JIV)LL‘n

T (1 o ra ) (UnJrl — (I — Tn+1S,]LV+1)1'n+1)>

Tn41

S (n(I S twss — (1 — SNy

|-

Tn+1

ltmer — (I — rmsmzmn).
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Then

twn+1 — unl <1 - rn+lsr]1v+1)xn+1 — (I - TnSr]zv)an

[Tny1 — ol | tnyr — (1 — TnJrlSq]zVJrl)anrl”

1
+
Tn41

<|I(1 - Tn+15’r]1v+1)xn+1 —(I - Tn+lsr]zv+1)xn|| +[[(I — Tn+151]zv+1)xn

- (I - TnS,Jy)an +

_— [rn+1=7nl [[upg1— (1 — TnJrlSr]LV-i-l)anrl”
n

<|@ns1 — 2l + ||7"n+1ST]:[+1xn - TnSqlzvxn”

+

P [Tnt1 = Tl ltnt1 — (I = Tn+1Sr]LV+1)$n+1||
n

Zng1 — @l + 7"nJr1||Sr]LV-|-193n - Srzzvxn” +rng1 — 7"n|||57]7:[93n”

1
+ [Tnt1 = Tl ltnt — (I — Tn+1Sr]LV+1)$n+1||
Tn+1
N
=[@nt1 = @nll + rogrl] D (@hiy = @) Aiznll + [rngs = ralllS) |
i=1
1 N
+ [Tnt1 = Tnl Junt1 — (I = o1 S5 1) Tn ||
Tn+1

N
<||nt1 = znll + roga Z |aiz+1 - am”Aian + |rpt1 — Tn|||57]y$n||

i=1

[Tny1 — ol | tngyr — (1 — TnJrlSq]zVJrl)anrl”

1
+
r

n+1

N
<||@nt1 — znll + dz |af’z+1 - am”Azan + |rn+1 — Tn|||Sq]zV$n||

i=1

1
+ - [Tn41 — 7l [|Unyr — (1 — rn+lS7jy+1)xn+1||. (3.10)
Substitute 3) and BI0) into (34), we have
Znt1 — 20l <lon — an-alllull + Bullzn — Tp-1ll + |Bn — Bu—1ll|zn-1]l

N
30 ((lon = 2n-all + 4 Ik = @l [ Asn |
=1

1
+|rn — 7"nfl|||qu1\]—15£an”JFE |70 —Tn—1] ||un—(I—rn+1szV)xn||)
+ |bn - bn71|||un71|| + )\n”Tnanlunfl - anlunfln
+[bn-1— bn|||anlun71||) +vn = -1 ([wn—1l|+ | Kn—1un-1]))
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<(1 = a)l|zn — zn1 |+ lom — anlllul + B0 — Builllzni]

N
+d Y lay, =y Azl +Irn = ra-a |83 @1
i=1

1
+ - Irn — rp—1| lun — (I — TnJrlSr]LV)xn”
+ |bn*bn71|||Un71||+)\n||Tnanlun71*Kn71unfl||+|bn71*bn|||anlun71”
+ [ = -1l (Jun—all + [ Kn—1tn-1])
N
<(1 = an)lzn — a1 ]|+ an — an_1|Ma + |8y — Bua|Ma+d D |al, — aly | Mo
i=1
1
+ |Tn - Tn—1|M2 + E |Tn - Tn—1| M2 + |bn - bn—1|M2 + )\nMQ
+ |bn—1 - bn|M2 + |'Yn - 7n—1|M27
where My := maznen{ [[ul, |zl [lunll, [Aizn—1ll, S znll, |un—T=rni1S3)al,

1K ntn|s (Junll + | Kntnl]), | TnKn—1tn—1 — Kn—1tn—1]|}. From Lemma 22 the
conditions (ii) and (v), we have

nlirrgo |2n+1 — zn] = 0. (3.11)
Step 3. We show that lim,, o0 [|tn — Tn|| = limy,—e0 || Kntin, — un|] = 0. To show

this, let z € F. Since u,, = Tr(f"p)(ffrn SNz, and Tr(f’w) is a firmly nonexpensive
mapping, we have

| TEOT — 1SNy — 2[|2 < = 10 SN )an — (I — 10 SY )2, un — 2)
=5 (10 = raSY ) — (I = ra S22 + i — 2P
— (I - rnS,]LV)xn - (I - rnS’,JIV)z — Uy + z||2)
S%(len =zl lun = 2)1? = (20 = wn) = ra(S3 = S 2)|1%)
=%(len =zl + [lun = 2012 = [0 = wa)|* = (ra) (1S 20 — Sp 2|2

+ 2rp (xy, — TT(f"”)(I — oSN, SNz, — S,ivz>)
1
<5 (llen - 22 4 lun = 2012 = Nz — unll® = (ra) 2| SY 20 — S22
+ 2| = T = oS )| Sy @0 — SN 2])),
which implies that

lun = 201 <llzn = 2)1* = 20 — ua?

+ 21, ||z, — TT(f"”)(I — SNz |I1SN 2, — S 2. (3.12)
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From the definition of u, and Remark (ZI1]), we have
lun = 2|* =TT = 1S3 )zn — T — S22
<N = 7S )an — (I = a8y
=ll(zn — 2) = ra(Sy 2 — S372)|7
=llen — 21* = 2rafwn — 2,8 wn — SY'2) + (ra)? (IS0 20 — S|
VISR w0 = SN 212 + (ra)2 (S5 2 — SN =)

«
<llan = 21 = 2r (75

B | S, (2% ) 8N — 82 (3.13)
From the definition of x,, and [BI3]), we have
1 =2l Sanllu—z|* + Ballzn = 2l +3n (bnllin—2] + (1 = bo) [ Kty — 2])*
<an|lu = 2|1 + Ballzn — 2[1 + ynllun — 2|
<anu—z[* + Bullzn — 21 + 0 (l2n — 2]

«@
-7, (2§ - rn) ||STJLVLL‘n - 5111\72”2)

Sanlu— 2l + lan = 2|2 = yara (255 =7 ) 1220 — S22
It follows that
turn (205 = 7 ) IS5 an — SN2l < anllu = 2l + lan — 212 = lfza 1 — 21
Sanfu = 2l* + (lon = 2]l + lzns1 = 2 (241 = zal)).
From the condition (i) and BI1]), we have
lim || SNz, — SYVz|| = 0. (3.14)

n—oo

From the definition of z,, and (12]), we obtain
|21 = 2l Sanllu = 2017 + Ballzn — 2l + yallun — 2|
Sanflu = 2l* + Bullen — 2] + %(Hﬂfn —2|? = llzn — un?
20l = T = 1S Y ||S2 w0 — S321))
Sanflu—2|* + |z — 2 = ynllzn — unl?
+ 29nrn |z, — Tr(f"P)(I — Sy )@nll|1S5 @ — S5 2]l.
It implies that
Yullzn — uall® Somflu— 2l + flon — 2| — lznsr — 2]
+ 29| @0 — Tr(fW)(I — Sy )zl | SR — S5 ||
<apllu—z[* + (Jon = 2]l = lzn41 = 2] l|l2n41 = za

+ 2907l — T = raSY)zall|S) 20 — S 2]l
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From the condition (i), (BI1)) and (314, we have

lim ||a, — u,| = 0. (3.15)

n—oo
From the definition of x,, we have

Tnt1 — T =n (U — ) + Vo (bn(un — 20) + (1 = b)) (Kpupn — x4))
:an(u - l‘n) + ’ann(un - :L'n) + "Yn(]- - bn)(K’ﬂun - un)

From the conditions (i), (ii), (11 and (BI5]), we have

lim ||Kpun — uy|| = 0. (3.16)

n—oo
Step 4. We show that lim sup (u — 2o, &, — 20) < 0, where zg = Pru. To show
n— o0

this, take a subsequence {z,, } of {z,} such that

lim sup (u — 2o, Ty, — 20) = lim (u — 20, Zn, — 20) - (3.17)
n— o0 k— o0

Without loss of generality, we may assume that z,, — w as k — oo where w € C.
From (BI0), we obtain u,, — w as k — oo.
Assume w ¢ (=, Fiz(T;). From Lemmal[Zd, we have Fiz(K) = (.2, Fiz(T;).
From Opial’s condition, (816) and Remark 28 we have
lim inf ||uy, —w| < lim inf ||u,, — Kw||
k—o0 k—o0
< khﬂlgo 1nf(||unk7Knkunk ” + ||Knkunk 7Kﬂkw” + ||Knkw7Kw||)
< lim inf ||up, — w]|.
k—o0

This is a contradiction, we have

we ﬁF@x(ﬂ) (3.18)

i=1

From u,, = Tﬁf"p)([ —7,8N)z,,, we have

F(un,y) + () = o(un) + (S wn,y — un) + %@/ — U, Un — Tn) > 0,Vy € C.
From (A2), we have
P(y) = (un) + (S @n, y — un) + %@/ — Uy Un = Tn) 2 F(y, un).
In particular

1
Qp(y) - @(ung‘) + <Salz\jxngay - U’"j) + 7’_<y — Unj;,; Un; — xnj) 2 F(y’unj)'

4
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It follows that

Unp,,

— T
J nj

0(y) — P(tn;) + (9 Tny sy = Uny) + (Y — tn,, ) > Fy,un,).  (3.19)

Put y; = ty + (1 — t)w where for all ¢ € (0,1], we have y, € C. From [B.I9), we
have

cp(yt) - cp(unJ) + <yt - unj;Sq{Lijt> > <yt - unj;Sq{Lijt> - <S£[jfﬂnj7yt - Unj>
Up,. — Tp.
- <yt - unj; %> +F(yt;unj)

g

:<yt - UnjaSr]Lijt - S»,Jl\iun, + S»,Jz\iun,> - <yt - Unj;Sr]Lijnj>

Up: — Tp.
- <yt - unj; u> +F(yt;unj)
Tn;
:<yt - unj)S'){L\Zyt - Sr]xun]> + <yt - unj)Sfr]szunj - Sfr]z\jxn]>
Up.. — Tp.
- <yt = Unpy, %> +F(ytaunj)'

nj
S~y

From [3I3]), we have ||S,’l\5unj — SN @y, || — 0and o B

i’ Il = 0. From monotonic-
nj
ity of S,]lvj and (A4), we have

P(ye) = p(w) + (e — w, St ye) > F(ys, w). (3.20)
Form (A1) and (320), we have
0= F(ye,ye) + ¢(ye) — ¢(ye)
=F(ys, ty + (1 — thw) + oty + (1 — hw) — @(y:)
StF(yesy) + (1= ) F(ye, w) + to(y) + (1 = t)ep(w) — o(ye)
< EF(ye, )+ (1=t (ye) — (1= 1) p(w) + (1—1) (g —w, S ye) +1o(y)
+(I=t)p(w)—(ye)
= tF(ys,y) + to(y) — to(ys) + (1 — )ty + (1 — o — w, S1 ye)
= tF(ye,y) + to(y) — to(y) + (1 — 1)ty — w, Sy ys).
It implies that
0 < Flye,y) +o(y) — ye) + (1= t){y — w, Sy ys).-
Letting ¢t — 0" and (A3), we have
0 < F(w,y) + ¢(y) — pw) + (y —w, Sy w), vy € C.

Then w € GMEP(F, ¢, %Y ;at A;). From Lemma 210, we have

N
w € [|GMEP(F,p, A;). (3.21)

i=1



The Applications of Modified Generalized Mixed Equilibrium Problems ... 789

From BI8) and 32ZI)), we have w € F. Since x,, — w and w € F, hence we have

lim sup (u — 2o, &y, — 20) = lim (u — 20,2, — 20) = (U — 20,w — 2o) < 0.
n—o00 k— o0
(3.22)
Step 5. Finally, we will show that lim =z, = 29, where zp = Pru. By nonexpan-
n—oo

siveness of K,,, we have

a1 — 20l|* =]t + Buzn + Yn (bptin + (1 — bp) Knun) — 20|
SHBn(In — ZO) + Tn (bn(“n —20) + (1 - bn)(Kn“n —20)) ||2
+ 200 (U — 20, Tng1 — 20)

<1 —an)l|zn — Zo||2 + 2, (u — 20, Tng1 — 20)-

Applying Lemma [Z2 and [B:22]), we have the sequence {x,,} converges strongly to
zg = Pru. This completes the proof. ([l

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Foreveryi=1,2,...,N, let F: C x C = R be a bifunction satisfing (A1) —
(A4) and ¢ : C — RJ{+oo} be a proper lower semicontinuous function and
convex function. Let A be a-strongly monotone and L -Lipschitzian mappings from
C into H . Let {T;}2, be an infinite family of nonexpansive mapping of C into
itself with (Nooq Fix(T;) # 0 and M, Aq, ... be real numbers such that 0 < \; < 1
for every i = 1,2,... with >;2, \; < oo. For every n € N, let K,, be the K-
mapping generated by T1,Ts, ..., T, and A1, A2, ..., An and let K be the K-mapping
generated by Ty, Ts, ... and A1, A, ..., t.e., Kx = lim,,_,o Kyx for every x € C.
Assume F := (2, Fiz(T;) YGMEP(F,,A) # 0. For every n € N, assume the
either (B1) or (B2) holds and let the sequences {xn} and {u,} be generated by
r1,u € C and

1

n

Tpil = Qpu + Brnn + Tn (bnun + (1 - bn)Knun) ,Vn > 1, (3'23)

where the sequence {an}, {Bn}, {n}, {bn} C [0,1] with apn + Brn + yn = 1, for all
n > 1. Suppose the following conditions hold:

oo
(7) Zan =00, lim o, =0;
n—oo

n=1
(i) 0 <a<B,b, <b<1, for somea,b€R and for alln > 1;

(tit) 0<c<r, <d< %—‘Z‘,for some c,d € R and for alln > 1;

o0 (o)
(iv) Z [Tnt1 — 7| < 00, Z |ant1 — | < 00,
n=1 n=1

Z Y41 = | < 00, Z |Bnt1 — Bnl < o0.

n=1 n=1
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Then the sequence {x,} converges strongly to zo = Pru.

Proof. Put A = A; for every 1,2,..., N in Theorem B.I] From Theorem Bl we
obtain the desired result. O

Corollary 3.3. Let C be a nonempty closed convexr subset of a real Hilbert space
H. Let F : C x C — R be a bifunction satisfing (A1) — (A4). Let {T;}2, be
infinite family of nonexpansive mapping of C into itself with (;o, Fix(T;) # 0
and A1, Ag,... be real numbers such that 0 < \; < 1 for every i = 1,2,...
with Zf; Ai < oco. For every n € N, let K, be the K-mapping generated
by T1,Ts,...,T, and A, Aa,..., A, and let K be the K-mapping generated by
T1,Ts,... and A1, Aa, ..., t.e., Kx = lim, oo Kpx for every x € C. Assume
F =2, Fiz(T;) Y EP(F) # 0. For every n € N, let the sequences {x,} and
{un} be generated by z1,u € C and

1
F(unay)+_<y7unaun*xn> 207
T

n

Tnt1 = Qutt + Bn®n + Yo (bntn + (1 — by) Kpuy) , Vo > 1, (3.24)

where the sequence {an}, {fn}, {1}, {bn} C [0, 1] with on + By + v = 1, for all
n > 1. Suppose the following conditions hold:

o
i) Z oy = oo,nli_{{.lo oy = 0;

n=1
(ii) 0 <a < Bn,bn <b< 1, for some a,b € R and for alln > 1;

(iii) 0<ec<r, <d< %—‘Z‘,for some ¢,d € R and for alln > 1;

N
(iv) ZafI =1, foralln>1;

i=1

o0 o0
(v) Z |71 — Tn| < o0, Z |11 — a| < oo,

n=1 n=1
S 00
Z |7n+1 _7n| < 00, Z |6n+1 - Bn| < 00.
n=1 n=1

Then the sequence {x,} converges strongly to zo = Pru.

Proof. Put ¢ =0 and A; =0 for every 1,2,..., N in Theorem Il From Theorem
BI] we obtain the desired result. O
4 Apply to Generalized Equilibrium Problem

In this section, we utilize our main results for the following result: From
Lemma 210 the following result is related to generalized equilibrium problem:
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Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F be a bifunction from C x C to R satisfing (Al) — (A4). For every
i = 1,2,...,N, let A; be «;-strongly monotone from C into H with a; > 0,
a =min{a;} and (", EP(F, A;) # 0. Then

N N
EP(F,Y a;A;) = [ | EP(F, A;)
i=1

i=1
where 0 < a; < 1, for every i =1,2,.... N and Zivzl a; = 1.
Proof. Put ¢ =0. Then we obtain the desired result. O

Theorem 4.2. Let C' be a nonempty closed convex subset of a real Hilbert space H .
For everyi=1,2,...,N, let F: C x C = R be a bifunction satisfing (A1) — (A4).
Let A; be ay-strongly monotone and L;-Lipschitzian mappings C into H where & =
~{a;} and L = mazi—1 2 n{L;}. Let {T;}32, be infinite family of
nonezpansive mapping of C into itself with (\;=, Fiz(T;) # 0 and M\, Az, . .. be real
numbers such that 0 < X\; < 1 for every i =1,2,... with Y .o, i < co. For every
n € N, let K,, be the K-mapping generated by T1,Ts,..., T, and A, A, ..., Ay
and let K be the K-mapping generated by T1,Ts,... and A1, Aa, ..., i.e., Kz =
limy, o0 Ky for every x € C. Assume F := (=, Fiz(T;) ﬂﬂfvzl EP(F,A;) # 0.
For every n € N | let the sequences {x,} and {u,} be generated by x1,u € C and

N
, 1

i=1

Tntl = QpU + BnTn + Yn (bnun + (1 - bn)Knun) ,Vn > 1, (4'1)

where the sequence {an}, {Bn}, {n}, {bn} C [0,1] with apn + Brn + yn = 1, for all
n > 1. Suppose the following conditions hold:

(o)
(1) Zan = m,nlLIgO ap, = 0;

n=1
(1) 0 <a < B, by <b<1, for some a,b € R and for alln > 1;

(iii) 0 <c<r, <d< 2%, for some c,d € R and for alln > 1;

N
(iv) ZafI =1, foralln>1;
i=1
o0 o0 oo
(v) Z |Tny1 — 1| < 00, Z |ty 1 — an| < 00, Z [Ynt+1 — Yn| < 00,
n=1 n=1 n=1
o0 . ) o0
Z al, g —aj| < oo, Z'B”‘H — Bl < 0.
n=1 n=1

Then the sequence {x,} converges strongly to zo = Pru.
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Proof. Put ¢ = 0 in Theorem Bl By Lemma E1] and Theorem Bl we obtain
the desired result. O

From Lemma 210 we have the result involving variational inequality problem
as follows:

Lemma 4.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. For everyi=1,2,...,N, let A; be a;-strongly monotone from C into H with
a; >0, a=min{o;} and iy VI(C, A;) # 0. Then

N N
VI(C, ZaiAi) = m VI(C, A;)
i=1

i=1
where 0 < a; < 1 for every i =1,2,..,N and Zivzl a; = 1.

Proof. Put F = ¢ =0 in Lemma [ZT0 From Lemma [ZT0, we obtain the desired
result. O

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space
H. For everyi=1,2,...,N, let A; be a;-strongly monotone and L; -Lipschitzian
mappings from C into H where & = min;=12, . n{oi} and L= mazxi=1,2,. N{L:}.
Let {T;}52, be an infinite family of nonexpansive mapping of C into itself with
Mooy Fiz(T;) # 0 and A1, Az, . .. be real numbers such that 0 < \; < 1 for every i =
1,2,... with Zfil Ai < 00. For every n € N, let K,, be the K-mapping generated
by T1,Ts,..., T, and i, A2, ..., A, and let K be the K-mapping generated by
Ty, Ts,... and A\, Ao, ..., i.e, Kz =limy,_ o K,z for every x € C. Assume F :=
Mooy Fiz(T;) N ﬂf\il VI(C,A;) # 0. For every n € N, let the sequences {x,} and
{un} be generated by z1,u € C and

N
Tp+1 =QpU + ann + Yn (anC (I —Tn Z G%Az)xn
=1

+ (1= bp)KnPo(I —rp 2 al, Aj)xy),Vn > 1, (4.2)

where the sequence {an}, {Bn}, {n}, {bn} C [0,1] with apn, + B + yn = 1, for all
n > 1. Suppose the following conditions hold:

(7) Z ay =00, lim a,, =0;

—_ n—o00
(1) 0 <a<pBp,b, <b<1, for some a,b € R and for alln > 1;
(#ii)) 0<c<r,<d< %—‘g,for some ¢,d € R and for alln > 1;

N
(iv) Zag =1, foralln >1;

i=1
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oo oo oo
(v) Z [Tng1 — 7rnl < 00, Z |ty 1 — | < 00, Z [Ynt+1 — Yn| < 00,
n=1 n=1 n=1

Z < 00, Z|Bn+1—ﬁn| < 0.

n=1 n=1

J _ 4
an+1 an

Then the sequence {x,} converges strongly to zo = Pru.
Proof. Put F = ¢ =0 in Theorem 3] we have
(Y = Uns Ty — a2y al, Ay, — up) > 0,y € C.
It implies that
Uup = Po(I — rnElN:laiLAi)mn.
By Lemma [£3] and Theorem Bl we obtain the desired result. O

Theorem 4.5. Let C' be a nonempty closed convex subset of a real Hilbert space H .
For everyi=1,2,...,N, let F: C x C — R be a bifunction satisfy (Al) — (A4)
and ¢ : C — R{J{+o0} be a proper lower semicontinuous function and convex
function. Let A; be a;-strongly monotone and L;-Lipschitzian mappings from C
into H where & = min;=12, . n{a;} and L= mazi=1,2,. n{L;}. Let {D;}2 be
d;-inverse strongly monotone mapping of C into H with d = mini=1,2,.. N{di}.
Define the mapping G; : C — C by

Gix = Pc(I — pDy)z,¥r € C,0 < p < 2d

and A1, Asa,... be real numbers such that 0 < \; < 1 for every i = 1,2,...
with Y21 A; < oo. For every n € N, let K,, be the K-mapping generated
by G1,Ga,...,Gy and A1, A2, ..., A and let K be the K-mapping generated by
G1,Go,... and A\, Mo, .... de, Kx = lim,_ o0 Kpx for every x € C. Assume
F =N, VI(C,D;) ﬂﬂivzl GMEP(F,p,A;) # 0. For every n € N, assume the
either (B1) or (B2) holds and let the sequences {x,} and {u,} be generated by
r1,u € C and

N
: 1
F(un,y) + ‘P(y) - ‘P(un) + < E apAiTn,y — Un> + — (Y — Un, un — xn) >0,
i=1

n

Tnt1 = Qnt + BTy + Yo (bpun + (1 — bp) Kpuy),¥n > 1, (4.3)

where the sequence {an}, {Bn}, {n}, {bn} C [0,1] with apn + Brn + yn = 1, for all
n > 1. Suppose the following conditions hold:

(o)
(1) Zan = oo,nli_{{.lo apn, = 0;

n=1

(1) 0 <a < Bp, by <b<1, for some a,b € R and for alln > 1;
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(#ii)) 0<c<r,<d< %—%,for some ¢,d € R and for allmn > 1;

N
(iv) Zail =1, foralln >1;
i=1
o0 (o) o0
(v) Z [rng1 — ral < 00, Z latn41 — an| < o0, Z [Yn+1 = | < 00,
n=1 n=1 n=1

0
§ : J 4
a’nJrl an

n=1

oo
<00, 3 |But1 = Bl < o0
n=1

Then the sequence {x,} converges strongly to zo = Pru.

Proof. First, we show that I — pD; is a nonexpansive mapping for every i =

1,2,...,N. For any z,y € C, we have

I(T = pDi)a — (I = pDa)y||* = ||(x — y) — p(Dizw = Diy)|”
= ||z — ||+ || Diz = Diy||* —2p(x — y, Diw — Dyy)
< |l =yl + p* | Dix — Diy||* = 2pd; || Diz — Diy|®
< |l =yl + p* | Diz — Diy||* - 2pd || Dsw — Dyy|*
< |l =yl + p(p — 2d) | Dix — Diy|®
<lz -yl

Then, I — pD; is a nonexpansive mapping for every i = 1,2,..., N.

It implies that Po (I —pD;) is a nonexpansive mapping for every ¢ € N. By Lemma
2.4l we can conclude that

oo o0

(NVI(C,Di) = () F(Po(I - pDy).

i=1 i=1

From Theorem Bl we obtain the desired result. O
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