Thai Journal of Mathematics Volume 14 (2016) Number 3 : 757–769

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Intuitionistic Fuzzy α -Generalized Semi Closed Sets

M. Jeyaraman[†], O. Ravi[‡] and A. Yuvarani^{§,1} [†]Department of Mathematics, Raja Dorai Singam Govt. Arts College Sivagangai, Tamil Nadu, India e-mail : jeya.math@gmail.com [‡]Department of Mathematics, P. M. Thevar College, Usilampatti Madurai Dt, Tamil Nadu, India e-mail : siingam@yahoo.com [§]Department of Mathematics, NPR College of Engineering and Technology Natham, Tamil Nadu, India

e-mail: yuvaranis@rediffmail.com

Abstract : In this paper, we introduce the concepts of intuitionistic fuzzy α -generalized semi closed sets and intuitionistic fuzzy α -generalized open sets. Further, we study some of their properties.

Keywords : intuitionistic fuzzy topological space; intuitionistic fuzzy α -generalized semi closed set; intuitionistic fuzzy α -generalized semi open set. 2010 Mathematics Subject Classification : 54A02; 54A40; 54A99; 03F55.

1 Introduction

Zadeh [1] introduced the concept of fuzzy sets and later Atanassov [2] generalized this idea to the new class of intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper we introduce the concepts of intuitionistic fuzzy α -generalized semi closed sets and intuitionistic fuzzy α -generalized semi open sets. We obtain their properties and relationships.

Copyright 2016 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

2 Preliminaries

Definition 2.1 ([2]). Let X be a non empty fixed set. An *intuitionistic fuzzy* set(IFS in short) A in X is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$$

where the function $\mu_A(x) : X \to [0,1]$ denotes the degree of membership(namely $\mu_A(\mathbf{x})$) and the function $\nu_A(x) : X \to [0,1]$ denotes the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

IFS(X) denote the set of all intuitionistic fuzzy sets in X.

Definition 2.2 ([2]). Let A and B be IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle | x \in X\}$. Then

- 1. $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- 2. A = B if and only if $A \subseteq B$ and $B \subseteq A$,
- 3. $A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle | x \in X \},\$
- 4. $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle | x \in X \},\$
- 5. $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle | x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in X\}.$

Definition 2.3 ([2]). The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle : x \in X\}$ and $1_{\sim} = \{\langle x, 1, 0 \rangle : x \in X\}$ are the empty set and the whole set of X respectively.

Definition 2.4 ([3]). An *intuitionistic fuzzy topology* (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

- 1. $0_{\sim}, 1_{\sim} \in \tau$,
- 2. $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- 3. $\cup G_i \in \tau$ for any family $\{G_i | i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an *intuitionistic fuzzy topological space*(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set(IFOS in short) in X.

The complement A^c of an IFOS A in an IFTS (X, τ) is called an *intuitionistic* fuzzy closed set(IFCS in short) in X.

Definition 2.5 ([3]). Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined as follows:

1. $int(A) = \bigcup \{ G | G \text{ is an IFOS in } X \text{ and } G \subseteq A \},\$

2. $cl(A) = \cap \{K | K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$

Proposition 2.6 ([3]). For any IFSs A and B in (X, τ) , we have

- 1. $int(A) \subseteq A$,
- 2. $A \subseteq cl(A)$,
- 3. $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ and $cl(A) \subseteq cl(B)$,
- 4. int(int(A)) = int(A),
- 5. cl(cl(A)) = cl(A),
- 6. $cl(A \cup B) = cl(A) \cup cl(B)$,
- 7. $int(A \cap B) = int(A) \cap int(B)$.

Proposition 2.7 ([3]). For any IFS A in (X, τ) , we have

- 1. $int(0_{\sim}) = 0_{\sim}$ and $cl(0_{\sim}) = 0_{\sim}$,
- 2. $int(1_{\sim}) = 1_{\sim}$ and $cl(1_{\sim}) = 1_{\sim}$,
- 3. $(int(A))^c = cl(A^c),$
- 4. $(cl(A))^{c} = int(A^{c}).$

Proposition 2.8 ([4]). If A is an IFCS in X then cl(A) = A and if A is an IFOS in X then int(A) = A. The arbitrary union of IFCSs is an IFCS in X.

Definition 2.9 ([5]). An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- 1. intuitionistic fuzzy regular closed set(IFRCS in short) if A = cl(int(A)) [4],
- 2. intuitionistic fuzzy α -closed set(IF α CS in short) if $cl(int(cl(A))) \subseteq A$ [5],
- 3. intuitionistic fuzzy semi closed set(IFSCS in short) if $int(cl(A)) \subseteq A$ [4],
- 4. intuitionistic fuzzy pre closed set(IFPCS in short) if $cl(int(A)) \subseteq A$ [4],
- 5. intuitionistic fuzzy γ -closed set(IF γ CS in short) if $cl(int(A)) \cap int(cl(A)) \subseteq A$ [6].

Definition 2.10. An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- 1. intuitionistic fuzzy regular open set(IFROS in short) if A = int(cl(A)) [4],
- 2. *intuitionistic fuzzy* α -open set(IF α OS in short) if $A \subseteq int(cl(int(A)))$ [5],
- 3. intuitionistic fuzzy semiopen set(IFSOS in short) if $A \subseteq cl(int(A))$ [4],
- 4. *intuitionistic fuzzy preopen set* (IFPOS in short) if $A \subseteq int(cl(A))$ [4],
- 5. *intuitionistic fuzzy* γ *-open set*(IF γ OS in short) if $A \subseteq int(cl(A)) \cup cl(int(A))$ [6].

Definition 2.11 ([7]). An IFS A of an IFTS (X, τ) is an

- 1. intuitionistic fuzzy semipreopen set(IFSPOS in short) if there exists an IF-POS B such that $B \subseteq A \subseteq cl(B)$,
- 2. intuitionistic fuzzy semipreclosed set(IFSPCS in short) if there exists an IFPCS B such that $int(B) \subseteq A \subseteq B$.

Definition 2.12 ([4]). Let A be an IFS in (X, τ) , then semi interior of A(sint(A) in short) and semi closure of A(scl(A) in short) are defined as

- 1. $sint(A) = \bigcup \{ K | K \text{ is an IFSOS in } X \text{ and } K \subseteq A \},\$
- 2. $scl(A) = \cap \{K | K \text{ is an IFSCS in } X \text{ and } A \subseteq K \}.$

Definition 2.13 ([8]). Let A be an IFS in (X, τ) , then semipre interior of A(spint(A) in short) and semipre closure of A(spcl(A) in short) are defined as

- 1. $spint(A) = \bigcup \{G | G \text{ is an IFSPOS in } X \text{ and } G \subseteq A \},\$
- 2. $spcl(A) = \cap \{K | K \text{ is an IFSPCS in } X \text{ and } A \subseteq K \}.$

Definition 2.14 ([9]). Let A be an IFS of an IFTS (X, τ) . Then

- 1. $\alpha cl(A) = \cap \{K | K \text{ is an IF} \alpha CS \text{ in } X \text{ and } A \subseteq K\},\$
- 2. $\alpha int(A) = \bigcup \{K | K \text{ is an IF} \alpha OS \text{ in } X \text{ and } K \subseteq A \}.$

Definition 2.15. An IFS A of an IFTS (X,τ) is an

- 1. intuitionistic fuzzy generalized closed set(IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [10],
- 2. intuitionistic fuzzy generalized semiclosed set(IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [11],
- 3. intuitionistic fuzzy generalized semipreclosed set(IFGSPCS in short) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [8],
- 4. intuitionistic fuzzy alpha generalized closed set(IF α GCS in short) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [9],
- 5. intuitionitic fuzzy generalized alpha closed set(IFG α CS in short) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF α OS in X [12].

The complements of the above mentioned intuitionistic fuzzy closed sets are called their respective open sets.

Remark 2.16 ([4]). Let A be an IFS in (X, τ) . Then

- 1. $scl(A) = A \cap int(cl(A)),$
- 2. $sint(A) = A \cup cl(int(A)).$

If A is an IFS of X then $scl(A^c) = (sint(A))^c$.

Remark 2.17 ([9]). Let A be an IFS in (X, τ) . Then

1.
$$\alpha cl(A) = A \cup cl(int(cl(A))),$$

2. $\alpha int(A) = A \cap int(cl(int(A))).$

Definition 2.18 ([10]). Two IFSs are said to be *q*-coincident(AqB in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$. For any two IFSs A and B of X, $A\bar{q}B$ if and only if $A \subseteq B^c$.

3 Intuitionistic Fuzzy α-Generalized Semi-Closed Sets

In this section we introduce intuitionistic fuzzy α -generalized semi-closed sets and study some of its properties.

Definition 3.1. An IFS A in (X, τ) is said to be an *intuitionistic fuzzy* α -generalized semi-closed set (IF α GSCS in short) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFSOS in (X, τ) and the family of all IF α GSCS of an IFTS (X, τ) is denoted by $IF\alpha GSC(X)$.

Example 3.2. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.7), (0.4, 0.3) \rangle$. Here $\mu_G(a) = 0.6, \mu_G(b) = 0.7, \nu_G(a) = 0.4$ and $\nu_G(b) = 0.3$. Let us consider the IFS $A = \langle x, (0.1, 0.2), (0.9, 0.8) \rangle$. We have IFSOS = $\{0_{\sim}, G, S, 1_{\sim}\}$ where $S = \langle x, (\ell_1, m_1), (\ell_2, m_2) \rangle$ and $\ell_1 \in (0.6, 1), m_1 \in (0.7, 1), \ell_2 \in (0, 0.4)$ and $m_2 \in (0, 0.3)$. Since $\alpha cl(A) = A$, A is IF α GSCS in (X, τ) .

Theorem 3.3. Every IFCS in (X, τ) is an IF α GSCS, but not conversely.

Proof. Assume that A is an IFCS in (X, τ) . Let us consider an IFS $A \subseteq U$ and U is an IFSOS in X. Since $\alpha cl(A) \subseteq cl(A)$ and A is an IFCS in X, $\alpha cl(A) \subseteq cl(A) = A \subseteq U$ and U is IFSOS. That is $\alpha cl(A) \subseteq U$. Therefore A is IF α GSCS in X.

Example 3.4. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$. Then the IFS $A = \langle x, (0.7, 0.8), (0.3, 0.2) \rangle$ is IF α GSCS but not IFCS. Since $\alpha cl(A) = 1_{\sim}$ and possible $U = 1_{\sim}$.

Theorem 3.5. Every IF α CS in (X, τ) is an IF α GSCS in (X, τ) but not conversely.

Proof. Let A be an IF α CS in X. Let us consider an IFS $A \subseteq U$ and U be an IFSOS in (X, τ) . Since A is an IF α CS, $\alpha cl(A) = A$. Hence $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFSOS. Therefore A is an IF α GSCS in X.

Example 3.6. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$. Consider an IFS $A = \langle x, (0.8, 0.6), (0.2, 0.4) \rangle$ is IF α GSCS but not IF α CS. Since $cl(int(cl(A))) = 1_{\sim} \notin A$.

Theorem 3.7. Every IFRCS in (X, τ) is an IF α GSCS in (X, τ) , but not conversely.

Proof. Let A be an IFRCS in (X, τ) . Since every IFRCS is an IFCS, A is an IFCS in X. Hence by Theorem 3.3, A is an IF α GSCS in X.

Example 3.8. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.8, 0.7), (0.2, 0.3) \rangle$. Consider an IFS $A = \langle x, (0, 0.2), (0.9, 0.8) \rangle$ which is an IF α GSCS but not IFRCS in X as $cl(int(A)) = 0_{\sim} \neq A$.

Remark 3.9. An IFG closedness is independent of an IF α GS closedness.

Example 3.10. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.7), (0.5, 0.3) \rangle$. Then the IFS $A = \langle x, (0.3, 0.2), (0.6, 0.8) \rangle$ is an IF α GSCS but not IFGCS in X as $cl(A) \nsubseteq G$ eventhough $A \subseteq G$ and G is an IFSOS in X.

Example 3.11. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.8), (0.4, 0.2) \rangle$. Then the IFS $A = \langle x, (0.7, 0.9), (0.3, 0.1) \rangle$ is an IFGCS but not IF α GSCS since $\alpha cl(A) = 1_{\sim} \notin B = \langle x, (0.8, 0.9), (0.2, 0) \rangle$ whenever $A \subseteq B$ and B is an IFSOS in X.

Theorem 3.12. Every IF α GSCS in (X, τ) is an IFGSCS in (X, τ) , but its converse may not be true in general.

Proof. Assume that A is an IF α GSCS in (X, τ) . Let an IFS $A \subseteq U$ and U be an IFOS in X. By hypothesis $\alpha cl(A) \subseteq U$, that is $A \cup cl(int(cl(A))) \subseteq U$. This implies $A \cup int(cl(A)) \subseteq U$. But $scl(A) = A \cup int(cl(A))$. Therefore scl(A) = $A \cup int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is IFOS. Hence A is IFGSCS. \Box

Example 3.13. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.7, 0.8), (0.3, 0.1) \rangle$. Then the IFS $A = \langle x, (0.8, 0.8), (0.2, 0) \rangle$ is an IFGSCS but not an IF α GSCS as $\alpha cl(A) = 1_{\sim} \notin B = \langle x, (0.9, 0.9), (0.1, 0) \rangle$ whenever $A \subseteq B$ and B is an IFSOS in X.

Theorem 3.14. Every IF α GSCS in (X, τ) is an IFGSPCS. But its converse need not be true in general.

Proof. Assume that A is an IF α GSCS in (X, τ) . Let an IFS $A \subseteq U$ and U be an IFOS. By hypothesis $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFSOS. This implies $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFOS. Since every IF α CS is an IFSPCS in (X, τ) . We have $spcl(A) \subseteq \alpha cl(A)$. This implies $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFOS. Hence A is IFGSPCS in (X, τ) .

Example 3.15. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ where $G = \langle x, (0.3, 0.1), (0.6, 0.8) \rangle$. An IFS $A = \langle x, (0.2, 0), (0.7, 0.8) \rangle$ is IFGSPCS but not IF α GSCS as $\alpha cl(A) \notin G$ even though $A \subseteq G$ and G is IFSOS.

Remark 3.16. An IFP closedness is independent of $IF\alpha GS$ closedness.

Example 3.17. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.3), (0.6, 0.5) \rangle$. Then the IFS $A = \langle x, (0.2, 0.1), (0.7, 0.8) \rangle$ is IFPCS but not IF α GSCS. Since $\alpha cl(A) \notin G$ even though $A \subseteq G$ and G is IFSOS.

Example 3.18. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$. Then the IFS $A = \langle x, (0.3, 0.6), (0.7, 0.4) \rangle$ is IF α GSCS. Since $cl(int(A)) \notin A$, A is not an IFPCS.

Remark 3.19. *IFSP closedness is independent of an IF* α *GS closedness.*

Example 3.20. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Then an IFS $A = \langle x, (0.4, 0.3), (0.5, 0.6) \rangle$ is IFSPCS but not IF α GSCS. Since $\alpha cl(A) \notin B$, $B = \langle x, (0.5, 0.4), (0.4, 0.5) \rangle$ where $A \subseteq B$ and B is IFSOS.

Example 3.21. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$. Then the IFS $A = \langle x, (0.3, 0.6), (0.7, 0.4) \rangle$ is an IF α GSCS but not IFSPCS as $int(cl(int(A))) \notin A$.

Remark 3.22. IF γ closedness is independent of IF α GS closedness.

Example 3.23. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.4), (0.8, 0.6) \rangle$. Then the IFS $A = \langle x, (0.6, 0.5), (0.4, 0.5) \rangle$ is IF γ CS but not IF α GSCS. Since $\alpha cl(A) \notin B = \langle x, (0.7, 0.6), (0.3, 0.4) \rangle$ where $A \subseteq B$ and B is IFSOS in X.

Example 3.24. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$. Then the IFS $A = \langle x, (0.3, 0.6), (0.7, 0.4) \rangle$ is an IF α GSCS but not IF γ CS as $int(cl(A)) \cap cl(int(A)) \notin A$.

Theorem 3.25. Every IF α GSCS in (X, τ) is an IF α GCS in (X, τ) but not conversely.

Proof. Assume that A is an IF α GSCS in (X, τ) . Let us consider an IFS $A \subseteq U$ and U is IFOS in (X, τ) . By hypothesis $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFSOS. This implies $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFOS. Therefore A is an IF α GCS in (X, τ) .

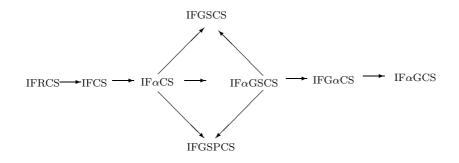
Example 3.26. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.1, 0.3), (0.7, 0.6) \rangle$. Then the IFS $A = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$ is IF α GCS but not IF α GSCS. Since $\alpha cl(A) \not\subseteq B = \langle x, (0.4, 0.4), (0.5, 0.4) \rangle$ eventhough $A \subseteq B$ and B is IFSOS.

Theorem 3.27. Every IF α GSCS in (X, τ) is an IFG α CS in (X, τ) but its converse may not be true in general.

Proof. Assume that A is an IF α GSCS in (X, τ) . Let $A \subseteq U$ and U be IF α OS in X. By hypothesis $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is IFSOS. This implies $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and IF α OS. Therefore A is an IFG α CS in (X, τ) . \Box

Example 3.28. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.2), (0.6, 0.8) \rangle$. Then the IFS $A = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle$ is IFG α CS but not IF α GSCS. Since $\alpha cl(A) \notin B = \langle x, (0.55, 0.7), (0.45, 0.3) \rangle$ eventhough $A \subseteq B$ and B is IFSOS.

The relations between various types of intuitionistic fuzzy closed sets are given in the following diagram.



The reverse implications are not true in general.

Remark 3.29. The intersection of any two $IF\alpha GSCS$ is not an $IF\alpha GSCS$ in general as seen from the following example.

Example 3.30. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.7, 0.6) \rangle$. Then the IFS $A = \langle x, (0.1, 0.8), (0.7, 0.2) \rangle$, $B = \langle x, (0.8, 0.2), (0.1, 0.7) \rangle$ are IF α GSCS. Now $A \cap B = \langle x, (0.1, 0.2), (0.7, 0.7) \rangle$. Since $\alpha cl(A \cap B) \notin G$ eventhough $A \subseteq G$ and G is IFSOS in X, $A \cap B$ is not an IF α GSCS in X.

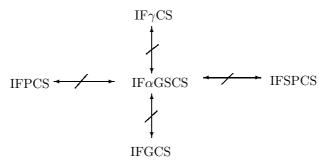
Theorem 3.31. Let (X, τ) be an IFTS. Then for every $A \in IF\alpha GSC(X)$ and for every $B \in IFS(X)$, $A \subseteq B \subseteq \alpha cl(A)$ implies $B \in IF\alpha GSC(X)$.

Proof. Let an IFS $B \subseteq U$ and U be an IFSOS in X. Since $A \subseteq B$, $A \subseteq U$ and A is IF α GSCS, $\alpha cl(A) \subseteq U$. By hypothesis, $B \subseteq \alpha cl(A)$, $\alpha cl(B) \subseteq \alpha cl(A) \subseteq U$. Therefore $\alpha cl(B) \subseteq U$. Hence B is IF α GSCS of X.

Theorem 3.32. If A is both IFSOS and IF α GSCS in (X, τ) , then A is an IF α CS in X.

Proof. Let A be an IFSOS in X. Since $A \subseteq A$, by hypothesis $\alpha cl(A) \subseteq A$. But $A \subseteq \alpha cl(A)$. Therefore $\alpha cl(A) = A$. Hence A is an IF α CS in X.

The independent relations between various types of intuitionistic fuzzy closed sets are given in the following diagram.



Theorem 3.33. The union of two IF α GSCS is an IF α GSCS in (X, τ) , if they are IFCS in (X, τ) .

Proof. Assume that A and B are IF α GSCS in (X, τ) . Since A and B are IFCS in X, cl(A) = A and cl(B) = B. Let $A \cup B \subseteq U$ and U is IFSOS in X. Then $cl(int(cl(A \cup B))) = cl(int(A \cup B)) \subseteq cl(A \cup B) = A \cup B \subseteq U$, that is $\alpha cl(A \cup B) \subseteq U$. Therefore $A \cup B$ is IF α GSCS.

Theorem 3.34. Let (X, τ) be an IFTS and A be an IFS in X. Then A is an IF α GSCS if and only if $A \overline{q} F$ implies $\alpha cl(A) \overline{q} F$ for every IFSCS F of X.

Proof. Necessary Part: Let F be an IFSCS in X and let $A \overline{q} F$. Then $A \subseteq F^c$, where F^c is an IFSOS in X. Therefore by hypothesis $\alpha cl(A) \subseteq F^c$. Hence $\alpha cl(A) \overline{q} F$.

Sufficient Part: Let F be an IFSCS in X and let A be an IFS in X. By hypothesis, $A \ \overline{q} \ F$ implies $\alpha cl(A) \ \overline{q} \ F$. Then $\alpha cl(A) \subseteq F^c$ whenever $A \subseteq F^c$ and F^c is an IFSOS in X. Hence A is an IF α GSCS in X.

4 Intuitionistic Fuzzy α -Generalized Semi-Open Sets

In this section we introduce intuitionistic fuzzy α -generalized semi-open sets and study some of its properties.

Definition 4.1. An IFS A is said to be *intuitionistic fuzzy* α -generalized semiopen set(IF α GSOS in short) in (X, τ) , if the complement A^c is an IF α GSCS in X.

The family of all IF α GSOS of an IFTS (X, τ) is denoted by $IF\alpha GSO(X)$.

Theorem 4.2. For any IFTS (X, τ) , every IFOS is an IF α GSOS, but not conversely.

Proof. Let A be an IFOS in X. Then A^c is an IFCS in X. by Theorem 3.3, A^c is an IF α GSCS in X. Hence A is an IF α GSOS in X.

Example 4.3. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.1), (0.7, 0.8) \rangle$. Then the IFS $A = \langle x, (0.1, 0), (0.8, 0.9) \rangle$. Since A^c is an IF α GSCS, A is an IF α GSOS, but not IFOS.

Theorem 4.4. In any IFTS (X, τ) every IF αOS is an IF $\alpha GSOS$ but not conversely.

Proof. Let A be an IF α OS in X. Then A^c is an IF α CS in X. by Theorem 3.5, A^c is an IF α GSCS in X. Hence A is an IF α GSOS in X.

Example 4.5. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$. Then the IFS $A = \langle x, (0.2, 0.4), (0.8, 0.6) \rangle$ is an IF α GSOS in X, but A is not an IF α OS in X.

Theorem 4.6. For any IFTS (X, τ) , every IFROS is an IF α GSOS but not conversely.

Proof. Let A be an IFROS in X. Then A^c is an IFRCS in X. by Theorem 3.7, A^c is an IF α GSCS in X. Hence A is an IF α GSOS in X.

Example 4.7. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.7), (0.3, 0.1) \rangle$. Then the IFS $A = \langle x, (0.7, 0.8), (0.2, 0) \rangle$ is an IF α GSOS in X, but A is not an IFROS in X.

Remark 4.8. IF α GSOS and IFGOS are independent in general.

Example 4.9. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.7), (0.5, 0.3) \rangle$. Then the IFS $A = \langle x, (0.6, 0.8), (0.3, 0.2) \rangle$ is an IF α GSOS in X, but A is not an IFGOS in X.

Example 4.10. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.6, 0.8), (0.4, 0.2) \rangle$. Then the IFS $A = \langle x, (0.3, 0.1), (0.7, 0.9) \rangle$ is an IFGOS in X, but A is not an IF α GSOS in X.

Theorem 4.11. Every $IF\alpha GSOS$ in (X, τ) is an IFGSOS in (X, τ) but it converse may not be true in general.

Proof. Let A be an IF α GSOS in X. Then A^c is IF α GSCS in X. by Theorem 3.12, A^c is IFGSCS in X. Hence A is an IFGSOS in X.

Example 4.12. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.7, 0.8), (0.3, 0.1) \rangle$. Then the IFS $A = \langle x, (0.2, 0), (0.8, 0.8) \rangle$ is an IFGSOS in X, but A is not an IF α GSOS in X.

Remark 4.13. *IFSPOS is independent of IF\alpha GSOS.*

Example 4.14. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle$. Then the IFS $A = \langle x, (0.5, 0.6), (0.4, 0.3) \rangle$ is an IFSPOS in X, but A is not an IF α GSOS in X.

Example 4.15. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$ and $G_2 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$ Then the IFS $A = \langle x, (0.7, 0.4), (0.3, 0.6) \rangle$ is an IF α GSOS in X, but A is not an IFSPOS in X.

Theorem 4.16. Every IF α GSOS in (X, τ) is an IF α GOS in (X, τ) , but its converse may not be true in general.

Proof. Let A be an IF α GSOS in X. Then A^c is an IF α GSCS in X. by Theorem 3.25, A^c is an IF α GCS in X. Hence A is an IF α GOS in X.

Example 4.17. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.1, 0.3), (0.7, 0.6) \rangle$. Then the IFS $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$ is IF α GOS in X, but not IF α GSOS in X.

Theorem 4.18. Every IF α GSOS in (X, τ) is an IFG α OS in (X, τ) , but its converse may not be true in general.

Proof. Let A be an IF α GSOS in X. Then A^c is an IF α GSCS in X. by Theorem 3.27, A^c is an IFG α CS in X. Hence A is an IFG α OS in X.

Example 4.19. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.4, 0.2), (0.6, 0.8) \rangle$. Then the IFS $A = \langle x, (0.5, 0.4), (0.5, 0.6) \rangle$ is IFG α OS in X, but not IF α GSOS in X.

Theorem 4.20. Let (X, τ) be an IFTS. If A is an IFS of X then the following properties are equivalent:

- 1. $A \in IF\alpha GSO(X)$.
- 2. $V \subseteq int(cl(int(A)))$ whenever $V \subseteq A$ and V is an IFSCS in X.
- 3. There exists IFOS G_1 such that $G_1 \subseteq V \subseteq int(cl(G))$ where G = int(A); $V \subseteq A$ and V is an IFSCS in X.

Proof. (1) ⇒ (2) Let $A \in IF\alpha GSO(X)$. Then A^c is an $IF\alpha GSCS$ in X. Therefore $\alpha cl(A^c) \subseteq U$ whenever $A^c \subseteq U$ and U is an IFSOS in X. That is $cl(int(cl(A^c))) \subseteq U$. Taking complement on both sides, we get $(cl(int(cl(A^c))))^c = int(int(cl(A^c)))^c)$ = $int(cl(cl(A^c))^c) = int(cl(int(A^c)^c)) = int(cl(int(A))) \supseteq U^c$. This implies $U^c \subseteq int(cl(int(A)))$ whenever $U^c \subseteq A$ and U^c is an IFSCS in X. Replace U^c by V, V $\subseteq int(cl(int(A)))$ whenever $V \subseteq A$ and V is an IFSCS in X.

 $(2) \Rightarrow (3)$ Let $V \subseteq int(cl(int(A)))$ whenever $V \subseteq A$ and V is an IFSCS in X. Hence $int(V) \subseteq V \subseteq int(cl(int(A)))$. Then there exists IFOS G_1 in X such that $G_1 \subseteq V \subseteq int(cl(G))$ where G = int(A) and $G_1 = int(V)$.

 $(3) \Rightarrow (1)$ Suppose that there exists IFOS G_1 such that $G_1 \subseteq V \subseteq int(cl(G))$ where G = int(A); $V \subseteq A$ and V is an IFSCS in X. It is clear that $(int(cl(G)))^c \subseteq V^c$. That is $(int(cl(int(A))))^c \subseteq V^c$. This implies $cl(cl(int(A)))^c \subseteq V^c$. Therefore $cl(int(cl(A^c))) \subseteq V^c$, $A^c \subseteq V^c$ and V^c is IFSOS in X. Hence $\alpha cl(A^c) \subseteq V^c$. That is A^c is an IF α GSCS in X. This implies $A \in IF\alpha$ GSO(X). **Theorem 4.21.** Let (X, τ) be an IFTS. Then for every $A \in IF\alpha GSO(X)$ and for every $B \in IFS(X)$, $\alpha int(A) \subseteq B \subseteq A$ implies $B \in IF\alpha GSO(X)$.

Proof. By hypothesis $\alpha int(A) \subseteq B \subseteq A$. Taking complement on both sides, we get $A^c \subseteq B^c \subseteq (\alpha int(A))^c$. Let $B^c \subseteq U$ and U be an IFSOS in X. Since $A^c \subseteq B^c$, $A^c \subseteq U$. Since A^c is an IF α GSCS, $\alpha cl(A^c) \subseteq U$. Also $B^c \subseteq (\alpha int(A))^c = \alpha cl(A^c)$. Therefore $\alpha cl(B^c) \subseteq \alpha cl(A^c) \subseteq U$. Hence B^c is an IF α GSCS in X. This implies B is an IF α GSOS in X. That is $B \in$ IF α GSO(X).

Remark 4.22. The union of any two IF α GSOS in (X, τ) is not an IF α GSOS in (X, τ) .

Example 4.23. Let $X = \{a, b\}$. Let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$. Then the IFS $A = \langle x, (0.6, 0.1), (0.2, 0.8) \rangle$ and $B = \langle x, (0.2, 0.8), (0.7, 0.1) \rangle$ are IF α GSOS in X but $A \cup B = \langle x, (0.6, 0.8), (0.2, 0.1) \rangle$ is not an IF α GSOS in X.

Theorem 4.24. An IFS A of an IFTS (X, τ) is an IF α GSOS if and only if $F \subseteq \alpha$ int(A) whenever $F \subseteq A$ and F is an IFSCS in X.

Proof. Necessary Part: Suppose A is an IF α GSOS in X. Let F be an IFSCS in X and $F \subseteq A$. Then F^c is an IFSOS in X such that $A^c \subseteq F^c$. Since A^c is an IF α GSCS, we have $\alpha cl(A^c) \subseteq F^c$. Hence $(\alpha int(A))^c \subseteq F^c$. Therefore $F \subseteq \alpha int(A)$.

Sufficient Part: Let A be an IFS in X and let $F \subseteq \alpha int(A)$ whenever F is an IFSCS in X and $F \subseteq A$. Then $A^c \subseteq F^c$ and F^c is an IFSOS. By hypothesis, $(\alpha int(A))^c \subseteq F^c$, which implies $\alpha cl(A^c) \subseteq F^c$. Therefore A^c is an IF α GSCS in X.

5 Conclusion

In this paper we have introduced intuitionistic fuzzy α -generalized semi closed sets and intuitionistic fuzzy α -generalized semi open sets. Also we have studied some of its basic properties and the relationships between other existing intuitionistic fuzzy closed and open sets.

Acknowledgement : We would like to thank the referee for his/her comments and suggestions on the manuscript.

References

- [1] L.A. Zadeh, Fuzzy sets, Information and control, 8 (1965) 338-353.
- [2] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.

- [3] D. Coker, An introduction to fuzzy topological spaces, Fuzzy sets and systems 88 (1997) 81-89.
- [4] H. Gurcay, D. Coker, Es.A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. of Fuzzy Math. 5 (1997) 365-378.
- [5] K. Hur, Y.B. Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. Jour. 25 (2003) 131-139.
- [6] I.M. Hanafy, Intuitionistic fuzzy $\gamma\text{-continuity},$ Canad. Math. Bull. 20 (2009) 1-11.
- [7] Y.B. Jun, S.Z. Song, Intuitionistic fuzzy semipreopen sets and Intuitionistic fuzzy semiprecontinuous mappings, Jour. of Appl. Math., and Computing. 19 (2005) 467-474.
- [8] R. Santhi, D. Jayanthi, Intuitionistic fuzzy generalized semipreclosed mappings, NIFS. 16 (2010) 28-39.
- K. Sakthivel, Intuitionistic fuzzy alpha generalized closed sets and intuitionistic fuzzy alpha generalized open sets, The Mathematical Education 4 (2012) (To appear).
- [10] S.S. Thakur, Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics 16 (2008) 559-572.
- [11] R. Santhi, K. Sakthivel, Intuitionistic fuzzy generalized semicontinuous mappings, Advances in Theoretical and Applied Mathematics 5 (2009) 73-82.
- [12] D. Kalamani, K. Sakthivel, C.S. Gowri, Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences. 6 (2012) 4691-4700.

(Received 17 September 2013) (Accepted 6 April 2014)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th