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1 Introduction

Equilibrium problems theory has emerged as an interesting and fascinating
branch of applicable mathematics. This theory has become a rich source of in-
spiration and motivation for the study of a large number of problem arising in
economics, optimization, operation research in a general and unified way. Equilib-
rium problems include varitional inequalities as well as complementarity problems,
convex optimization, saddle-point problems, and Nash equilibrium as special cases,
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see for example ([1]-[4]). Equilibrium problems have been generalized in various
directions. Vector equilibrium porblem is one of the important generalizations of
equilibrium problem. In recent past a number of researchers extensively studied
various classes of vector equilibrium problems, see for example ([5]-[9],[10],[12]-
[23],[14]).

Very recently, Konnov [15] and Allevi et al. [16] discussed the existence of
solution of (vector) variational inequalities over product sets. Further, Allevi et
al. [17] and Ansari et al. [6] extended the results of ([16],[15]) for vector (quasi)
variational inequalities over (countable) product sets.

Motivated and inspired by recent work going in this direction, we consider
a generalized vector equilibrium problem over product sets (for short, GVEP)
in topological vector spaces. We establish that GVEP and a system of gen-
eralized vector equilibrium problems (for short, SGVEP) both have same solu-
tion set. Further we define the concept of relative pseudo monotonicity and re-
latvely generalized B-pseudomontonicity for the set-valued bifunction, which ex-
tend the concepts of relatively pseudomonotonicity and B-pseudomontonicity given
in ([16],[5],[18],[10],[15]). Using these concepts and fixed point theorems, we es-
tablish some existence results for GVEP and SGVEP. The concepts and results
presented in this paper extend and unify a number of known concepts and results
in the literature, see for example ([17],[16],[15],[14]).

2 Preliminaries

Throughout the paper unless otherwise stated, let I = {1, ....,m} be an index
set. For each s ∈ I, let Xs be real linear topological space and Ks be a nonempty
convex subset of Xs. Set

K =
∏

s∈I

Ks. (1)

Let Y be a linear topological space with a partial order induced by a convex,
closed and solid cone C with 0 6∈ intC. Set Rm

+ = {µ ∈ R
m : µs > 0, 1 ≤ s ≤ m}.

For each s ∈ I, let Gs : K → 2L(Xs,Y ) be a mapping so that if we set

G = (Gs : s ∈ I), (2)

then G : K → 2L(X,Y ) where X =
∏

s∈I

Xs.

We consider the following generalized vector equilibrium problem over product
sets (GVEP): Find u = (us)s∈I ∈ K such that

∑

s∈I

Gs(u, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I. (3)

The dual problem of GVEP (3) is to find an element u ∈ K such that

∑

s∈I

Gs(v, us) 6⊆ intC, ∀vs ∈ Ks, s ∈ I, (4)
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where v = (vs)s∈I .

We denote by Ug and Ud the solution sets of GVEP (3) and its dual problem
(4), respectively.

Next, we consider the system of generalized vector equilibrium problem (SGVEP):
Find u = (us)s∈I ∈ K such that

Gs(u, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I. (5)

We denote by Us the solution set of SGVEP (5).

Now, we recall the following fixed point theorems which are important in
establishing the results of the paper.

Theorem 2.1 ([19]). Let K be nonempty convex subset of a topological vector
space (not necessarily Hausdorff) E and let S, T : K → 2K be set-valued mappings.
Assume that the following conditions hold:

(i) For all x ∈ K, S(x) ⊆ T (x);

(ii) For all x ∈ K, T (x) is convex and S(x) is nonempty;

(iii) For all y ∈ K, S−1(y) := {x ∈ K : y ∈ S(x)} is compactly open;

(iv) There exists a nonempty compact (not necessarily convex) subset D of K
and ỹ ∈ D such that K\D ⊂ T−1(ỹ).

Then, there exists x̂ ∈ K such that x̂ ∈ T (x̂).

For every nonempty set A, we denote by 2A (respectively F(A)) the family of
all subsets (respectively finite subsets) of A.

Theorem 2.2 ([20]). Let K be a nonempty convex subset of a topological vector
space (not necessarily Hausdorff) E and let T : K → 2K be a set-valued mapping.
Assume that the following conditions hold:

(i) For all x ∈ K, T (x) is convex;

(ii) For each A ∈ F(K) and for all y ∈ CoA, T−1(y)
⋂

CoA is open in CoA,
where CoA denotes the convex hull of set A;

(iii) For each A ∈ F(K) and all x, y ∈ CoA and every net {xα} in K converging
to x such that ty+ (1− t)x 6∈ T (xα), for all α and for all t ∈ [0, 1], we have
y 6∈ T (x);

(iv) There exists a nonempty compact subset D of K and an element ỹ ∈ D such
that ỹ ∈ T (x) for all x ∈ K\D;

(v) For all x ∈ D, T (x) is nonempty.

Then, there exists x̂ ∈ K such that x̂ ∈ T (x̂).
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Theorem 2.3 ([21]). Let K be a nonempty compact and convex set in Hausdorff
topological vector space E. Let B be a subset of K × K having the following
properties:

(i) For each u ∈ K, (u, u) ∈ B;

(ii) For each u ∈ K, the set Bu = {v ∈ K : (u, v) ∈ B} is closed;

(iii) For each v ∈ K, the set Bv = {u ∈ K : (u, v) 6∈ B} is convex.

Then there exists a point v0 ∈ K such that K × {v0} ⊂ B.

Theorem 2.4 ([11]). Let A and B be nonempty sets of a topological vector space
E and let F : A → 2B be such that:

(i) For each x ∈ A, F (x) is closed in B;

(ii) For each finite subset {x1, · · · , xn} of A, we have Co{x1, · · · , xn}⊂
n
⋃

i=1

T (xi);

(iii) There exists a point x ∈ A, such that F (x) is compact.

Then
⋂

x∈X

F (x) 6= ∅.

3 Relationship between GVEP (3) and SGVEP
(5)

We define the following concepts.

Definition 3.1. For each s ∈ I, the mapping Gs : K ×Ks → 2Y is said to be

(a) u-hemicontinuous in the first argument, if for any u, v, z ∈ K and λ ∈ [0, 1],
the mapping λ → Gs(u+ λ(v − u), zs) is upper semicontinuous at 0+;

(b) pseudo (w,C)-monotone, if for all u, v ∈ K, we have

Gs(u, vs) 6⊆ −intC ⇒
∑

s∈I

Gs(v, us) 6⊆ intC.

Lemma 3.2. GVEP (3) implies SGVEP (5).

Proof. The proof follows immediately from (1) and (2).

Lemma 3.3. If for each s ∈ I, the mapping Gs : K × Ks → 2Y is pseudo
(w,C)-monotone, then Us ⊆ Ud.

Proof. The proof is directly followed by pseudo (w,C)-monotonicity of Gs.
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Lemma 3.4. If for each s ∈ I, the mapping Gs : K×Ks → 2Y is u-hemicontinuous
in the first argument with condition

∑

s∈I

Gs(u, us) = 0, ∀us ∈ Ks, s ∈ I and C-

convex in the second argument, then Ud ⊆ Ug.

Proof. Let us consider u ∈ Ud, then

∑

s∈I

Gs(v, us) 6⊆ intC, ∀vs ∈ Ks, s ∈ I.

Since, for each s ∈ I , Ks is convex, ]us, vs[:= αvs + (1 − α)us ∈ Ks , ∀α ∈
(0, 1], and hence, we have

∑

s∈I

Gs(z, us) 6⊆ intC, ∀zs ∈]us, vs[.

Again, since Gs(z, .) is convex, we have

0 =
∑

s∈I

Gs(z, zs) ∈ α
∑

s∈I

Gs(z, vs) + (1− α)
∑

s∈I

Gs(z, us).

From above inclusions, we have

∑

s∈I

Gs(z, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I.

By u-hemicontinuity of G, the preceding inclusion implies that

∑

s∈I

Gs(u, vs) 6⊆ −intC, ∀vs ∈ Ks,

i.e., u ∈ Ug which implies that Ud ⊆ Ug. This completes the proof.

Combining above three Lemmas, we have the following result.

Proposition 3.5. If for each s ∈ I, the mapping Gs : K × Ks → 2Y is u-
hemicontinuous in the first argument with condition

∑

s∈I

Gs(u, us) = 0, ∀us ∈

Ks, s ∈ I, C-convex in the second argument and pseudo (w,C)-monotone. Then
GVEP (3) and SGVEP (5) both have same solution set.

Now, we prove the following Minty’s type Lemma which plays an important
role in establishing existence result for GVEP (3).

Lemma 3.6. If for each s ∈ I, the mapping Gs : K×Ks → 2Y is u-hemicontinuous
in the first argument with condition

∑

s∈I

Gs(u, us) = 0, ∀us ∈ Ks, s ∈ I, C-convex

in the second argument and pseudo (w,C)-monotone, then the following two prob-
lems are equivalent.
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(I) Find u ∈ K such that

∑

s∈I

Gs(u, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I. (6)

(II) Find u ∈ K such that

∑

s∈I

Gs(v, us) 6⊆ intC, ∀vs ∈ Ks, s ∈ I. (7)

Proof. (I)=⇒(II). It follows from Lemma 3.2 that GVEP (3) implies SGVEP (5),
i.e.,

∑

s∈I

Gs(u, vs) 6⊆ −intC =⇒ Gs(u, vs) 6⊆ −intC.

Further by pseudo (w,C)-monotonicity of Gs, we have

Gs(u, vs) 6⊆ −intC =⇒
∑

s∈I

Gs(v, us) 6⊆ intC.

(II)=⇒(I). Suppose that u ∈ K satisfies

Gs(v, us) 6⊆ intC, ∀vs ∈ Ks, s ∈ I.

Since, for each s ∈ I,Ks is convex, ]us, vs[:= αvs+(1−α)us ∈ Ks ∀α ∈ (0, 1],
and hence, we have

∑

s∈I

Gs(z, us) 6⊆ intC, ∀zs ∈]us, vs[. (8)

Again, since Gs(z, .) is convex, we have

0 =
∑

s∈I

Gs(z, zs) ∈ α
∑

s∈I

Gs(z, vs) + (1− α)
∑

s∈I

Gs(z, us) (9)

From inclusions (8) and (9), we have

∑

s∈I

Gs(z, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I.

By u-hemicontinuity of Gs, the preceding inclusion implies that

∑

s∈I

Gs(u, vs) 6⊆ −intC, ∀vs ∈ Ks.

This completes the proof.
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Theorem 3.7. For each s ∈ I, let the mapping Gs : K ×Ks → 2Y be C-convex
and upper-semicontinuous in the second argument with condition

∑

s∈I

Gs(u, us) =

0, ∀us ∈ Ks, s ∈ I and let Gs be u-hemicontinuous in first argument and pseudo
(w,C)-monotone. Suppose that there exists a nonempty convex and compact subset
D of K and a point ṽ ∈ D, such that for all u ∈ K\D,

∑

s∈I

Gs(u,ṽs) ⊆ −intC.

Then GVEP (3) is solvable.

Proof. Define set-valued mappings S, T : K → 2K by

S(v) = {u ∈ K :
∑

s∈I

Gs(u, vs) ⊆ −intC}

T (v) = {u ∈ K :
∑

s∈I

Gs(v, us) ⊆ intC}.

Now, for each v ∈ K, we claim that T (v) is convex. Indeed, let u1, u2 ∈
T (v), p, q ≥ 0 such that p+ q = 1 as K is convex. Hence

∑

s∈I

Gs(v, pu
1
s + qu2

s) ∈ p
∑

s∈I

Gs(v, u
1
s) + q

∑

s∈I

Gs(v, u
2
s)− C ⊂ intC.

Therefore pu1 + qu2 ∈ T (v). Hence our claim is then verified.

Further, it follows from pseudo (w,C)-monotonicity of Gs that S(v) ⊆ T (v)
for each v ∈ K. Since

S−1(u) = {v ∈ K : u ∈ S(v)}

S−1(u) = {v ∈ K :
∑

s∈I

Gs(u, vs) ⊆ −intC}

[S−1(u)]c = {v ∈ K :
∑

s∈I

Gs(u, vs) 6⊆ −intC}.

It is easy observed from upper-semicontinuity of Gs in the second argument
that [S−1(u)]c is closed for each u ∈ K and hence S−1(u) is open in K. Therefore,
S−1(u) is compactly open.

Assume that, for all v ∈ K, S(v) is nonempty. Then all the conditions of
Theorem 2.1 are satisfied and therefore there exists û ∈ K such that û ∈ T (û).
Hence it follows that

0 =
∑

s∈I

Gs(û, ûs) ⊆ intC,

which is impossible.
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Hence, there exists v̄ ∈ K such that S(v̄) = ∅. This implies that, for all u ∈ K,
∑

s∈I

Gs(u, v̄s) 6⊆ intC that is, there exists u ∈ K such that

∑

s∈I

Gs(v, us) 6⊆ intC, ∀vs ∈ Ks, s ∈ I.

By Lemma 3.6, above inclusion implies that there exists u ∈ K such that

∑

s∈I

Gs(u, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I.

This completes the proof.

4 Parametric Generalized Vector Equilibrium
Problem with Relatively Monotone Mapping

Now, we extend the notion of pseudo (w,C)-monotone to the set-valued vector
case.

Definition 4.1. For each s ∈ I, the mapping Gs : K ×Ks → 2Y is said to be

(a) relatively monotone, if there exists α, β ∈ R
m
+ such that ∀u, v ∈ K, we have

∑

s∈I

αsGs(u, vs)−
∑

s∈I

βsGs(v, us) ⊆ C;

(b) relatively w-pseudomonotone, if there exists α, β ∈ R
m
+ such that ∀u, v ∈ K,

we have

∑

s∈I

βsGs(u, vs) 6⊆ −intC =⇒
∑

s∈I

αsGs(v, us) 6⊆ intC.

Remark 4.2. (i) If for each s ∈ I, Gs(u, vs) = Ts(u)(vs − us), where Ts :
K → 2L(Xs,Y ), then Definition 4.1 (a)-(b) reduce to the concepts of relatively
monotonicity and relatively w-pseudomonotone monotonicity of Ts given in
Allevi et al. [15].

(ii) It what follows, we reserve the symbol α and β for parameters associated to
relative (pseudo) monotonocity of G . It is clear that relative monotonocity
implies relative w-pseudo monotonocity, but the reverse assertions are not
true in general.

We now consider a parametric form of generalized vector equlibrium prob-

lem. Fix an element γ ∈ R
m
+ and for each s ∈ I, consider the mapping G

(γs)
s :
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K × Ks → 2Y . Then, we consider the following parametric generalized vector
equlibrium problem (for short, PGVEP): Find u ∈ K such that

∑

s∈I

γsGs(u, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I. (10)

and its dual problem: Find u ∈ K such that

∑

s∈I

G(γs)
s (v, us) 6⊆ intC, ∀vs ∈ Ks, s ∈ I. (11)

We denote by Ug
γ and Ud

γ the solution sets of problem PGVEP (10) and (11),
respectively.

Lemma 4.3. PGVEP (10) implies SGVEP (5).

Proof. The proof follows immediately from (1) and (2).

Lemma 4.4. If for each s ∈ I, the set Ks is convex and the mapping Gs :
K ×Ks → 2Y is u-hemicontinuous in the first argument, then Ud

γ ⊆ Ug
γ .

Proof. For each s ∈ I, G
(γs)
s will also be u-hemicontinuous in the first argument

and the result follows from Lemma 3.4.

Now, we establish existence result for SGVEP (5).

Theorem 4.5. For each s ∈ I, let Ks be convex; Gs be relatively w-pseudomonotone
with nonempty compact values and Gs be u-hemicontinuous in first argument and
upper semicontinuous in second argument with condition

∑

s∈I

Gs(u, us) = 0, ∀us ∈

Ks, s ∈ I. Suppose that there exists a nonempty, convex and compact subset D of
K and a point ṽ ∈ D such that for all u ∈ K\D,

∑

s∈I

αsGs(u,ṽs) ⊆ −intC. Then

SGVEP (5) is solvable.

Proof. Define set-valued mappings A,B : K → 2K by

B(v) = {u ∈ K :
∑

s∈I

βsGs(u, vs) 6⊆ −intC}

A(v) = {u ∈ K :
∑

s∈I

αsGs(v, us) 6⊆ intC}

We divide the proof into the following three steps.
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Step I. We prove that
⋂

v∈K

B(v) 6= ∅. Let z be in the convex hull of any finite sub-

set {u1, · · · , un} ofK. Then z =
n
∑

j=1

µju
j for some µj > 0, j = 1, ..., n;

n
∑

j=1

µj = 1.

If z /∈
n
⋃

j=1

B(vj), then

∑

s∈I

βsGs(z, v
j
s) 6⊆ −intC =⇒

n
∑

j=1

µj

(

∑

s∈I

βsGs(z, v
j
s)
)

⊆ −intC; ∀j = 1, ..., n.

0 =
∑

s∈I

βsGs(z, zs) =
∑

s∈I

βsGs

(

z,

n
∑

j=1

µjvs
j
)

n
∑

j=1

µj

(

∑

s∈I

βsGs(z, vs
j)
)

⊆ −intC,

which is a contradiction to the assumption 0 ∈ −intC. Therefore, the mapping
B : K → 2K defined by B(v) = B(v), the closure of B(v), is also a KKM mapping.
By assumption there exists a nonempty convex compact subset D of K and point
ṽ ∈ D such that for all u ∈ K\D,

∑

s∈I

αsGs(u, vs) ⊆ −intC. This implies that

B(v) ⊂ D. Hence B(ṽ) is compact. Therefore by Theorem 2.4., we get
⋂

v∈K

B(v) 6= ∅.

Step II. We prove that
⋂

v∈K

A(v) 6= ∅. From relative w-pseudomonotonocity of

Gs, it follows that B(v) ⊆ A(v). Next, we claim that for each v ∈ K, A(v) is
closed. Indeed for any v ∈ K, there exists a net {uθ} in A(v) such that {uθ}
converges to u ∈ K. Then we have

∑

s∈I

αsGs(v, us
θ) 6⊆ intC for each θ and for

each v ∈ K. That is, for each θ, there exists pθs ∈ Gs(v, us
θ), s ∈ I such that

∑

s∈I

αsp
θ
s 6∈ intC. Since for each s ∈ I, the set Ms := {us

θ} ∪ {us} is compact and

hence pθs ∈ Gs(v,Ms), s ∈ I. Since Gs(v,Ms) is compact, {pθs} has a convergent
subnet with limit, say ps for each s ∈ I. Without loss of generality, we can assume
that pθs converges to ps for each s ∈ I. Since Y \{intC} is closed, then by upper
semicontinuity of Gs(v, .), ps ∈ Gs(v, us), and hence

∑

s∈I

αsGs(v, u
θ
s) 6⊆ intC im-

plies that
∑

s∈I

αsGs(v, us) 6⊆ intC. Hence u ∈ A(v), for each v ∈ K.

Thus, we conclude that A(v) is closed. Therefore, B(v) ⊆ A(v) and hence
from Step I, we have

⋂

v∈K

A(v) 6= ∅.

Step III. We prove that Us 6= ∅. From Step II, it follows that Ud(α) 6= ∅. Now
Lemma 4.3 and 4.4 yield Us 6= ∅, as desired.
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Next we have the following existence result without monotonicity.

Theorem 4.6. For each s ∈ I, let Ks be compact and convex, and let the mapping
Gs : K × Ks → 2Y be C-convex in first argument and upper semicontinuous in
second argument with the condition

∑

s∈I

αsGs(u, us) = 0, ∀us ∈ Ks, then there

exists a point u0 ∈ K such that u0 is a solution of SGVEP (5).

Proof. Let us suppose that

H = {(u, v) ∈ K ×K :
∑

s∈I

αsGs(u, vs) 6⊆ −intC}.

It is clear that (u, v) ∈ H, ∀u ∈ K. For each u ∈ K, the set

Hu = {v ∈ K :
∑

s∈I

αsGs(u, vs) 6⊆ −intC}

is closed as can be easily seen from the upper semicontinuity of Gs(u, .).

Now we claim that for v ∈ K, the set

Hv = {u ∈ K :
∑

s∈I

αsGs(u, vs) ⊆ −intC}

is convex. Indeed, let u1, u2 ∈ H(v), p, q ≥ 0 such that p + q = 1. Since K is
convex,

∑

s∈I

αsGs(pu1 + qu2, vs) ∈ p
∑

s∈I

αsGs(u1, vs) + q
∑

s∈I

αsGs(u2, vs)− C

= −intC − intC − C ⊂ −intC,

which implies that pu1 + qu2 ∈ H(v).

Thus our claim is then verified. All the assumptions of Theorem 2.3 are
satisfied. Therefore by Theorem 2.3 , there exists a point u0 ∈ K such that
K × {u0} ⊂ H , which implies that u0 ∈ K such that

∑

s∈I

αsGs(u0, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I.

This completes the proof.

We define the following concepts.

Definition 4.7. For each s ∈ I, let the mapping Gs : K ×Ks → 2Y is said to be
relatively generalized B-pseudomonotone, if for each net {uθ} in K and u, v ∈ K
such that uθ → u and

∑

s∈I

αsGs(u
θ, tus + (1 − t)vs) 6⊆ −intC, ∀t ∈ [0, 1],
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we have
∑

s∈I

αsGs(u, vs) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I.

If for each s ∈ I, Gs(u, vs) = Ts(u)(vs − us), where Ts : K → 2L(Xs,Y ), then
we have the following definition reduced from Definition 4.7.

Definition 4.8. For each s ∈ I, the mapping Ts : K → 2L(Xs,Y ) be relatively
B-pseudomonotone, if for each net {uθ} in K and u, v ∈ K such that uθ → u and

∑

s∈I

αsTs(u
θ)((tus − (1− t)vs)− uθ

s) 6⊆ −intC, ∀t ∈ [0, 1],

we have
∑

s∈I

αsTs(u)(vs − us) 6⊆ −intC.

Remark 4.9. Definitions 4.7-4.8 generalize and extend the concepts of B-
pseudomonotonicity given in [16,5,18,10,15].

Theorem 4.10. For each s ∈ I, let the mapping Gs : K ×Ks → 2Y is relatively
generalized B-pseudomonotone such that, for each A ∈ F(K), u →

∑

s∈I

αsGs(u, vs)

is lower semicontinuous on CoA. Assume that there exists a nonempty, convex
and compact subset D of K and a point ṽ ∈ D such that for each u ∈ K\D,
∑

s∈I

αsGs(u,ṽs) ⊆ −intC. Then SGVEP (5) is solvable.

Proof. Define a set-valued mapping T : K → 2K by

T (u) = {v ∈ K :
∑

s∈I

αsGs(u, vs) ⊆ −intC}.

For each u ∈ K, it is clear that T (u) is convex. Let A ∈ F(K), then for all
v ∈ CoA

[(T−1(v))c]
⋂

CoA = {u ∈ CoA :
∑

s∈I

αsGs(u, vs) 6⊆ −intC}

is closed in CoA by the lower semicontinuity of the mapping u →
∑

s∈I

αsGs(u, vs)

on CoA. Hence
(

T−1(u)
)
⋂

CoA is open in CoA. Next, suppose that u, v ∈ CoA
and {uθ} is a net in K converging to u such that

∑

s∈I

αsGs(u
θ, tus + (1− t)vs) 6⊆ −intC, ∀t ∈ [0, 1].

By relatively generalized B-pseudomonotonicity of Gs, we have

∑

s∈I

αsGs(u, vs) ⊆ −intC,
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that is, v 6∈ T (u).

Assume that T (u) is nonempty for u ∈ K. Thus all the conditions of Theorem
2.2 are satisfied. Hence there exists u ∈ K such that u ∈ T (u), that is,

0 =
∑

s∈I

αsGs(u, vs) ⊆ −intC,

which is a contradiction. Hence there exists u ∈ K such that T (u) = ∅ which
implies that

∑

s∈I

αsGs(u, vs) 6⊆ −intC ∀vs ∈ Ks, s ∈ I.

This completes the proof.

Finally, we have the following consequences of Theorems 4.5 and 4.10.

Theorem 4.11. For each s ∈ I, let Ks be convex; Ts : K → 2L(Xs,Y ) be u-
hemicontinuous and relatively w-pseudomonotone and that has nonempty compact
values. Suppose that there exists a nonempty, convex and compact subset D of K
and a point ṽ ∈ D such that for all u ∈ K\D,

∑

s∈I

αsTs(u)(ṽs − us) ⊆ −intC.

Then the system of generalized vector variational inequality problems over product
sets (for short, SGVVIP): Find u ∈ K such that

Ts(u)(vs − us) 6⊆ −intC, ∀vs ∈ Ks, s ∈ I (12)

is solvable.

Proof. Setting: Gs(u, vs) = Ts(u)(vs−us) in the Theorem 4.5 and Lemmas 4.3-4.4,
the result follows.

Theorem 4.12. For each s ∈ I, the mapping Ts : K → 2L(Xs,Y ) is relatively
B-pseudomonotone such that for each A ∈ F(K), u →

∑

s∈I

αsTs(u)(vs − us)

is lower-semicontinuous on CoA. Assume that there exists a nonempty, con-
vex and compact subset D of K and a point ṽ ∈ D such that for each u ∈
K\D,

∑

s∈I

αsTs(u)(vs − us) ⊆ −intC. Then SGVVIP (12) is solvable.

Proof. The result follows from Theorem 4.10 with Gs(u, vs) = Ts(u)(vs − us).

It is of further research effort to study GVEP (3) and generalized vector quasi-
equilibrium problem over the cartesian product of a countable number of sets with
moving cone.
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