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Abstract : In this paper, we propose an analytical approach to price a discretely-
sampled variance swap when the underlying asset is a commodity, with the realized
variance defined in terms of squared percentage return of the underlying commod-
ity prices. We assume that commodity price follows Schwartz (1997)’s one-factor
model, which is adopted to describe the stochastic behavior of it. Furthermore,
we demonstrate the validity of our closed-form solution in terms of its financial
meaningfulness. Finally, a comparison between our solution and Monte Carlo sim-
ulations demonstrates the efficiency of our approach, which substantially reduces
the computational burden of using Monte Carlo methods.
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1 Introduction

Commodity trading has tended to grow tremendously over the past decade.
The groups of participants in commodity markets include not only the produc-
ers, but also some financial portfolio managers, who use commodities as hedging
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instruments and even speculative assets. The liquidity of commodity trading is
also boosted by global market integration and liberalization of financial market.
The price of commodities becomes abruptly volatile, and it hurts economic de-
velopment in terms of national income, trade balances, price levels, and nominal
exchange rates [1]. In the last decade, which was a period of high energy price,
there was an increasing demand for biofuels, which had a profound impact on the
grain market. An escalation in price volatility of major grain commodities lead
to growing concern about the security of the world food supply [2]. Commodity
market participants, therefore, are constantly looking for a tool to use to hedge
against the volatility of commodity price.

To hedge against volatility risk, variance swaps are the favored derivatives.
Even though there are specific volatility swaps to hedge against volatility risk,
investors are more familiar with variance than volatility. Variance swaps are for-
ward contracts on the future realized variance on the specified underlying assets.
Most underlying assets of variance swaps are financial assets; more specifically,
indexes. Among the first of the literature that discussed variance swaps, Deme-
terfi et al. [3] showed that variance swaps could be replicated by a portfolio of
standard put and call options, with suitably chosen exercise prices series. This
methodology seemed to be acceptable in their presentation, but the assumption
about standard options with a continuum of exercise prices causes it to be compli-
cated to adopt. To solve the problem, they also pointed out in their paper that it
demanded a stochastic volatility model. Howison et al. [4] proposed a closed-form
pricing formula of both variance and volatility swaps. Two closed-form formulas
were presented by assuming a geometric Brownian motion model and one-factor
volatility process. However; they approximated the realized variance in continu-
ous time, which is not pragmatic in the market. Differently, based on Heston [5]
model, a model widely used to explain financial asset price, Swishchuk [6] defined
his own discretely-sampled realized variance, which he called “a pseudo-variance”,
and used a probabilistic approach to approximate volatility and variance swaps
price formulas in integral forms. Recently, the closed-form solutions for the fair
prices of variance swaps, based on the conventional-defined realized variances, were
proposed by Zhu and Lian [7, 8]. They used the Heston model to explain the un-
derlying asset price process and introduced a new state variable, enabling them
to find the fair price of variance swaps by solving the governing PDE (Partial
Differential Equation) system directly with the generalized Fourier transforma-
tion. More interestingly, Rujivan and Zhu [9, 10] derived identical formulas to
the ones shown by Zhu and Lian [7, 8], but used a more direct approach to price
variance swaps without using their complicated procedures. Instead, Rujivan and
Zhu [9, 10]’s methodology was based on the common tower property of conditional
expectation.

Focusing on commodity markets, Swishchuk [11] was among the first to de-
rive the fair price formula of volatility and variance swaps for energy (natural
gas). He assumed the risk-neutral stochastic volatility process which follows the
mean-reverting one-factor variance model, called the continuous-time generalized
autoregressive conditional heteroskedasticity or GARCH(1,1) model. Then, he de-
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rived the price of variance swaps directly by taking integral of the first moment of
the stochastic volatility over time t from the beginning until its maturity. However,
his formula was for a continuously-sampled variance swaps price.

Selecting a stochastic process to describe the behavior of commodity price is
crucial to the success of determining the price of variance swaps in the commodity
markets. With an inappropriate process, practicality to any commodity market
is lost, even with the variance swap price correctly derived. Unlike a financial
asset price, a commodity price has a mean reversion; when it is low, people con-
sume more, and the high-cost producers leave the market, leading to increased
price; conversely, when it is high, people consume less, and induce many produc-
ers to the market, leading to decreased price. Moreover, there are many types of
commodities; the most basic way to sort is between those that are storable and
those that are not. Focusing on storable commodities, a forward price is generally
explained by the theory of storage; this theory predicts the positive relationship
between a spot commodity price and its forward curve slope by a key factor, called
a convenience yield. A convenience yield arises from the benefits that commodity
holders enjoy from their inventory holding, in terms of ease of use and providing
a buffer to price volatility caused by seasonality. The Schwartz [12] one-factor
model has its merits to describe commodity price. It has a mean reversion, and
incorporates a convenience yield measured by the logarithm of spot price.

In this paper, we assume the realized variance, defined as the squared percent-
age returns; a natural way to compute a return variance of the spot commodity
price, following Schwartz [12] one-factor model. Moreover, the way to define a re-
alized variance in discrete sampling is more practical to the behavior of commodity
prices in the markets. We then apply the Rujivan and Zhu [9, 10]’s approach to
obtain solutions for the fair delivery price of variance swaps on commodities.

The remainder of the paper is organized as follows. In Section 2, we review
the Schwartz [12] one-factor model. In Section 3, we discuss the concept of vari-
ance swaps and a definition of their underlying, called a realized variance. Then,
we derive a simple closed-form formula for the fair delivery price of commodity
variance swaps. In Section 4, we investigate the validity of our pricing formula
in terms of its financial meaningfulness. In Section 5, we show a comparison of
our formula to the Monte Carlo simulations. Finally, we give a brief summary in
Section 6.

2 Schwartz One-Factor Model

In this section, we shall briefly review the Schwartz [12] one-factor model to
describe the dynamics of commodity prices in our paper. The model is an extension
of the Ornstein-Uhlenbeck (OU) model. The fundamental theorem of asset pricing
[13] states that the existence of a risk-neutral probability measure guarantees that
there is no arbitrage opportunity. Under a risk-neutral probability measure, the
Schwartz one-factor model describes the spot commodity price at time t, denoted
by St, follow the stochastic differential equation (SDE);
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dSt = κ (µ∗ − lnSt)Stdt+ σStdz
∗
t , S0 > 0. (2.1)

Here, κ is a degree of mean-reverting speed parameter, µ∗ is the long-run value of
spot commodity price, σ is the volatility, and dz∗t is an increment to a standard
Brownian motion under a risk-neutral probability space (Ω,F , Q). We assume
that an initial spot commodity price S0 and parameters κ, σ are strictly positive.

The model (2.1) has a benefit of taking convenience yield into account and still
preserving the “one-factor” stochastic process. The empirical study in [14] showed
that the correlations between the convenience yields and returns on trading the
commodities were positive. Due to the empirical study, instantaneous convenience
yield at time t, denoted by δt, is assumed to be a stochastic process, which has a
linear transformation of the logarithmic of St as

δt = κ lnSt, (2.2)

for all t ≥ 0. Therefore, the model (2.1) can be written in terms of δt as

dSt = (κµ∗ − δt)Stdt+ σStdz
∗
t . (2.3)

For the rest of this paper, our analysis will be based on the risk-neutral prob-
ability space (Ω,F , Q) with a filtration (Ft)t≥0. Moreover, the conditional expec-

tation with respect to Ft is denoted by EQ[·|Ft] = EQt [·].

3 Pricing Discretely-Sampled Variance Swaps

In this section, we shall discuss the concept of discretely-sampled variance
swaps. Then, we shall apply Rujivan and Zhu [9, 10]’s approach to derive a
closed-form solution of the fair price of commodity variance swaps based on the
Schwartz [12] one-factor model.

3.1 Variance Swaps

Variance swaps are actually forward contracts on the future realized variance
of returns on the specified underlying asset. The long position of variance swaps
pays a fixed delivery price at expiry, and receives a floating amount of annualized
realized variance, whereas the short position is just the opposite. Investors who
expect the increment of volatility may hold long position, while the contrary may
hold the short position. With variance swaps, investors can easily gain exposure
to volatility risk.

Usually the value of a variance swap at expiry can be written as

VT =
(
σ2
R −Kvar

)
× L,

where σ2
R is an annualized realized variance over the contract life [0, T ], Kvar is

an annualized delivery price for the variance swap, L is a notional amount of the
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swap in dollars per annualized volatility point squared, and T is the contract life
time. Thus, the long position of a variance swap receives L dollars for every point
by which the annualized realized variance σ2

R exceeds the delivery price Kvar.

At the beginning of a contract, the details of how the realized variance should
be calculated are clearly specified. Important factors contributing to the calcu-
lation of the realized variance include the underlying assets, the observation fre-
quency of the price of the underlying assets, the annualization factor, the contract
life time, and the method of calculating the variance. Most traded contracts define
the realized variance in terms of either simple returns or logarithmic returns. In
this paper we will only consider the definition based on the simple returns. So,
the realized variance is defined as

σ2
R =

AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

×1002, (3.1)

where Sti is a closing price of the underlying asset at the ith observation time ti,
and there are altogether N observations. AF is an annualized factor, converting
this expression to an annualized variance. If the sampling frequency is every
trading day, then AF = 252 assuming that there are 252 trading days in a year, if
every week, then AF = 52, if every month, then AF = 12 and so on. We assume
equally spaced discrete observations in this paper, so that the annualized factor is
of a simple expression, AF = 1

∆t = N
T . With the realized variance defined above,

one may call it the squared percentage return.

In a risk-neutral world, the value of a variance swap at time t is the ex-
pected present value of the future payoff, Vt = EQt

[
e−r(T−t)

(
σ2
R −Kvar

)
L
]
. This

should be zero at the beginning of the contract, since there is no cost to enter
into the swap. Therefore, the fair delivery price of variance swap can be defined
as Kvar = EQ0

[
σ2
R

]
, after initially setting the value of V0 = 0. The variance swap

valuation problem is therefore reduced to calculating the expectation value of a
future realized variance in a risk-neutral world.

3.2 Our Solution Approach

In this subsection, we derive the fair price of commodity variance swaps, based
on Rujivan and Zhu [9, 10]’s approach. We begin with taking the conditional
expectation of σ2

R in (3.1) with respect to F0. The fair delivery price of the
commodity variance swaps can be written as

Kvar = EQ0
[
σ2
R

]
= EQ0

[
1

N∆t

N∑
i=1

(
Sti − Sti−1

Sti−1

)2
]
× 1002

=
1

N∆t

N∑
i=1

EQ0

[(
Sti − Sti−1

Sti−1

)2
]
× 1002. (3.2)
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From (3.2), the problem of pricing commodity variance swaps is reduced to eval-
uating the N conditional expectations of the form:

EQ0

[(
Sti − Sti−1

Sti−1

)2
]
, (3.3)

for some fixed equal time period ∆t and N at different tenors ti = i∆t; (i =
1, 2, ..., N). Next, we apply the tower property of conditional expectation to (3.3),
and obtain

EQ0

[(
Sti − Sti−1

Sti−1

)2
]

= EQ0

[
EQti−1

[(
Sti − Sti−1

Sti−1

)2
]]

= EQ0

[
1

S2
ti−1

(
EQti−1

[
S2
ti

]
− 2Sti−1

EQti−1
[Sti ]

)
+ 1

]
. (3.4)

The following theorem provides a closed-form formula for the γth conditional
moment of St, based on the model (2.1), for any real number γ. Moreover, we

shall adopt the theorem to derive EQti−1
[Sti ] and EQti−1

[
S2
ti

]
in the RHS of (3.4)

later on.

Theorem 3.1. Suppose St follows the dynamics described in (2.1). Then,

EQti−1

[
Sγti
]

= S
γA2(∆t)
ti−1

exp{A1 (γ,∆t)}, (3.5)

for all (ti, Sti , γ) ∈ (0, T ]× (0,∞)× (−∞,∞), where ∆t = ti − ti−1; i = 1, ..., N ,
and

A1 (γ,∆t) = γ(1− exp {−κ∆t})α∗ + γ2(1− exp {−2κ∆t})σ
2

4κ
, (3.6)

A2 (∆t) = exp{−κ∆t}, (3.7)

where α∗ = µ∗ − σ2

2κ .

Proof. We first define

Yt := Sγt , (3.8)

for all t ≥ 0. Applying It ô’s Lemma to (3.8), we obtain

dYt =

(
γκµ∗ +

γ (γ − 1)

2
σ2 − κ lnYt

)
Ytdt+ γσYtdz

∗
t . (3.9)

Let
Ui (t, y) = EQ

[
Yti |Yti−1

= y
]
, (3.10)

for all (t, y) ∈ [ti−1, ti) × R+. According to the Feynman-Kac theorem, Ui (t, y)
satisfies the PDE

∂

∂t
Ui (t, y)+

1

2
γ2σ2y2 ∂

2

∂y2
Ui (t, y)+

(
γκµ∗+

γ (γ − 1)

2
σ2−κ ln y

)
y
∂

∂y
Ui (t, y) = 0,

(3.11)
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subject to the terminal condition

Ui (ti, y) = y, (3.12)

for all y ∈ R+.
Next, we assume that

Ui (t, y) = yA2(ti−t) exp {A1 (γ, ti − t)} , (3.13)

where A1 (γ, ti − t) and A2 (ti − t) are deterministic functions to be determined
later on. Let τ = ti− t, and substitute (3.13) into the PDE (3.11); we get a system
of ordinary differential equations (ODEs):

d

dτ
A2 (τ) = −κA2 (τ) , (3.14)

d

dτ
A1 (γ, τ) = −γ

(
κµ∗ +

σ2

2

)
A2 (τ)− 1

2
γ2σ2A2(τ)

2
, (3.15)

subject to initial conditions

A2 (0) = 1, (3.16)

A1 (γ, 0) = 0. (3.17)

Setting t = ti−1, and τ = ∆t = ti − ti−1, the solutions of the system of ODEs can
be expressed as written in (3.6) and (3.7).

From Theorem 3.1, substitute for γ = 1 and γ = 2 into (3.5); we obtain

EQti−1
[Sti ] = S

exp{−κ∆t}
ti−1

exp {A1 (1,∆t)} , (3.18)

EQti−1

[
S2
ti

]
= S

2 exp{−κ∆t}
ti−1

exp {A1 (2,∆t)} . (3.19)

We would like to point out that, using (3.5), the conditional variance, condi-
tional skewness and conditional kurtosis of Sti with respect to Fti−1

can be easily
found, with γ = 1, 2, 3, 4, as

Var
[
Sti |Fti−1

]
= EQti−1

[S2
ti ]− (EQti−1

[Sti ])
2
,

= S
2A2(∆t)
ti−1

exp {A1 (2,∆t)}
(

1− exp
{
−2C̃ (∆t)σ2

})
, (3.20)

Skew[Sti |Fti−1
] =

EQti−1
[(Sti − E

Q
ti−1

[Sti ])
3
]

(Var[Sti |Fti−1
])

3
2

,

=
exp{A1(1,∆t)}(exp{3C̃(∆t)σ2}+exp{C̃(∆t)σ2}−2 exp{−C̃(∆t)σ2})

(1−exp{−2C̃(∆t)σ2})1/2
, (3.21)
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Kurt[Sti |Fti−1
] =

EQti−1
[(Sti − E

Q
ti−1

[Sti ])
4
]

(Var[Sti |Fti−1 ])
2 ,

= exp
{

8C̃(∆t)σ2
}

+ 2 exp
{

6C̃(∆t)σ2
}

+ 3 exp
{

4C̃(∆t)σ2
}
− 3, (3.22)

where C̃(∆t) = 1−exp{−2κ∆t}
4κ for all ∆t > 0. The conditional expectation of the

underlying stock price at a given future time such as [9] depends only on its own
value at current time, whereas the conditional expectation of the underlying com-
modity price based on Schwartz [12] one-factor model as shown in (3.18) depends
on both its own value and the process variance. Moreover, the conditional variance
of the underlying commodity price, based on Schwartz one-factor model, at a given
future time as shown in (3.20), depends on both the underlying spot commodity
price at the current time and the process variance. On the other hand, (3.21) and
(3.22) indicate that both the conditional skewness and conditional kurtosis depend
only on the process variance.

By utilizing (3.18) and (3.19) to compute the conditional expectations in the
RHS of (3.4), we promptly attain the fair price of variance swaps on commodities
based on the Schwartz one-factor model in the following theorem.

Theorem 3.2. The conditional expectation in (3.4) can be written in terms of an
initial spot commodity price as

EQ0

[(
Sti − Sti−1

Sti−1

)2
]

=S
2Ã1(∆t,ti−1)
0 exp

{
−2Ã1(∆t, ti−1)α∗ + Ã2 (∆t, ti−1)

σ2

κ

}
−2S

Ã1(∆t,ti−1)
0 exp

{
−Ã1(∆t, ti−1)α∗+Ã2 (∆t, ti−1)

σ2

4κ

}
+ 1, (3.23)

for all ∆t = ti − ti−1; i = 1, 2, ..., N and ti ∈ (0, T ], where

Ã1 (∆t, ti−1) = (exp {−κ∆t} − 1) exp {−κti−1} , (3.24)

Ã2 (∆t, ti−1)=
(

1−exp {−2κ∆t}+(exp{−κ∆t}−1)
2
(1−exp{−2κti−1})

)
. (3.25)

In addition, the fair price of a commodity variance swap can be written as

Kvar(S0, T,∆t)=
1002

T

N∑
i=1

S
2Ã1(∆t,ti−1)
0 exp

{
Ã3(∆t, ti−1)

}
− 2S

Ã1(∆t,ti−1)
0 exp

{
Ã4(∆t, ti−1)

}
+ 1, (3.26)

where

Ã3 (∆t, ti−1) = −2Ã1 (∆t, ti−1)α∗ + Ã2 (∆t, ti−1)
σ2

κ
, (3.27)
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Ã4 (∆t, ti−1) = −Ã1 (∆t, ti−1)α∗ + Ã2 (∆t, ti−1)
σ2

4κ
. (3.28)

Furthermore, Kvar (S0, T,∆t) can also be written in terms of the initial conve-
nience yield as

Kvar (δ0, T,∆t) =
1002

T

N∑
i=1

exp

{
2
Ã1 (∆t, ti−1)

κ
δ0 + Ã3 (∆t, ti−1)

}

− 2 exp

{
Ã1 (∆t, ti−1)

κ
δ0 + Ã4 (∆t, ti−1)

}
+ 1, (3.29)

where δ0 = κ lnS0.

Proof. Substituting (3.18) and (3.19) into the RHS of (3.4), we obtain

EQ0

[(
Sti − Sti−1

Sti−1

)2
]

= exp {A1 (2,∆t)}EQ0
[
S

2(exp{−κ∆t}−1)
ti−1

]
− 2 exp {A1 (1,∆t)}EQ0

[
S

exp{−κ∆t}−1
ti−1

]
+ 1. (3.30)

We next apply Theorem 3.1 in order to derive the conditional expectations

EQ0

[
S

2(exp{−κ∆t}−1)
ti−1

]
and EQ0

[
S

exp{−κ∆t}−1
ti−1

]
. By setting

γ = 2 (exp {−κ∆t} − 1) and γ = (exp {−κ∆t} − 1)

into (3.5), respectively, we thus obtain

EQ0

[
S

2(exp{−κ∆t}−1)
ti−1

]
= S

2(exp{−κ∆t}−1) exp{−κti−1}
0 exp {A1 (2 (exp {−κ∆t} − 1) , ti−1)} , (3.31)

EQ0

[
S

(exp{−κ∆t}−1)
ti−1

]
= S

(exp{−κ∆t}−1) exp{−κti−1}
0 exp {A1 ((exp {−κ∆t} − 1) , ti−1)} . (3.32)

Substitute (3.31) and (3.32) into (3.30), we can derive the conditional expectation
in the LHS of (3.30) in closed-form, as shown in (3.23).

According to [13], there are two ways to compute a derivative security price -
specifically a variance swap price in our paper: (1) using Monte Carlo (MC) simu-
lation to generate path of the underlying commodity price and use these paths to
estimate the expected realized variance; or (2) numerically solve a partial differ-
ential equation (PDE) governing the realized variance according to Feynman-Kac
theorem. In our paper, we focus on the second method. And, instead of numer-
ically solving the PDE, we provide an analytical approach. Unlike Zhu and Lian
[7, 8] analytically solving the governing PDE by utilizing the generalized Fourier
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transformation, in our paper we apply Rujivan and Zhu [9, 10]’s methodology,
called the common tower property of conditional expectation. Theorem 3.1 shows
that, with their technique, in place of solving the governing PDE directly, we can
simplify the problem to solve the system of ODEs instead. And Theorem 3.2 shows
the derivation of closed-form variance swaps pricing formula.

4 Validity of Our Solution

In this section, we provide an interesting discussion in terms of the validity of
our current solution, as written in (3.29). The purpose of such an investigation
is to guarantee that one of the fundamental assumptions, that the fair delivery
price of a variance swap should be of finite and positive value for a given set of
parameters determined from market data, i.e.,
0 ≤ Kvar <∞, is indeed satisfied.

Proposition 4.1. Suppose T > 0 and ∆t > 0. Then,

0 < Kvar (δ0, T,∆t) <∞, (4.1)

for all δ0 ∈ R.

Proof. Since κ > 0, from (3.27) and (3.28), Ã3 (∆t, ti−1) and Ã4 (∆t, ti−1) are fi-
nite for all ∆t ≥ 0 and ti−1; i = 1, .., N. These results imply that Kvar (δ0, T,∆t) <
∞ for all δ0 ∈ R. Next, in order to show that Kvar (δ0, T,∆t) is strictly positive,
we use the fact that

0 ≤ (exp {a+ b} − 1)
2
< exp {2a+ 4b} − 2 exp {a+ b}+ 1, (4.2)

for all a ∈ R and b ∈ R+. By setting

ai =
Ã1 (∆t, ti−1)

κ
δ0 − Ã1 (∆t, ti−1)α∗, (4.3)

bi = Ã2 (∆t, ti−1)
σ2

4κ
, (4.4)

for all i = 1, 2, ..., N , from (3.29), we have

Kvar (δ0, T,∆t) =
1002

T

N∑
i=1

exp {2ai + 4bi} − 2exp {ai + bi}+ 1. (4.5)

Notice from (3.25) that Ã2 (∆t, ti−1) > 0 for all ∆t ≥ 0 and ti−1; i = 1, ..., N .
Hence, bi > 0 for all i = 1, ..., N . Applying the inequality (4.2) to formula (4.5),
we immediately find that Kvar (δ0, T,∆t) is strictly positive as desired.
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5 A Comparison to Monte Carlo Simulations

In this section, we conduct Monte Carlo (MC) simulations to illustrate the
accuracy of the closed-form formula in (3.29). Although, theoretically, there would
no need to discuss the accuracy and present the numerical results of our formula,
some comparisons with MC simulations may give readers a sense of verification
for the newly found solution. This is particularly so for some practitioners who
are very used to MC simulations and would not trust analytical solutions that
may contain algebraic errors unless they have seen numerical evidence of such a
comparison.

In our numerical test, we use the following parameters, µ∗ = 3.177; σ = 0.129;
and κ = 0.099, calibrated from oil market as proposed by [12]. To ensure the
correctness of our solution, we have employed the MC method to simulate the
underlying process (St) and calculate realized variance according to definition
(3.1). In our MC simulations, we have used the Euler-Maruyama discretization
for the underlying process (St)

Sti = Sti−1
+ κ

(
µ∗ − lnSti−1

)
Sti−1

∆t+ σSti−1

√
∆tεti , (5.1)

where εti is a standard normal random variable. We generate sample paths of St
on [0, T ] where T = 1. For the spot commodity prices obtained by using (5.1), we
define

KMC
var (Np) :=

Np∑
p=1

(
1

N∆t

N∑
i=1

(
Sti

(ωp)−Sti−1
(ωp)

Sti−1
(ωp)

)2

× 1002

)
Np

(5.2)

where N = 252, ∆t = 1/N , Sti(ωp) is the commodity price at time ti obtained
by using (5.1) for path ωp, and Np is the number of paths. By the law of large
number, KMC

var (Np)→ Kvar as Np →∞. In other words, we can estimate Kvar by
KMC

var (Np) when Np is sufficient large. Thus, we choose Np = 105 to obtain a good
approximation for the fair delivery price.

By choosing 17 values of δ0 varying from -2.07 to 2.73, we plot KMC
var (Np)

against Kvar for all δ0 as shown in Figure 1. One can clearly see from the figure
that the results from our closed-form solution (3.29) perfectly match the results
from the MC simulation for Np = 105.

Np Relative Error Computation Time
(%) (seconds)

1,000 0.3679 454.7128

10,000 0.2736 4,204.9451

100,000 0.1555 43,750.3681

Table 1: Relative errors and computation time of MC simulations, where compu-
tation time of using our formula is 0.2189 seconds.
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Figure 1: A Comparison between computed Kvar from our formula and from MC
simulations.

Furthermore, we compute averages of percentage relative errors of
KMC

var (Np) for Np = 103, 104, and 105 tabulated in Table 1, in order to show a
convergence of KMC

var (Np) to Kvar as Np approaches infinity. We clearly see from
Table 1 that the MC simulation takes a much longer time to reach 0.1555% average
of percentage relative errors than using our closed-form formula which consumes
just 0.2189 seconds; a roughly 200 thousand fold reduction in computation time.
It is clear that our approach substantially reduces the computation time burden
of using the MC simulation and can be implemented efficiently.

6 Conclusion

In this paper, we have presented an analytical approach to price discretely-
sampled variance swaps when the underlying asset is a commodity. By assuming
that commodity price follows the Schwartz [12] one-factor model and defining
discretely-sampled realized variance in terms of squared percentage return of the
underlying commodity price, we have derived the closed-form formula of a fair de-
livery price of variance swaps on commodities based on the Schwartz [12] model.
Moreover, we have proved that our pricing formula has financial meaningfulness,
such that the fair delivery price of commodity variance swaps computed with our
formula is finite and has a positive value in the parameter space. Furthermore,
we have demonstrated that the fair delivery prices computed from our formula
perfectly match with those from Monte Carlo simulations, but using our pric-
ing formula substantially reduces the computation time burden of using the MC
simulations.
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