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Abstract : In this work, we suggest and analyze an iterative scheme for solving
the system of nonconvex variational inequalities by using projection technique.
We prove strong convergence of iterative scheme to the solution of the system
of nonconvex variational inequalities requires to the modified mapping T which
is Lipschitz continuous but not strongly monotone mapping. Our result can be
viewed and improvement the result of N. Petrot [1].

Keywords : Lipschitz continuous; strongly monotone mapping; nonconvex; uni-
formly prox-regular.

2010 Mathematics Subject Classification : 47H09; 47H10.

1 Introduction

The theory of variational inequalities is a branch of the mathematical sciences
dealing with general equilibrium problems. It has a wide range of applications in
economics, operations research, industry, physical, and engineering sciences. Many
research papers have been written lately, both on the theory and applications of
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this field. Important connection with main areas of pure and applied science have
been made, see for example [2, 3, 4] and the references cited therein.

Variational inequalities theory, which was introduce by Stampacchia [5], pro-
vides us with a simple, natural general and unified framework to study a wide class
of problems arising in pure and applied science. The development of variational
inequality theory can be viewed as the simultaneous pursuit of two different lines
of research. On the one hand, it reveals the fundamental facts on the qualitative
aspects of the solutions to important classes of problems. On the other hand, it
also enables us to develop highly efficient and powerful new numerical methods for
solving, for example, obstacle, unilateral, free, moving, and complex equilibrium
problems.

In 2010, N. Petrot [1], introduced some existence theorems and provide the
conditions for existence solutions of the variational inequalities problems in non-
convex setting and prove the strongly monotonic assumption of the mapping may
not need for the existence of solutions.

In this work we consider the iterative scheme for modified mapping is Lip-
schitz continuous but not strongly monotone mapping and we can prove strong
convergence of iterative to the solution of the system of nonconvex variational
inequalities.

2 Preliminaries

Let C be a closed subset of a real Hilbert space H with inner product 〈·, ·〉
and norm ‖ · ‖ respectively. Let us recall the following well-known definitions and
some auxiliary results of nonlinear convex analysis and nonsmooth analysis.

Definition 2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is called a
closest point or a projection of u onto C if dC(u) = ‖u − v‖ when dC is a usual
distance. The set of all such closest points is denoted by PC(u); that is,

PC(u) = {v ∈ C : dC(u) = ‖u− v‖}. (2.1)

Definition 2.2. Let C be a subset of H . The proximal normal cone to C at x is
given by

NP
C (x) = {z ∈ H : ∃ρ > 0;x ∈ PC(x+ ρz)}. (2.2)

The following characterization of NP
C (x) can be found in [6].

Lemma 2.3. Let C be a closed subset of a Hilbert space H. Then

z ∈ NP
C (x) if and only if ∃σ > 0, 〈z, y − x〉 ≤ σ‖y − x‖2, ∀y ∈ C. (2.3)

Clark et al. [7] and Poliquin et al. [8] have introduced and studied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
or uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems, and differential inclusions.
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Definition 2.4. For a given r ∈ (0,+∞], a subset C of H is said to be uniformly
prox-regular with respect to r if, for all x ∈ C and for all 0 6= z ∈ NP

C (x), one has

〈 z

‖z‖ , x− x〉 ≤ 1

2r
‖x− x‖2, ∀x ∈ C. (2.4)

It is well known that a closed subset of a Hilbert space is convex if and only
if it is proximally smooth of radius r > 0. Thus, in Definition 2.4, in the case of
r = ∞, the uniform r-prox-regularity C is equivalent to convexity of C. Then, it is
clear that the class of uniformly prox-regular sets is sufficiently large to include the
class p-convex sets, C1,1 submanifolds (possibly with boundary) of H , the images
under a C1,1 diffeomorphism of convex sets, and many other nonconvex sets; see
[7, 8].

Let Cr be a uniformly r-prox-regular(nonconvex) set. For given nonlinear
mappings T : Cr → H , we consider the problem of finding x∗, y∗ ∈ Cr such that

〈ρTy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ Cr, ρ > 0

〈ηTx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ Cr, η > 0, (2.5)

which is called the system of nonconvex variational inequalities.
It is worth mentioning that if x∗ = y∗ = u and ρ = η, then problem (2.5) is

equivalent to finding u ∈ Cr such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ Cr, (2.6)

which is known as nonconvex variational inequalities introduced and studied by
Bounkhel et. al. [9] and Noor [10, 11].

It is known that problem (2.6) is equivalent to finding u ∈ Cr such that

0 ∈ Tu+NP
Cr

(u), (2.7)

which NP
Cr

(u) denote the normal cone of Cr at u. The problem (2.7) is called the
variational inclusion associated with nonconvex variational inequalities (2.6).

Lemma 2.5 ([1]). Let C be a nonempty closed subset of H, r ∈ (0,+∞] and set
Cr; = {x ∈ H : d(x,C) < r}. If C is uniform r-uniformly prox-regular, then the
following hold:

(1) for all x ∈ Cr, PC(x) 6= ∅,
(2) for all s ∈ (0, r), PC is Lipschitz continuous with constant ts =

r
r−s

on Cs,
(3) the proximal normal cone is closed as a set-valued mapping.

Let C be a closed subset of a real Hilbert space H . A mapping T : C → H is
called γ − strongly monotone if there exists a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ γ‖x− y‖2, (2.8)

for all x, y ∈ C. A mapping T is called µ − Lipschitz if there exists a constant
µ > 0 such that

‖Tx− Ty‖ ≤ µ‖x− y‖, (2.9)

for all x, y ∈ C.
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Lemma 2.6. In a real Hilbert space H, there holds the inequality

1. ‖x+y‖2 ≤ ‖x‖2+2〈y, x+y〉 x, y ∈ H and ‖x−y‖2 = ‖x‖2−2〈x, y〉+‖y‖2,
2. ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, ∀t ∈ [0, 1].

3 Main Results

In this section we first establish the equivalent between the system of noncon-
vex variational inequalities (2.5) and the fixed point problem with the projection
technique.

Lemma 3.1. For given x∗, y∗ ∈ Cr is a solution of system of nonconvex varia-
tional inequalities (2.5), if and only if

x∗ = PC [y
∗ − ρTy∗],

y∗ = PC [x
∗ − ηTx∗], (3.1)

where PC is the projection of H onto the uniformly prox-regular set Cr.

Proof. Let x∗, y∗ ∈ Cr be a solution of (2.5), from (2.7), for a constant ρ > 0, we
have

0 ∈ ρTy∗ + x∗ − y∗ + ρNP
Cr

(x∗) = (I + ρNP
Cr

)(x∗)− [y∗ − ρTy∗]

if and only if

x∗ = (I + ρNP
Cr

)−1[y∗ − ρTy∗] = PC [y
∗ − ρTy∗],

where we have used the well-known fact that PC = (I + ρNP
Cr

)−1.
Similarly, we obtain

y∗ = PC [x
∗ − ηTx∗].

This prove our assertions.

algorithm 3.2. For arbitrarily chosen initial points x0, y0 ∈ Cr, T1, T2 : C → H

with T = T1 + T2, the sequence {xn} and {yn} in the following way:

yn = PC [xn − ηTxn], η > 0

xn+1 = (1− αn)xn + αnPC [yn − ρTyn], ρ > 0, (3.2)

where {αn} is a sequence in [0, 1].

Remark 3.3 ([1]). Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, and let T1, T2 : C → H be such that T1 is a µ1-Lipschitz continuous and
γ-strongly monotone mapping, T2 is a µ2-Lipschitz continuous mapping. Let

ξ = r[µ2
1 − γ

µ2 −
√

(µ2
1 − γµ2)2 − µ2

1(γ − µ2)2

µ2
1

] (3.3)
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then for each s ∈ (0, ξ), we have

γts − µ2 >

√

(µ2
1 − µ2

2)(t
2
s − 1), (3.4)

where ts =
r

r−s
.

In this paper, we may assume that Mρ,ηδT (C) < ξ, we see that for any s ∈
(Mρ,ηδT (C), ξ) it satisfy the inequality (3.4) too. where Mρ,η = min{ρ, η}, δT (C) =
sup{‖u− v‖ : u, v ∈ T (C)}.

Now, we suggest and analyze the following explicit projection method (3.2)
for solving the system of nonconvex variational inequalities (2.5). Thus, from now
on, without loss of generality we will always assume that µ2 < µ1.

Theorem 3.4. Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, and let T1, T2 : C → H be such that T1 is a µ1-Lipschitz continuous
and γ-strongly monotone mapping, T2 is a µ2-Lipschitz continuous mapping. If
T = T1 + T2 and there exists constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γts − µ2

ts(µ2
1 − µ2

2)
−△ts < ρ, η < min{ γts − µ2

ts(µ2
1 − µ2

2)
+△ts ,

1

tsµ2
}, (3.5)

where △ts =

√
(γts−µ2)2−(µ2

1
−µ2

2
)(t2

s
−1)

ts(µ2

1
−µ2

2
)

. If the sequence of positive real number

αn ∈ [0, 1] with Σ∞

n=0αn = ∞, then the sequences {xn} and {yn} obtained from
Algorithm 3.2 converge to a solution of the system of nonconvex variational in-
equalities (2.5).

Proof. Let x∗, y∗ ∈ Cr be a solution of (2.5) and from Lemma 3.1, we have

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnPC [yn − ρTyn]− x∗‖
= ‖(1− αn)(xn − x∗) + αn(PC [yn − ρTyn]− PC [y

∗ − ρTy∗])‖
≤ (1− αn)‖xn − x∗‖+ αn‖PC [yn − ρTyn]− PC [y

∗ − ρTy∗]‖
≤ (1− αn)‖xn − x∗‖+ αnts‖(yn − ρTyn)− (y∗ − ρTy∗)‖
≤ (1− αn)‖xn − x∗‖+ αnts[‖(yn − y∗)− ρ(T1yn − T1y

∗)‖
+ ρ‖(T2yn − T2y

∗)‖.] (3.6)

From T1 are both µ1-Lipschitz continuous and γ-strongly monotone mapping and
from Lemma 2.6, we obtain

‖(yn − y∗)− ρ(T1yn − T1y
∗)‖2 = ‖yn − y∗‖2 − 2ρ〈yn − y∗, T1yn − T1y

∗〉
+ ρ2‖T1yn − T1y

∗‖2

≤ ‖yn − y∗‖2 − 2ργ‖yn − y∗‖2 + ρ2µ2
1‖yn − y∗‖2

= (1− 2ργ + ρ2µ2
1)‖yn − y∗‖2.

It follows that

‖(yn − y∗)− ρ(T1yn − T1y
∗)‖ ≤

√

1− 2ργ + ρ2µ2
1‖yn − y∗‖. (3.7)
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On the other hand, from T2 is µ2-Lipschitz continuous, we have

‖T2yn − T2y
∗‖ ≤ µ2‖yn − y∗‖. (3.8)

Thus, by (3.6), (3.7) and (3.8), we have

‖xn+1−x∗‖ ≤ (1−αn)‖xn−x∗‖+αnts(ρµ2+
√

1− 2ργ + ρ2µ2
1)‖yn−y∗‖. (3.9)

Similarly, we have

‖yn − y∗‖ = ‖PC [xn − ηTxn]− y∗‖
= ‖PC [xn − ηTxn]− PC [x

∗ − ηTx∗]‖
≤ ts‖(xn − ηTxn)− (x∗ − ηx∗)‖
≤ ts[‖(xn − x∗)− η(T1xn − T1x

∗)‖+ η‖T2xn − T2x
∗‖]. (3.10)

Similarly, from T1 are both µ1-Lipschitz continuous and γ-strongly monotone map-
ping, we obtain

‖(xn − x∗)− η(T1xn − T1x
∗)‖2 = ‖xn − x∗‖2 − 2η〈xn − x∗, T1xn − T1x

∗〉
+η2‖T1xn − T1x

∗‖2
≤ ‖xn−x∗‖2−2ηγ‖xn−x∗‖2+η2µ2

1‖xn − x∗‖2
= (1− 2ηγ + η2µ2

1)‖xn − x∗‖2.

It follows that

‖(xn − x∗)− η(T1xn − T1x
∗)‖ ≤

√

1− 2ηγ + η2µ2
1‖xn − x∗‖. (3.11)

On the other hand, from T2 is µ2-Lipschitz continuous, we have

‖T2xn − T2x
∗‖ ≤ µ2‖xn − x∗‖. (3.12)

Thus, by (3.10), (3.11) and (3.12), we have

‖yn − y∗‖ ≤ ts(ηµ2 +
√

1− 2ηγ + η2µ2
1)‖xn − x∗‖. (3.13)

Moreover, from (3.9) and (3.13) we put θ1 = ts(ρµ2 +
√

1− 2ργ + ρ2µ2
1), θ2 =

ts(ηµ2 +
√

1− 2ηγ + η2µ2
1), it follows that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ1θ2‖xn − x∗‖
= (1− (1− θ1θ2)αn)‖xn − x∗‖

≤
n
∏

i=0

(1− (1 − θ1θ2)αi)‖x0 − x∗‖. (3.14)

Since Σ∞

n=0αn = ∞ and conditions (3.5), we obtain

lim
n→∞

n
∏

i=0

(1− (1 − θ1θ2)αi) = 0. (3.15)



Strong Convergence Theorems of Iterative Algorithm for Nonconvex ... 707

It follows from (3.15) and (3.14), we have

lim
n→∞

‖xn − x∗‖ = 0. (3.16)

From (3.13) and (3.16), we have

lim
n→∞

‖yn − y∗‖ = 0. (3.17)

Which is x∗, y∗ ∈ Cr satisfying the system of nonconvex variational inequalities
(2.5). This completes the proof.

Corollary 3.5. Let C be a uniformly r-prox-regular closed subset of a Hilbert space
H, and let T : C → H be such that T is a µ-Lipschitz continuous and γ-strongly
monotone mapping. If there exists constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such
that

γ

µ2
−△ts < ρ, η <

γ

µ2
+△ts , (3.18)

where △ts =

√
(γts)2−(µ2

1
)(t2

s
−1)

ts(µ2

1
)

. If the sequence of positive real number αn ∈ [0, 1]

with Σ∞

n=0αn = ∞, and αn ∈ [0, 1] with Σ∞

n=0αn = ∞, then the sequence {xn} and
{yn} is generated by for x0, y0 ∈ Cr,

yn = PC [xn − ηTxn], η > 0

xn+1 = PC [yn − ρTyn], ρ > 0, (3.19)

strongly converge to a solution of the system of nonconvex variational inequalities
(2.5).

Proof. From Theorem 3.4, if T2 ≡ 0 and αn = 1 for any n ≥ 0, we have a
result.

4 Applications

In this section, we can applied Theorem 3.4 to the system of general of non-
convex variational inequalities, for given nonlinear mappings T, g : Cr → H , we
consider the problem of finding x∗, y∗ ∈ Cr such that

〈ρTg(y∗) + g(x∗)− g(y∗), x− g(x∗)〉 ≥ 0, ∀x ∈ Cr, ρ > 0

〈ηTg(x∗) + g(y∗)− g(x∗), x− g(y∗)〉 ≥ 0, ∀x ∈ Cr , η > 0, (4.1)

which is called the system of general nonconvex variational inequalities. Similar
of the proof of Lemma 3.1, we can proof that
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Lemma 4.1. For given x∗, y∗ ∈ Cr is a solution of system of nonconvex varia-
tional inequalities (4.1), if and only if

g(x∗) = PC [g(y
∗)− ρTg(y∗)],

g(y∗) = PC [g(x
∗)− ηTg(x∗)], (4.2)

where PC is the projection of H onto the uniformly prox-regular set Cr.

Theorem 4.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, let g : C → H is injective mapping and let T1, T2 : C → H be such that
T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is a µ2-
Lipschitz continuous mapping. If T = T1 + T2 and there exists constant ρ, η > 0
and s ∈ (Mρ,ηδT (C), ξ), such that

γts − µ2

ts(µ2
1 − µ2

2)
−△ts < ρ, η < min{ γts − µ2

ts(µ2
1 − µ2

2)
+△ts ,

1

tsµ2
}, (4.3)

where △ts =

√
(γts−µ2)2−(µ2

1
−µ2

2
)(t2

s
−1)

ts(µ2

1
−µ2

2
)

. If the sequence of positive real number

αn ∈ [0, 1] with Σ∞

n=0αn = ∞, then the sequence {xn} and {yn} is generated by
for x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηTg(xn)], η > 0

g(xn+1) = (1− αn)g(xn) + αnPC [g(yn)− ρTg(yn)], ρ > 0, (4.4)

strongly converge to a solution of the system of nonconvex variational inequalities
(4.1).

Proof. Similar the proof in Theorem 3.4, let x∗, y∗ ∈ Cr be a solution of (4.1) and
from Lemma 4.1, we can compute that

‖g(xn+1)− g(x∗)‖ ≤
n
∏

i=0

(1− (1 − θ1θ2)αi)‖g(x0)− g(x∗)‖. (4.5)

where θ1 = ts(ρµ2 +
√

1− 2ργ + ρ2µ2
1), θ2 = ts(ηµ2 +

√

1− 2ηγ + η2µ2
1. From

Σ∞

n=0αn = ∞ and conditions (4.3), we obtain

lim
n→∞

n
∏

i=0

(1− (1 − θ1θ2)αi) = 0. (4.6)

It follows from (4.5) and (4.6), we have

lim
n→∞

‖g(xn)− g(x∗)‖ = 0. (4.7)

And we can compute that

‖g(yn)− g(y∗)‖ ≤ θ2‖g(xn)− g(x∗)‖, (4.8)
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where θ2 = ts(ηµ2 +
√

1− 2ηγ + η2µ2
1), it follows that

lim
n→∞

‖g(yn)− g(y∗)‖ = 0. (4.9)

From g is injective mapping, we have limn→∞ ‖xn − x∗‖ = 0 and limn→∞ ‖yn −
y∗‖ = 0 satisfying the system of general nonconvex variational inequalities (4.1).
This complete the proof.

Corollary 4.3. Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, let g : C → H is injective mapping and let T : C → H be such that
T is a µ-Lipschitz continuous and γ-strongly monotone mapping. If there exists
constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γ

µ2
−△ts < ρ, η <

γ

µ2
+△ts , (4.10)

where △ts =

√
(γts)2−(µ2

1
)(t2

s
−1)

ts(µ2

1
)

. If the sequence of positive real number αn ∈ [0, 1]

with Σ∞

n=0αn = 0, and αn ∈ [0, 1] with Σ∞

n=0αn = ∞, then the sequence {xn} and
{yn} is generated by for x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηTg(xn)], η > 0

g(xn+1) = PC [g(yn)− ρTg(yn)], ρ > 0, (4.11)

strongly converge to a solution of the system of nonconvex variational inequalities
(4.1).

Proof. From Theorem 3.4, if T2 ≡ 0 and αn = 1 for any n ≥ 0, we have a
result.
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