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Relationship Between Homomorphisms
of Some Groups and Hypergroups

S. Nenthein, P. Youngkhong and Y. Punkla

Abstract : We consider the hypergroup (G/ρ, ◦) which is defined from an abelian
group G where xρy ⇔ x = y or x = y−1 and xρ ◦ yρ = {(xy)ρ, (xy−1)ρ}. Let
(G/ρ, ◦) and (G/ρ, ◦) be the hypergroups defined respectively from abelian groups
G and G as above and let Hom(G, G) and Hom

(
(G/ρ, ◦), (G/ρ, ◦)) be respectively

the set of all group homomorphisms from G into G and the set of all hypergroup
homomorphisms from (G/ρ, ◦) into (G/ρ, ◦). Some basic properties of elements
of Hom

(
(G/ρ, ◦), (G/ρ, ◦)) are provided. The main purpose is to show that for

certain G and G, Hom
(
(G/ρ, ◦), (G/ρ, ◦)) =

{
ϕ | ϕ ∈ Hom(G, G)

}
where ϕ(xρ) =

ϕ(x)ρ for all x ∈ G.

Keywords : Hypergroup, homomorphism
2000 Mathematics Subject Classification : 20N20

1 Introduction

By a hyperoperation on a nonempty set H is a function ◦ from H × H into
P (H) r {∅} where P (H) is the power set of H. In this case, (H, ◦) is called
a hypergroupoid. For A,B ⊆ H, let A ◦ B =

⋃

a∈A
b∈B

a ◦ b. A hypergroupoid (H, ◦) is

called a semihypergroup if x◦ (y ◦ z) = (x◦y)◦ z for all x, y, z ∈ H. A hypergroup
is a semihypergroup (H, ◦) satisfying the condition H ◦ x = x ◦ H = H for all
x ∈ H. Hypergroups are a generalization of groups.

Let (G, ·) be an abelian group and ρ the equivalence relation on G defined by

xρy ⇔ x = y or x = y−1,

that is, xρ = {x, x−1} for all x ∈ G. Define the hyperoperation ◦ on G/ρ by

xρ ◦ yρ = {(xy)ρ, (xy−1)ρ} for all x, y ∈ G.

Then (G/ρ, ◦) is a hypergroup ([1], page 11).
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By a homomorphism from a hypergroup (H, ◦) into a hypergroup (H ′, ◦′) we
mean a mapping ϕ : H → H ′ satisfying the condition

ϕ(x ◦ y) = ϕ(x) ◦′ ϕ(y) for all x, y ∈ H.

We note here that our definition of homomorphisms between hypergroups are
called good homomorphisms in [1].

For groups G and G, let Hom(G, G) denote the set of all (group) homomor-
phisms from G into G. For hypergroups (H, ◦) and (H, ◦), denote analogously by
Hom

(
(H, ◦), (H, ◦)) the set of all (hypergroup) homomorphisms from (H, ◦) into

(H, ◦).
Recall that if G is a cyclic group generated by a, then G = 〈a〉 = {an | n ∈ Z}

where Z is the set of all integers. If G = 〈a〉, then every ϕ ∈ Hom(G, G) is
completely determined by ϕ(a).

Let Z+ = {x ∈ Z | x > 0} and Z+
0 = Z+ ∪ {0}. The set of real numbers and

the set of all rational numbers are denoted by R and Q, respectively. Then (Q, +)
and (R+, ·) are abelian groups where R+ = {x ∈ R | x > 0}. Note that for every
n ∈ Z r {0}, x

n
∈ Q for all x ∈ Q and x

1
n ∈ R+ for all x ∈ R+.

In the remainder, let G and G be abelain groups with identities e and e, re-
spectively, and let (G/ρ, ◦) and (G/ρ, ◦) be the corresponding hypergroups defined
as above, that is,

∀x, y ∈ G, xρy ⇔ x = y or x = y−1,

xρ ◦ yρ = {(xy)ρ, (xy−1)ρ},
∀x, y ∈ G, xρy ⇔ x = y or x = y−1,

xρ ◦ yρ = {(xy)ρ, (xy−1)ρ}.

For each ϕ ∈ Hom(G, G), define ϕ : G/ρ → G/ρ by

ϕ(xρ) = ϕ(x)ρ for all x ∈ G.

Our purpose is to provide some basic properties of elements in Hom
(
(G/ρ, ◦),

(G/ρ, ◦)) and show that

Hom
(
(G/ρ, ◦), (G/ρ, ◦)) = {ϕ | ϕ ∈ Hom(G, G)}

if G and G satisfy one of the following conditions.

(1) G is a cyclic group.
(2) G = (Q,+) = G.
(3) G = (Q,+) and G = (R+, ·).
(4) G in which every nonidentity element has order 2.

For basic concepts of groups and homorphisms, the reader is referred to [2].
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2 Main Results

First, we recall that for any ϕ ∈ Hom(G, G), ϕ(e) = e and ϕ(x−1) = ϕ(x)−1 for
all x ∈ G.

Some basic properties of elements of Hom
(
(G/ρ, ◦), (G/ρ, ◦)) are first pre-

sented.

Proposition 2.1. If ψ ∈ Hom
(
(G/ρ, ◦), (G/ρ, ◦)), then ψ(eρ) = e ρ.

Proof. Let a ∈ G be such that ψ(eρ) = aρ. Then

{aρ} = {ψ(eρ)} = ψ(eρ ◦ eρ) = ψ(eρ) ◦ ψ(eρ) = aρ ◦ aρ = {a2ρ, e ρ}
which implies that aρ = a2ρ = e ρ.

Proposition 2.2. Let ψ ∈ Hom
(
(G/ρ, ◦), (G/ρ, ◦)). If a ∈ G and b ∈ G are such

that ψ(aρ) = bρ, then ψ(anρ) = bnρ for all n ∈ Z.

Proof. By Proposition 2.1, ψ(a0ρ) = ψ(eρ) = e ρ = b0ρ. Since

{ψ(a2ρ), e ρ} = ψ{a2ρ, eρ} = ψ(aρ ◦ aρ) = ψ(aρ) ◦ ψ(aρ) = bρ ◦ bρ = {b2ρ, e ρ},
it follows that ψ(a2ρ) = b2ρ. Assume that k ≥ 2 and ψ(anρ) = bnρ for all
n ∈ {0, 1, . . . , k}. Then

{ψ(ak+1ρ), bk−1ρ} = ψ{ak+1ρ, ak−1ρ}
= ψ(akρ ◦ aρ)

= ψ(akρ) ◦ ψ(aρ)

= bkρ ◦ bρ

= {bk+1ρ, bk−1ρ}

which implies that ψ(ak+1ρ) = bk+1ρ. This shows that

ψ(anρ) = bnρ for all n ∈ Z+
0 .

If n ∈ Z is such that n < 0, then −n > 0, anρ = a−nρ and bnρ = b−nρ, and hence
ψ(anρ) = ψ(a−nρ) = b−nρ = bnρ. Therefore the proposition is proved.

Corollary 2.3. Let ψ ∈ Hom
(
(G/ρ, ◦), (G/ρ, ◦)), a ∈ G, b ∈ G and ψ(aρ) = bρ.

If a = a−1 in G, then b = b−1 in G.

Proof. Assume that a = a−1. Then a2 = e, so by Proposition 2.1 ans Proposition
2.2,

e ρ = ψ(eρ) = ψ(a2ρ) = b2ρ.

But e ρ = {e}, so b2 = e, that is, b = b−1.
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Proposition 2.4. If ϕ ∈ Hom(G, G), then ϕ : G/ρ → G/ρ defined by ϕ(xρ) =
ϕ(x)ρ for all x ∈ G belongs to Hom

(
(G/ρ, ◦), (G/ρ, ◦)). Hence

{ϕ | ϕ ∈ Hom(G, G)} ⊆ Hom
(
(G/ρ, ◦), (G/ρ, ◦)) .

Proof. To show that ϕ is well-defined, let x, y ∈ G be such that xρ = yρ. Then
y = x or y = x−1, so ϕ(y) = ϕ(x) or ϕ(y) = ϕ(x−1) = ϕ(x)−1. Hence ϕ(x)ρ =
ϕ(y)ρ.

Also, for any x, y ∈ G,

ϕ(xρ ◦ yρ) = ϕ{(xy)ρ, (xy−1)ρ}
= {ϕ((xyρ)), ϕ((xy−1)ρ)}
= {ϕ(xy)ρ, ϕ(xy−1)ρ}
= {(ϕ(x)ϕ(y))ρ, (ϕ(x)ϕ(y)−1)ρ}
= ϕ(x)ρ ◦ ϕ(y)ρ.

Now we are ready to provide our main results.

Theorem 2.5. If G is a cyclic group, then

Hom
(
(G/ρ, ◦), (G/ρ, ◦)) = {ϕ | ϕ ∈ Hom(G, G)}

where for ϕ ∈ Hom(G, G), ϕ is defined as above.

Proof. From Proposition 2.4, {ϕ | ϕ ∈ Hom(G, G)} ⊆ Hom
(
(G/ρ, ◦), (G/ρ, ◦)).

For the reverse inclusion, let ψ ∈ Hom
(
(G/ρ, ◦), (G/ρ, ◦)). Let G be generated by

a ∈ G. Then G = {an | n ∈ Z}. Let b ∈ G be such that ψ(aρ) = bρ. Therefore by
Proposition 2.2, ψ(anρ) = bnρ. Define ϕ ∈ Hom(G, G) by ϕ(a) = b, so ϕ(an) = bn

for all n ∈ Z. Hence for every n ∈ Z, ψ(anρ) = ϕ(an)ρ = ϕ(anρ). Hence the
theorem is proved.

Recall that (Q, +) is not a cyclic group. The next theorem shows that the
converse of Theorem 2.5 is not true in general.

Theorem 2.6. If G is (Q, +) and G is either (Q, +) or (R+, ·), then

Hom
(
(G/ρ, ◦), (G/ρ, ◦)) = {ϕ | ϕ ∈ Hom(G, G)}.

Proof. Let ψ ∈ Hom
(
(G/ρ, ◦), (G/ρ, ◦)). Let b ∈ G be such that ψ(1ρ) = bρ.

Case 1: G = (Q, +). Then b ∈ Q. Let k ∈ Z and m ∈ Zr{0}. Then ψ
( 1
m

ρ
)

= cρ

for some c ∈ Q. Hence by Proposition 2.2,

bρ = ψ
(
(m(

1
m

))ρ
)

= (mc)ρ
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which implies that mc = b or mc = −b. Thus c =
b

m
or c = − b

m
. It follows that

ψ
( 1
m

ρ
)

=
b

m
ρ. Again, by Proposition 2.2,

ψ
( k

m
ρ
)

= ψ
(
(k

1
m

)ρ
)

=
(
k(

b

m
)
)
ρ =

( k

m
b
)
ρ.

This shows that ψ(xρ) = (xb)ρ for all x ∈ Q. Define ϕ : Q → Q by ϕ(x) = bx
for all x ∈ Q. Then ϕ ∈ Hom((Q, +), (Q,+)) and ψ(xρ) = ϕ(x)ρ = ϕ(xρ) for all
x ∈ Q.

Case 2: G = (R+, ·). Then b ∈ R+, so b
1
m ∈ R+ for all m ∈ Z r {0}. Let k ∈ Z

and m ∈ Z r {0}, and let c ∈ R+ be such that ψ
( 1
m

ρ
)

= cρ. From Proposition
2.2, we have

bρ = ψ
(
(m

1
m

)ρ
)

= cmρ,

so cm = b or cm = b−1. Hence c = b
1
m or c = b−

1
m . Thus ψ

( 1
m

ρ
)

= b
1
m ρ. Also,

by Proposition 2.2, we have

ψ
( k

m
ρ
)

= ψ
(
(k

1
m

)ρ
)

=
(
b

1
m

)k
ρ = b

k
m ρ.

This proves that ψ(xρ) = bxρ for all x ∈ Q. Define ϕ : Q → R+ by ϕ(x) = bx

for all x ∈ Q. Then ϕ ∈ Hom((Q, +), (R+, ·)) and ψ(xρ) = ϕ(x)ρ = ϕ(xρ) for all
x ∈ Q.

From Case 1 and Case 2, we have that Hom
(
(G/ρ, ◦), (G/ρ, ◦)) ⊆ {ϕ | ϕ ∈

Hom(G,G)}. Hence these two sets are identical by Proposition 2.4.

If every nonidentity element of G has order 2, then x = x−1 for all x ∈ G, and
hence xρ = {x}. Some examples of such a group G are the following ones.

(1) G =
∏

i∈I

Gi with componentwise operation

where Gi = (Z2, +) for every i ∈ I.

(2) X is a set and G = P (X), the power set of X, with the operation ∗
defined by

A ∗B = (ArB) ∪ (B rA) for all A,B ∈ P (X).

The last theorem shows that if G has this property, the same result is also
obtained.

Theorem 2.7. If every nonidentity element of G has order 2, then

Hom
(
(G/ρ, ◦), (G/ρ, ◦)) = {ϕ | ϕ ∈ Hom(G, G)}.
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Proof. Let ψ ∈ Hom
(
(G/ρ, ◦), (G/ρ, ◦)). For each x ∈ G, there is an element

x′ ∈ G such that ψ(xρ) = x′ρ. Since x2 = e for all x ∈ G, by Corollary 2.3,
(x′)2 = e. Thus xρ = {x} and x′ρ = {x′} for all x ∈ G. Define ϕ : G → G by
ϕ(x) = x′ for all x ∈ G. Then ψ(xρ) = ϕ(x)ρ for all x ∈ G. If x, y ∈ G, then
ψ(xρ ◦ yρ) = ψ(xρ) ◦ ψ(yρ), so

{(xy)′ρ} = {(xy)′ρ, (xy−1)′ρ} since y = y−1

= {ψ((xy)ρ), ψ((xy−1)ρ)}
= ψ{(xy)ρ, (xy−1)ρ}
= ψ(xρ ◦ yρ)
= ψ(xρ) ◦ ψ(yρ)
= x′ρ ◦ y′ρ

= {(x′y′)ρ, (x′(y′)−1)ρ}
= {(x′y′)ρ} since (y′)−1 = y′.

Hence (xy)′ρ = (x′y′)ρ. But (xy)′ρ = {(xy)′}, so we have (xy)′ = x′y′. Hence
ϕ(xy) = ϕ(x)ϕ(y). By Proposition 2.4, the result is obtained, as before.
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