Relationship Between Homomorphisms of Some Groups and Hypergroups

S. Nenthein, P. Youngkhong and Y. Punkla

Abstract

We consider the hypergroup $(G / \rho, \circ)$ which is defined from an abelian group G where $x \rho y \Leftrightarrow x=y$ or $x=y^{-1}$ and $x \rho \circ y \rho=\left\{(x y) \rho,\left(x y^{-1}\right) \rho\right\}$. Let ($G / \rho, \circ$) and $(\bar{G} / \bar{\rho}, \bar{\circ})$ be the hypergroups defined respectively from abelian groups G and \bar{G} as above and let $\operatorname{Hom}(G, \bar{G})$ and $\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\delta}))$ be respectively the set of all group homomorphisms from G into \bar{G} and the set of all hypergroup homomorphisms from ($G / \rho, \circ$) into ($\bar{G} / \bar{\rho}, \bar{\circ}$). Some basic properties of elements of $\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\sigma}))$ are provided. The main purpose is to show that for certain G and \bar{G}, $\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\sigma}))=\{\bar{\varphi} \mid \varphi \in \operatorname{Hom}(G, \bar{G})\}$ where $\bar{\varphi}(x \rho)=$ $\varphi(x) \bar{\rho}$ for all $x \in G$.

Keywords : Hypergroup, homomorphism
2000 Mathematics Subject Classification : 20N20

1 Introduction

By a hyperoperation on a nonempty set H is a function \circ from $H \times H$ into $P(H) \backslash\{\emptyset\}$ where $P(H)$ is the power set of H. In this case, (H, \circ) is called a hypergroupoid. For $A, B \subseteq H$, let $A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b$. A hypergroupoid (H, \circ) is called a semihypergroup if $x \circ(y \circ z)=(x \circ y) \circ z$ for all $x, y, z \in H$. A hypergroup is a semihypergroup (H, \circ) satisfying the condition $H \circ x=x \circ H=H$ for all $x \in H$. Hypergroups are a generalization of groups.

Let (G, \cdot) be an abelian group and ρ the equivalence relation on G defined by

$$
x \rho y \Leftrightarrow x=y \text { or } x=y^{-1},
$$

that is, $x \rho=\left\{x, x^{-1}\right\}$ for all $x \in G$. Define the hyperoperation \circ on G / ρ by

$$
x \rho \circ y \rho=\left\{(x y) \rho,\left(x y^{-1}\right) \rho\right\} \text { for all } x, y \in G .
$$

Then $(G / \rho, \circ$) is a hypergroup ([1], page 11).

By a homomorphism from a hypergroup (H, \circ) into a hypergroup $\left(H^{\prime}, o^{\prime}\right)$ we mean a mapping $\varphi: H \rightarrow H^{\prime}$ satisfying the condition

$$
\varphi(x \circ y)=\varphi(x) \circ^{\prime} \varphi(y) \text { for all } x, y \in H .
$$

We note here that our definition of homomorphisms between hypergroups are called good homomorphisms in [1].

For groups G and \bar{G}, let $\operatorname{Hom}(G, \bar{G})$ denote the set of all (group) homomorphisms from G into \bar{G}. For hypergroups (H, \circ) and $(\bar{H}, \bar{\circ})$, denote analogously by Hom $((H, \circ),(\bar{H}, \bar{o}))$ the set of all (hypergroup) homomorphisms from (H, \circ) into $(\bar{H}, \bar{\sigma})$.

Recall that if G is a cyclic group generated by a, then $G=\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ where \mathbb{Z} is the set of all integers. If $G=\langle a\rangle$, then every $\varphi \in \operatorname{Hom}(G, \bar{G})$ is completely determined by $\varphi(a)$.

Let $\mathbb{Z}^{+}=\{x \in \mathbb{Z} \mid x>0\}$ and $\mathbb{Z}_{0}^{+}=\mathbb{Z}^{+} \cup\{0\}$. The set of real numbers and the set of all rational numbers are denoted by \mathbb{R} and \mathbb{Q}, respectively. Then $(\mathbb{Q},+)$ and $\left(\mathbb{R}^{+}, \cdot\right)$ are abelian groups where $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>0\}$. Note that for every $n \in \mathbb{Z} \backslash\{0\}, \frac{x}{n} \in \mathbb{Q}$ for all $x \in \mathbb{Q}$ and $x^{\frac{1}{n}} \in \mathbb{R}^{+}$for all $x \in \mathbb{R}^{+}$.

In the remainder, let G and \bar{G} be abelain groups with identities e and \bar{e}, respectively, and let $(G / \rho, \circ)$ and $(\bar{G} / \bar{\rho}, \bar{\circ})$ be the corresponding hypergroups defined as above, that is,

$$
\begin{aligned}
\forall x, y \in G, x \rho y & \Leftrightarrow x=y \text { or } x=y^{-1}, \\
x \rho \circ y \rho & =\left\{(x y) \rho,\left(x y^{-1}\right) \rho\right\}, \\
\forall x, y \in \bar{G}, x \bar{\rho} y & \Leftrightarrow x=y \text { or } x=y^{-1}, \\
x \bar{\rho} \bar{\circ} y \bar{\rho} & =\left\{(x y) \bar{\rho},\left(x y^{-1}\right) \bar{\rho}\right\} .
\end{aligned}
$$

For each $\varphi \in \operatorname{Hom}(G, \bar{G})$, define $\bar{\varphi}: G / \rho \rightarrow \bar{G} / \bar{\rho}$ by

$$
\bar{\varphi}(x \rho)=\varphi(x) \bar{\rho} \text { for all } x \in G .
$$

Our purpose is to provide some basic properties of elements in $\operatorname{Hom}((G / \rho, \circ)$, $(\bar{G} / \bar{\rho}, \bar{o}))$ and show that

$$
\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\sigma}))=\{\bar{\varphi} \mid \varphi \in \operatorname{Hom}(G, \bar{G})\}
$$

if G and \bar{G} satisfy one of the following conditions.
(1) G is a cyclic group.
(2) $G=(\mathbb{Q},+)=\bar{G}$.
(3) $G=(\mathbb{Q},+)$ and $\bar{G}=\left(\mathbb{R}^{+}, \cdot\right)$.
(4) G in which every nonidentity element has order 2 .

For basic concepts of groups and homorphisms, the reader is referred to [2].

2 Main Results

First, we recall that for any $\varphi \in \operatorname{Hom}(G, \bar{G}), \varphi(e)=\bar{e}$ and $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$ for all $x \in G$.

Some basic properties of elements of $\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\circ}))$ are first presented.

Proposition 2.1. If $\psi \in \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{o}))$, then $\psi(e \rho)=\bar{e} \bar{\rho}$.
Proof. Let $a \in \bar{G}$ be such that $\psi(e \rho)=a \bar{\rho}$. Then

$$
\{a \bar{\rho}\}=\{\psi(e \rho)\}=\psi(e \rho \circ e \rho)=\psi(e \rho) \bar{\circ} \psi(e \rho)=a \bar{\rho} \bar{\circ} a \bar{\rho}=\left\{a^{2} \bar{\rho}, \bar{e} \bar{\rho}\right\}
$$

which implies that $a \bar{\rho}=a^{2} \bar{\rho}=\bar{e} \bar{\rho}$.

Proposition 2.2. Let $\psi \in \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\sigma}))$. If $a \in G$ and $b \in \bar{G}$ are such that $\psi(a \rho)=b \bar{\rho}$, then $\psi\left(a^{n} \rho\right)=b^{n} \bar{\rho}$ for all $n \in \mathbb{Z}$.
Proof. By Proposition 2.1, $\psi\left(a^{0} \rho\right)=\psi(e \rho)=\bar{e} \bar{\rho}=b^{0} \bar{\rho}$. Since
$\left\{\psi\left(a^{2} \rho\right), \bar{e} \bar{\rho}\right\}=\psi\left\{a^{2} \rho, e \rho\right\}=\psi(a \rho \circ a \rho)=\psi(a \rho) \bar{\sigma} \psi(a \rho)=b \bar{\rho} \bar{\circ} b \bar{\rho}=\left\{b^{2} \bar{\rho}, \bar{e} \bar{\rho}\right\}$,
it follows that $\psi\left(a^{2} \rho\right)=b^{2} \bar{\rho}$. Assume that $k \geq 2$ and $\psi\left(a^{n} \rho\right)=b^{n} \bar{\rho}$ for all $n \in\{0,1, \ldots, k\}$. Then

$$
\begin{aligned}
\left\{\psi\left(a^{k+1} \rho\right), b^{k-1} \bar{\rho}\right\} & =\psi\left\{a^{k+1} \rho, a^{k-1} \rho\right\} \\
& =\psi\left(a^{k} \rho \circ a \rho\right) \\
& =\psi\left(a^{k} \rho\right) \bar{\circ} \psi(a \rho) \\
& =b^{k} \bar{\rho} \bar{\circ} b \bar{\rho} \\
& =\left\{b^{k+1} \bar{\rho}, b^{k-1} \bar{\rho}\right\}
\end{aligned}
$$

which implies that $\psi\left(a^{k+1} \rho\right)=b^{k+1} \bar{\rho}$. This shows that

$$
\psi\left(a^{n} \rho\right)=b^{n} \bar{\rho} \text { for all } n \in \mathbb{Z}_{0}^{+} .
$$

If $n \in \mathbb{Z}$ is such that $n<0$, then $-n>0, a^{n} \rho=a^{-n} \rho$ and $b^{n} \bar{\rho}=b^{-n} \bar{\rho}$, and hence $\psi\left(a^{n} \rho\right)=\psi\left(a^{-n} \rho\right)=b^{-n} \bar{\rho}=b^{n} \bar{\rho}$. Therefore the proposition is proved.

Corollary 2.3. Let $\psi \in \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{o})), a \in G, b \in \bar{G}$ and $\psi(a \rho)=b \bar{\rho}$. If $a=a^{-1}$ in G, then $b=b^{-1}$ in \bar{G}.

Proof. Assume that $a=a^{-1}$. Then $a^{2}=e$, so by Proposition 2.1 ans Proposition 2.2,

$$
\bar{e} \bar{\rho}=\psi(e \rho)=\psi\left(a^{2} \rho\right)=b^{2} \bar{\rho} .
$$

But $\bar{e} \bar{\rho}=\{\bar{e}\}$, so $b^{2}=\bar{e}$, that is, $b=b^{-1}$.

Proposition 2.4. If $\varphi \in \operatorname{Hom}(G, \bar{G})$, then $\bar{\varphi}: G / \rho \rightarrow \bar{G} / \bar{\rho}$ defined by $\bar{\varphi}(x \rho)=$ $\varphi(x) \bar{\rho}$ for all $x \in G$ belongs to Hom $((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\sigma}))$. Hence

$$
\{\bar{\varphi} \mid \varphi \in \operatorname{Hom}(G, \bar{G})\} \subseteq \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\circ}))
$$

Proof. To show that $\bar{\varphi}$ is well-defined, let $x, y \in G$ be such that $x \rho=y \rho$. Then $y=x$ or $y=x^{-1}$, so $\varphi(y)=\varphi(x)$ or $\varphi(y)=\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$. Hence $\varphi(x) \bar{\rho}=$ $\varphi(y) \bar{\rho}$.

Also, for any $x, y \in G$,

$$
\begin{aligned}
\bar{\varphi}(x \rho \circ y \rho) & =\bar{\varphi}\left\{(x y) \rho,\left(x y^{-1}\right) \rho\right\} \\
& =\left\{\bar{\varphi}((x y \rho)), \bar{\varphi}\left(\left(x y^{-1}\right) \rho\right)\right\} \\
& =\left\{\varphi(x y) \bar{\rho}, \varphi\left(x y^{-1}\right) \bar{\rho}\right\} \\
& =\left\{(\varphi(x) \varphi(y)) \bar{\rho},\left(\varphi(x) \varphi(y)^{-1}\right) \bar{\rho}\right\} \\
& =\varphi(x) \bar{\rho} \bar{\circ} \varphi(y) \bar{\rho} .
\end{aligned}
$$

Now we are ready to provide our main results.
Theorem 2.5. If G is a cyclic group, then

$$
\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\sigma}))=\{\bar{\varphi} \mid \varphi \in \operatorname{Hom}(G, \bar{G})\}
$$

where for $\varphi \in \operatorname{Hom}(G, \bar{G}), \bar{\varphi}$ is defined as above.
Proof. From Proposition 2.4, $\{\bar{\varphi} \mid \varphi \in \operatorname{Hom}(G, \bar{G})\} \subseteq \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\circ}))$. For the reverse inclusion, let $\psi \in \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\circ}))$. Let G be generated by $a \in G$. Then $G=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$. Let $b \in \bar{G}$ be such that $\psi(a \rho)=b \bar{\rho}$. Therefore by Proposition 2.2, $\psi\left(a^{n} \rho\right)=b^{n} \bar{\rho}$. Define $\varphi \in \operatorname{Hom}(G, \bar{G})$ by $\varphi(a)=b$, so $\varphi\left(a^{n}\right)=b^{n}$ for all $n \in \mathbb{Z}$. Hence for every $n \in \mathbb{Z}, \psi\left(a^{n} \rho\right)=\varphi\left(a^{n}\right) \bar{\rho}=\bar{\varphi}\left(a^{n} \rho\right)$. Hence the theorem is proved.

Recall that $(\mathbb{Q},+)$ is not a cyclic group. The next theorem shows that the converse of Theorem 2.5 is not true in general.
Theorem 2.6. If G is $(\mathbb{Q},+)$ and \bar{G} is either $(\mathbb{Q},+)$ or $\left(\mathbb{R}^{+}, \cdot\right)$, then

$$
\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{o}))=\{\bar{\varphi} \mid \varphi \in \operatorname{Hom}(G, \bar{G})\}
$$

Proof. Let $\psi \in \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{o}))$. Let $b \in \bar{G}$ be such that $\psi(1 \rho)=b \bar{\rho}$.
Case 1: $\bar{G}=(\mathbb{Q},+)$. Then $b \in \mathbb{Q}$. Let $k \in \mathbb{Z}$ and $m \in \mathbb{Z} \backslash\{0\}$. Then $\psi\left(\frac{1}{m} \rho\right)=c \rho$ for some $c \in \mathbb{Q}$. Hence by Proposition 2.2,

$$
b \bar{\rho}=\psi\left(\left(m\left(\frac{1}{m}\right)\right) \rho\right)=(m c) \bar{\rho}
$$

which implies that $m c=b$ or $m c=-b$. Thus $c=\frac{b}{m}$ or $c=-\frac{b}{m}$. It follows that $\psi\left(\frac{1}{m} \rho\right)=\frac{b}{m} \bar{\rho}$. Again, by Proposition 2.2,

$$
\psi\left(\frac{k}{m} \rho\right)=\psi\left(\left(k \frac{1}{m}\right) \rho\right)=\left(k\left(\frac{b}{m}\right)\right) \bar{\rho}=\left(\frac{k}{m} b\right) \bar{\rho} .
$$

This shows that $\psi(x \rho)=(x b) \bar{\rho}$ for all $x \in \mathbb{Q}$. Define $\varphi: \mathbb{Q} \rightarrow \mathbb{Q}$ by $\varphi(x)=b x$ for all $x \in \mathbb{Q}$. Then $\varphi \in \operatorname{Hom}((\mathbb{Q},+),(\mathbb{Q},+))$ and $\psi(x \rho)=\varphi(x) \bar{\rho}=\bar{\varphi}(x \rho)$ for all $x \in \mathbb{Q}$.

Case 2: $\bar{G}=\left(\mathbb{R}^{+}, \cdot\right)$. Then $b \in \mathbb{R}^{+}$, so $b^{\frac{1}{m}} \in \mathbb{R}^{+}$for all $m \in \mathbb{Z} \backslash\{0\}$. Let $k \in \mathbb{Z}$ and $m \in \mathbb{Z} \backslash\{0\}$, and let $c \in \mathbb{R}^{+}$be such that $\psi\left(\frac{1}{m} \rho\right)=c \bar{\rho}$. From Proposition 2.2, we have

$$
b \bar{\rho}=\psi\left(\left(m \frac{1}{m}\right) \rho\right)=c^{m} \bar{\rho}
$$

so $c^{m}=b$ or $c^{m}=b^{-1}$. Hence $c=b^{\frac{1}{m}}$ or $c=b^{-\frac{1}{m}}$. Thus $\psi\left(\frac{1}{m} \rho\right)=b^{\frac{1}{m}} \bar{\rho}$. Also, by Proposition 2.2, we have

$$
\psi\left(\frac{k}{m} \rho\right)=\psi\left(\left(k \frac{1}{m}\right) \rho\right)=\left(b^{\frac{1}{m}}\right)^{k} \bar{\rho}=b^{\frac{k}{m}} \bar{\rho}
$$

This proves that $\psi(x \rho)=b^{x} \bar{\rho}$ for all $x \in \mathbb{Q}$. Define $\varphi: \mathbb{Q} \rightarrow \mathbb{R}^{+}$by $\varphi(x)=b^{x}$ for all $x \in \mathbb{Q}$. Then $\varphi \in \operatorname{Hom}\left((\mathbb{Q},+),\left(\mathbb{R}^{+}, \cdot\right)\right)$ and $\psi(x \rho)=\varphi(x) \bar{\rho}=\bar{\varphi}(x \rho)$ for all $x \in \mathbb{Q}$.

From Case 1 and Case 2, we have that $\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{\circ})) \subseteq\{\bar{\varphi} \mid \varphi \in$ $\operatorname{Hom}(G, \bar{G})\}$. Hence these two sets are identical by Proposition 2.4.

If every nonidentity element of G has order 2 , then $x=x^{-1}$ for all $x \in G$, and hence $x \rho=\{x\}$. Some examples of such a group G are the following ones.

$$
\begin{align*}
& G=\prod_{i \in I} G_{i} \text { with componentwise operation } \tag{1}\\
& \qquad \quad \text { where } G_{i}=\left(\mathbb{Z}_{2},+\right) \text { for every } i \in I .
\end{align*}
$$

(2) $\quad X$ is a set and $G=P(X)$, the power set of X, with the operation * defined by

$$
A * B=(A \backslash B) \cup(B \backslash A) \text { for all } A, B \in P(X)
$$

The last theorem shows that if G has this property, the same result is also obtained.

Theorem 2.7. If every nonidentity element of G has order 2, then

$$
\operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{o}))=\{\bar{\varphi} \mid \varphi \in \operatorname{Hom}(G, \bar{G})\}
$$

Proof. Let $\psi \in \operatorname{Hom}((G / \rho, \circ),(\bar{G} / \bar{\rho}, \bar{o}))$. For each $x \in G$, there is an element $x^{\prime} \in \bar{G}$ such that $\psi(x \rho)=x^{\prime} \bar{\rho}$. Since $x^{2}=e$ for all $x \in G$, by Corollary 2.3, $\left(x^{\prime}\right)^{2}=\bar{e}$. Thus $x \rho=\{x\}$ and $x^{\prime} \bar{\rho}=\left\{x^{\prime}\right\}$ for all $x \in G$. Define $\varphi: G \rightarrow \bar{G}$ by $\varphi(x)=x^{\prime}$ for all $x \in G$. Then $\psi(x \rho)=\varphi(x) \bar{\rho}$ for all $x \in G$. If $x, y \in G$, then $\psi(x \rho \circ y \rho)=\psi(x \rho) \circ \psi(y \rho)$, so

$$
\begin{array}{rlr}
\left\{(x y)^{\prime} \bar{\rho}\right\} & =\left\{(x y)^{\prime} \bar{\rho},\left(x y^{-1}\right)^{\prime} \bar{\rho}\right\} & \text { since } y=y^{-1} \\
& =\left\{\psi((x y) \rho), \psi\left(\left(x y^{-1}\right) \rho\right)\right\} & \\
& =\psi\left\{(x y) \rho,\left(x y^{-1}\right) \rho\right\} & \\
& =\psi(x \rho \circ y \rho) & \\
& =\psi(x \rho) \overline{\bar{\sigma}} \psi(y \rho) & \\
& =x^{\prime} \bar{\rho} \bar{\circ} y^{\prime} \bar{\rho} \\
& =\left\{\left(x^{\prime} y^{\prime}\right) \bar{\rho},\left(x^{\prime}\left(y^{\prime}\right)^{-1}\right) \bar{\rho}\right\} & \\
& =\left\{\left(x^{\prime} y^{\prime}\right) \bar{\rho}\right\} & \text { since }\left(y^{\prime}\right)^{-1}=y^{\prime} .
\end{array}
$$

Hence $(x y)^{\prime} \bar{\rho}=\left(x^{\prime} y^{\prime}\right) \bar{\rho}$. But $(x y)^{\prime} \bar{\rho}=\left\{(x y)^{\prime}\right\}$, so we have $(x y)^{\prime}=x^{\prime} y^{\prime}$. Hence $\varphi(x y)=\varphi(x) \varphi(y)$. By Proposition 2.4, the result is obtained, as before.

References

[1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Udine, 1993.
[2] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1984.
(Received 25 May 2006)
S. Nenthein, P. Youngkhong and Y. Punkla

Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, THAILAND.
e-mail: Sansanee.N@student.chula.ac.th

