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Relationship Between Homomorphisms
of Some Groups and Hypergroups

S. Nenthein, P. Youngkhong and Y. Punkla

Abstract : We consider the hypergroup (G/p, o) which is defined from an abelian
group G where zpy < v =y or x = y~! and xpoyp = {(2y)p, (xy~1)p}. Let
(G/p,o) and (G/p,) be the hypergroups defined respectively from abelian groups
G and G as above and let Hom(G, G) and Hom ((G/p, ©), (G/p,3)) be respectively
the set of all group homomorphisms from G into G and the set of all hypergroup
homomorphisms from (G/p, o) into (G/p,3). Some basic properties of elements
of Hom ((G/p,°),(G/p,?)) are provided. The main purpose is to show that for
certain G and G, Hom ((G/p,0),(G/p,3)) = {# | ¢ € Hom(G, G)} where §(zp) =
p(x)p for all x € G.
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1 Introduction

By a hyperoperation on a nonempty set H is a function o from H x H into
P(H) ~ {0} where P(H) is the power set of H. In this case, (H,o) is called
a hypergroupoid. For A,B C H,let Ao B = U aob. A hypergroupoid (H,o) is

acA
beB

called a semihypergroup if xo(yoz) = (xoy)oz forall x,y,z € H. A hypergroup
is a semihypergroup (H,o) satisfying the condition H o x = z o H = H for all
x € H. Hypergroups are a generalization of groups.

Let (G, -) be an abelian group and p the equivalence relation on G defined by

xpy(:)xzyorx:y_l,

that is, xp = {x, 27!} for all z € G. Define the hyperoperation o on G/p by

zpoyp = {(xy)p, (xy~")p} for all z,y € G.

Then (G/p, o) is a hypergroup ([1], page 11).
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By a homomorphism from a hypergroup (H, o) into a hypergroup (H’,o’) we
mean a mapping ¢ : H — H' satisfying the condition

p(roy) = p(x)o p(y) for all z,y € H.

We note here that our definition of homomorphisms between hypergroups are
called good homomorphisms in [1].

For groups G and G, let Hom(G, G) denote the set of all (group) homomor-
phisms from G into G. For hypergroups (H, o) and (H,3), denote analogously by
Hom ((H7 o), (H, 6)) the set of all (hypergroup) homomorphisms from (H, o) into
(H,5).

Recall that if G is a cyclic group generated by a, then G = (a) = {a™ | n € Z}
where Z is the set of all integers. If G = (a), then every ¢ € Hom(G,QG) is
completely determined by ¢(a).

Let Z* = {x € Z | z > 0} and Z& = Z* U {0}. The set of real numbers and
the set of all rational numbers are denoted by R and Q, respectively. Then (Q, +)
and (RT,-) are abelian groups where R = {z € R | z > 0}. Note that for every

n € Z ~ {0}, Ee@forallxeﬁ@andx% € RT for all z € RT.
n —
In the remainder, let G and G be abelain groups with identities e and €, re-

spectively, and let (G/p, o) and (G/p, ) be the corresponding hypergroups defined
as above, that is,

Ve,ye G, apy & v=yorz=y !,

zpoyp = {(zy)p, (xy")p},
Yo,y € G, xpy < x:yorxzy_l,
wpsyp = {(xy)p, (xy~")p}-
For each ¢ € Hom(G, G), define % : G/p — G/p by
D(xp) = p(x)p for all x € G.

Our purpose is to provide some basic properties of elements in Hom((G/p, o),
(G/p,5)) and show that

Hom ((G/p,°), (G/p.)) = {7 | ¢ € Hom(G, @)}

if G and G satisfy one of the following conditions.

1) G is a cyclic group.

G=(Q,+)=0G.

G =(Q,+) and G = (R*,").

G in which every nonidentity element has order 2.

(

(2)
(3)
(4)

For basic concepts of groups and homorphisms, the reader is referred to [2].
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2 Main Results

First, we recall that for any ¢ € Hom(G,G),p(e) = € and p(z7!) = p(z)~! for
all x € G. -

Some basic properties of elements of Hom ((G/p,0),(G/p,0)) are first pre-
sented.

Proposition 2.1. If ¢ € Hom ((G/p,°),(G/p,?)), then (ep) =€ p.
Proof. Let a € G be such that 1(ep) = ap. Then
{ap} = {¢(ep)} = Y(epoep) = Y(ep) 3¢(ep) = apo ap = {a’p,e p}
which implies that ap = a%p = € p. O

Proposition 2.2. Let ) € Hom ((G/p,0),(G/p,?)). Ifa € G and b € G are such
that ¥(ap) = bp, then Y (a™p) = b™p for all n € Z.

Proof. By Proposition 2.1, 1(a’p) = v (ep) = ep = b°p. Since
{v(a®p),ep} = v{a®p,ep} = Y(ap o ap) = (ap) Y (ap) = bpo bp = {b°p,e p},
it follows that ¥(a?p) = b%p. Assume that k& > 2 and ¥(a"p) = b"p for all
n € {0,1,...,k}. Then
{0(a"p), 0" 'p} = w{a* 1 p, a1 p}

= (a"poap)

= ¥(a"p) 5 (ap)

=b"pobp

_ {bk"rl*’ bk_lﬁ}
which implies that 1(a**1p) = b*T15. This shows that

Y(a"p) =b"p foralln € Z7.

If n € Z is such that n < 0, then —n > 0,a"p = a™"p and b"p = b~ "p, and hence
P(a"p) =P(a "p) = b "p = b"p. Therefore the proposition is proved. O

Corollary 2.3. Let ¢ € Hom ((G/p,°),(G/p,?)), a € G, b€ G and v (ap) = bp.
Ifa=a"'inG, thenb=0b"" inG.
Proof. Assume that a = a~'. Then a? = e, so by Proposition 2.1 ans Proposition
2.2,

ep=v(ep) = ¢(a’p) = bp.
But ep = {€}, so b> = ¢, that is, b= b1, O
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Proposition 2.4. If ¢ € Hom(G,G), then @ : G/p — G/p defined by p(xp) =
©(z)p for all x € G belongs to Hom ((G/p,°),(G/p,?)). Hence
{# | ¢ € Hom(G,G)} € Hom ((G/p.0),(G/p,3)) -

Proof. To show that @ is well-defined, let z,y € G be such that xp = yp. Then
y=ory=a1, 50 py) = @) or p(y) = p(e~1) = p(z)~L. Hence p(x)p —

e(y)p-
Also, for any x,y € G,

Now we are ready to provide our main results.
Theorem 2.5. If G is a cyclic group, then
Hom ((G/p,°),(G/p,3)) = {% | ¢ € Hom(G,G)}
where for ¢ € Hom(G,G), @ is defined as above.

Proof. From Proposition 2.4, {7 | ¢ € Hom(G,G)} € Hom((G/p,0), (G/p,9)).
For the reverse inclusion, let ¢ € Hom((G/p,0), (G/p,?3)). Let G be generated by
a € G. Then G = {a" | n € Z}. Let b € G be such that 1 (ap) = bp. Therefore by
Proposition 2.2, 1(a"p) = b"p. Define ¢ € Hom(G, G) by ¢(a) = b, so ¢(a™) = b"
for all n € Z. Hence for every n € Z, ¥(a™p) = p(a™)p = @(a"p). Hence the
theorem is proved. O

Recall that (Q,+) is not a cyclic group. The next theorem shows that the
converse of Theorem 2.5 is not true in general.

Theorem 2.6. If G is (Q,+) and G is either (Q,+) or (R*,.), then
Hom ((G/p.),(G/p,5)) ={@| ¢ € Hom(G,G)}.
Proof. Let ¢ € Hom ((G/p,0),(G/p,5)). Let b € G be such that 1(1p) = bp.

_ 1
Case 1: G = (Q,+). Thenb € Q. Let k € Z and m € Z~{0}. Then ¢)(—p) = cp
m
for some ¢ € Q. Hence by Proposition 2.2,
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b b
which implies that mc = b or me¢ = —b. Thus ¢ = — or ¢ = ——. It follows that
m m

1 b
Q/J(—p) = —p. Again, by Proposition 2.2,
m m

ky
m

)P = (0P

This shows that ¢(zp) = (xb)p for all z € Q. Define ¢ : Q — Q by p(z) = bz

for all x € Q. Then ¢ € Hom((Q,+), (Q,+)) and w(xp) o(x)p = p(zp) for all

z € Q.

Case 2: G = (R",.). Then b € R, so b € Rt for all m € Z ~ {0}. Let k € Z
1

and m € Z ~ {0}, and let ¢ € R* be such that ¢)(—p) = ¢p. From Proposition
m

2.2, we have

bp = ¢((m%)p) =c"p,

1

so ¢™ =bor ™ =b"1, Hence ¢ = bw or ¢ = b~m. Thus Y(—p) = bmp. Also,
m

by Proposition 2.2, we have

o) = w((hh0) = 0%)'5 = %7

This proves that ¢ (xp) = b%p for all z € Q. Define ¢ : Q — RT by ¢(z) = b*
for all z € Q. Then ¢ € Hom((Q, +), (RT,)) and ¢ (zp) = ¢(z)p = p(xp) for all
z € Q.

From Case 1 and Case 2, we have that Hom ((G/p,0),(G/p,5)) C {® | ¢ €
Hom(G, G)}. Hence these two sets are identical by Proposition 2.4. O

If every nonidentity element of G has order 2, then x = 2~ for all € G, and
hence zp = {z}. Some examples of such a group G are the following ones.
(1) G= H G; with componentwise operation
iel
where G; = (Zg, +) for every i € I.

(2) X is a set and G = P(X), the power set of X, with the operation
defined by

AxB=(ANB)U (B~ A)forall A, B e P(X).

The last theorem shows that if G has this property, the same result is also
obtained.

Theorem 2.7. If every nonidentity element of G has order 2, then

Hom ((G/p,), (G/7.5)) = {7 | » € Hom(G,G)}.
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Proof. Let ¢ € Hom ((G/p,0),(G/p,5)). For each x € G, there is an element
2’ € G such that ¢(zp) = 2'p. Since 22 = e for all z € G, by Corollary 2.3,
(/)2 = €. Thus zp = {2} and 2'p = {2’} for all x € G. Define p : G — G by
p(x) = 2’ for all x € G. Then ¢Y(zp) = p(z)p for all z € G. If z,y € G, then
Y(zpoyp) =P(zp) o p(yp), so

{(zy)'p} = {(=1)'P, (zy~")'D} since y =y~

= {((zy)p), Y ((zy~")p)}

= {(zy)p, (zy~")p}

= P(zpoyp)
(

= Y(zp) 5 Y(yp)

= {(="y")p} since (y') ™' =y
Hence (zy)'p = (2'y')p. But (2y)'p = {(zy)'}, so we have (zy) = z'y’. Hence
p(ry) = p(x)e(y). By Proposition 2.4, the result is obtained, as before. O
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