Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics, 2006) : 13–18

Relationship Between Homomorphisms of Some Groups and Hypergroups

S. Nenthein, P. Youngkhong and Y. Punkla

Abstract : We consider the hypergroup $(G/\rho, \circ)$ which is defined from an abelian group G where $x\rho y \Leftrightarrow x = y$ or $x = y^{-1}$ and $x\rho \circ y\rho = \{(xy)\rho, (xy^{-1})\rho\}$. Let $(G/\rho, \circ)$ and $(\overline{G}/\overline{\rho}, \overline{\circ})$ be the hypergroups defined respectively from abelian groups G and \overline{G} as above and let $\operatorname{Hom}(G, \overline{G})$ and $\operatorname{Hom}((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ}))$ be respectively the set of all group homomorphisms from G into \overline{G} and the set of all hypergroup homomorphisms from $(G/\rho, \circ)$ into $(\overline{G}/\overline{\rho}, \overline{\circ})$. Some basic properties of elements of $\operatorname{Hom}((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ}))$ are provided. The main purpose is to show that for certain G and \overline{G} , $\operatorname{Hom}((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ})) = \{\overline{\varphi} \mid \varphi \in \operatorname{Hom}(G, \overline{G})\}$ where $\overline{\varphi}(x\rho) = \varphi(x)\overline{\rho}$ for all $x \in G$.

Keywords : Hypergroup, homomorphism 2000 Mathematics Subject Classification : 20N20

1 Introduction

By a hyperoperation on a nonempty set H is a function \circ from $H \times H$ into $P(H) \setminus \{\emptyset\}$ where P(H) is the power set of H. In this case, (H, \circ) is called a hypergroupoid. For $A, B \subseteq H$, let $A \circ B = \bigcup_{\substack{a \in A \\ o a \in A}} a \circ b$. A hypergroupoid (H, \circ) is

called a semihypergroup if $x \circ (y \circ z) = (x \circ y) \circ z$ for all $x, y, z \in H$. A hypergroup is a semihypergroup (H, \circ) satisfying the condition $H \circ x = x \circ H = H$ for all $x \in H$. Hypergroups are a generalization of groups.

Let (G, \cdot) be an abelian group and ρ the equivalence relation on G defined by

$$x\rho y \Leftrightarrow x = y \text{ or } x = y^{-1},$$

that is, $x\rho = \{x, x^{-1}\}$ for all $x \in G$. Define the hyperoperation \circ on G/ρ by

$$x\rho \circ y\rho = \{(xy)\rho, (xy^{-1})\rho\}$$
 for all $x, y \in G$.

Then $(G/\rho, \circ)$ is a hypergroup ([1], page 11).

By a homomorphism from a hypergroup (H, \circ) into a hypergroup (H', \circ') we mean a mapping $\varphi : H \to H'$ satisfying the condition

$$\varphi(x \circ y) = \varphi(x) \circ' \varphi(y)$$
 for all $x, y \in H$.

We note here that our definition of homomorphisms between hypergroups are called *good homomorphisms* in [1].

For groups G and \overline{G} , let $\operatorname{Hom}(G,\overline{G})$ denote the set of all (group) homomorphisms from G into \overline{G} . For hypergroups (H, \circ) and $(\overline{H}, \overline{\circ})$, denote analogously by $\operatorname{Hom}((H, \circ), (\overline{H}, \overline{\circ}))$ the set of all (hypergroup) homomorphisms from (H, \circ) into $(\overline{H}, \overline{\circ})$.

Recall that if G is a cyclic group generated by a, then $G = \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}\$ where \mathbb{Z} is the set of all integers. If $G = \langle a \rangle$, then every $\varphi \in \text{Hom}(G, \overline{G})$ is completely determined by $\varphi(a)$.

Let $\mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\}$ and $\mathbb{Z}_0^+ = \mathbb{Z}^+ \cup \{0\}$. The set of real numbers and the set of all rational numbers are denoted by \mathbb{R} and \mathbb{Q} , respectively. Then $(\mathbb{Q}, +)$ and (\mathbb{R}^+, \cdot) are abelian groups where $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$. Note that for every $n \in \mathbb{Z} \setminus \{0\}, \frac{x}{n} \in \mathbb{Q}$ for all $x \in \mathbb{Q}$ and $x^{\frac{1}{n}} \in \mathbb{R}^+$ for all $x \in \mathbb{R}^+$.

In the remainder, let G and \overline{G} be abelain groups with identities e and \overline{e} , respectively, and let $(G/\rho, \circ)$ and $(\overline{G}/\overline{\rho}, \overline{\circ})$ be the corresponding hypergroups defined as above, that is,

$$\begin{aligned} \forall x, y \in G, \ x\rho y \ \Leftrightarrow \ x = y \ \text{or} \ x = y^{-1}, \\ x\rho \circ y\rho \ &= \ \{(xy)\rho, (xy^{-1})\rho\}, \\ \forall x, y \in \overline{G}, \ x\overline{\rho}y \ \Leftrightarrow \ x = y \ \text{or} \ x = y^{-1}, \\ x\overline{\rho} \ \overline{\circ} \ y\overline{\rho} \ &= \ \{(xy)\overline{\rho}, (xy^{-1})\overline{\rho}\}. \end{aligned}$$

For each $\varphi \in \operatorname{Hom}(G, \overline{G})$, define $\overline{\varphi} : G/\rho \to \overline{G}/\overline{\rho}$ by

$$\overline{\varphi}(x\rho) = \varphi(x)\overline{\rho} \text{ for all } x \in G.$$

Our purpose is to provide some basic properties of elements in $\operatorname{Hom}((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ}))$ and show that

$$\operatorname{Hom}\left((G/\rho,\circ),(\overline{G}/\overline{\rho},\overline{\circ})\right) = \{\overline{\varphi} \mid \varphi \in \operatorname{Hom}(G,\overline{G})\}$$

if G and \overline{G} satisfy one of the following conditions.

- (1) G is a cyclic group.
- (2) $G = (\mathbb{Q}, +) = \overline{G}.$
- (3) $G = (\mathbb{Q}, +)$ and $\overline{G} = (\mathbb{R}^+, \cdot)$.
- (4) G in which every nonidentity element has order 2.

For basic concepts of groups and homorphisms, the reader is referred to [2].

14

2 Main Results

First, we recall that for any $\varphi \in \text{Hom}(G,\overline{G}), \varphi(e) = \overline{e}$ and $\varphi(x^{-1}) = \varphi(x)^{-1}$ for all $x \in G$.

Some basic properties of elements of Hom $((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ}))$ are first presented.

Proposition 2.1. If $\psi \in Hom((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ}))$, then $\psi(e\rho) = \overline{e} \overline{\rho}$.

Proof. Let $a \in \overline{G}$ be such that $\psi(e\rho) = a\overline{\rho}$. Then

$$\{a\overline{\rho}\} = \{\psi(e\rho)\} = \psi(e\rho \circ e\rho) = \psi(e\rho) \,\overline{\circ} \,\psi(e\rho) = a\overline{\rho} \,\overline{\circ} \,a\overline{\rho} = \{a^2\overline{\rho}, \overline{e} \,\overline{\rho}\}$$

which implies that $a\overline{\rho} = a^2\overline{\rho} = \overline{e}\ \overline{\rho}$.

Proposition 2.2. Let $\psi \in Hom\left((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ})\right)$. If $a \in G$ and $b \in \overline{G}$ are such that $\psi(a\rho) = b\overline{\rho}$, then $\psi(a^n\rho) = b^n\overline{\rho}$ for all $n \in \mathbb{Z}$.

Proof. By Proposition 2.1, $\psi(a^0\rho) = \psi(e\rho) = \overline{e} \ \overline{\rho} = b^0 \overline{\rho}$. Since

$$\{\psi(a^2\rho), \overline{e}\,\overline{\rho}\} = \psi\{a^2\rho, e\rho\} = \psi(a\rho \circ a\rho) = \psi(a\rho)\,\overline{\circ}\,\psi(a\rho) = b\overline{\rho}\,\overline{\circ}\,b\overline{\rho} = \{b^2\overline{\rho}, \overline{e}\,\overline{\rho}\},$$

it follows that $\psi(a^2\rho) = b^2\overline{\rho}$. Assume that $k \ge 2$ and $\psi(a^n\rho) = b^n\overline{\rho}$ for all $n \in \{0, 1, \dots, k\}$. Then

$$\begin{aligned} \{\psi(a^{k+1}\rho), b^{k-1}\overline{\rho}\} &= \psi\{a^{k+1}\rho, a^{k-1}\rho\} \\ &= \psi(a^k\rho \circ a\rho) \\ &= \psi(a^k\rho) \ \overline{\circ} \ \psi(a\rho) \\ &= b^k \overline{\rho} \ \overline{\circ} \ b\overline{\rho} \\ &= \{b^{k+1}\overline{\rho}, b^{k-1}\overline{\rho}\} \end{aligned}$$

which implies that $\psi(a^{k+1}\rho) = b^{k+1}\overline{\rho}$. This shows that

$$\psi(a^n \rho) = b^n \overline{\rho} \text{ for all } n \in \mathbb{Z}_0^+.$$

If $n \in \mathbb{Z}$ is such that n < 0, then -n > 0, $a^n \rho = a^{-n} \rho$ and $b^n \overline{\rho} = b^{-n} \overline{\rho}$, and hence $\psi(a^n \rho) = \psi(a^{-n} \rho) = b^{-n} \overline{\rho} = b^n \overline{\rho}$. Therefore the proposition is proved. \Box

Corollary 2.3. Let $\psi \in Hom((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ}))$, $a \in G$, $b \in \overline{G}$ and $\psi(a\rho) = b\overline{\rho}$. If $a = a^{-1}$ in G, then $b = b^{-1}$ in \overline{G} .

Proof. Assume that $a = a^{-1}$. Then $a^2 = e$, so by Proposition 2.1 ans Proposition 2.2,

$$\overline{e}\,\overline{
ho} = \psi(e
ho) = \psi(a^2
ho) = b^2\overline{
ho}.$$

But $\overline{e} \overline{\rho} = \{\overline{e}\}$, so $b^2 = \overline{e}$, that is, $b = b^{-1}$.

Proposition 2.4. If $\varphi \in Hom(G,\overline{G})$, then $\overline{\varphi}: G/\rho \to \overline{G}/\overline{\rho}$ defined by $\overline{\varphi}(x\rho) = \varphi(x)\overline{\rho}$ for all $x \in G$ belongs to $Hom\left((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ})\right)$. Hence

$$\{\overline{\varphi} \mid \varphi \in Hom(G,\overline{G})\} \subseteq Hom\left((G/\rho,\circ), (\overline{G}/\overline{\rho},\overline{\circ})\right).$$

Proof. To show that $\overline{\varphi}$ is well-defined, let $x, y \in G$ be such that $x\rho = y\rho$. Then y = x or $y = x^{-1}$, so $\varphi(y) = \varphi(x)$ or $\varphi(y) = \varphi(x^{-1}) = \varphi(x)^{-1}$. Hence $\varphi(x)\overline{\rho} = \varphi(y)\overline{\rho}$.

Also, for any $x, y \in G$,

$$\begin{split} \overline{\varphi}(x\rho \circ y\rho) &= \overline{\varphi}\{(xy)\rho, (xy^{-1})\rho\} \\ &= \{\overline{\varphi}((xy\rho)), \overline{\varphi}((xy^{-1})\rho)\} \\ &= \{\varphi(xy)\overline{\rho}, \varphi(xy^{-1})\overline{\rho}\} \\ &= \{(\varphi(x)\varphi(y))\overline{\rho}, (\varphi(x)\varphi(y)^{-1})\overline{\rho}\} \\ &= \varphi(x)\overline{\rho} \ \overline{\circ} \ \varphi(y)\overline{\rho}. \end{split}$$

Now we are ready to provide our main results.

Theorem 2.5. If G is a cyclic group, then

$$Hom\left((G/\rho,\circ),(\overline{G}/\overline{\rho},\overline{\circ})\right) = \{\overline{\varphi} \mid \varphi \in Hom(G,\overline{G})\}$$

where for $\varphi \in Hom(G,\overline{G})$, $\overline{\varphi}$ is defined as above.

Proof. From Proposition 2.4, $\{\overline{\varphi} \mid \varphi \in \operatorname{Hom}(G,\overline{G})\} \subseteq \operatorname{Hom}((G/\rho,\circ), (\overline{G}/\overline{\rho},\overline{\circ})).$ For the reverse inclusion, let $\psi \in \operatorname{Hom}((G/\rho,\circ), (\overline{G}/\overline{\rho},\overline{\circ})).$ Let G be generated by $a \in G$. Then $G = \{a^n \mid n \in \mathbb{Z}\}$. Let $b \in \overline{G}$ be such that $\psi(a\rho) = b\overline{\rho}$. Therefore by Proposition 2.2, $\psi(a^n\rho) = b^n\overline{\rho}$. Define $\varphi \in \operatorname{Hom}(G,\overline{G})$ by $\varphi(a) = b$, so $\varphi(a^n) = b^n$ for all $n \in \mathbb{Z}$. Hence for every $n \in \mathbb{Z}, \ \psi(a^n\rho) = \varphi(a^n)\overline{\rho} = \overline{\varphi}(a^n\rho).$ Hence the theorem is proved.

Recall that $(\mathbb{Q}, +)$ is not a cyclic group. The next theorem shows that the converse of Theorem 2.5 is not true in general.

Theorem 2.6. If G is $(\mathbb{Q}, +)$ and \overline{G} is either $(\mathbb{Q}, +)$ or (\mathbb{R}^+, \cdot) , then

$$Hom\left((G/\rho,\circ), (\overline{G}/\overline{\rho},\overline{\circ})\right) = \{\overline{\varphi} \mid \varphi \in Hom(G,\overline{G})\}.$$

Proof. Let $\psi \in \text{Hom}\left((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ})\right)$. Let $b \in \overline{G}$ be such that $\psi(1\rho) = b\overline{\rho}$.

Case 1: $\overline{G} = (\mathbb{Q}, +)$. Then $b \in \mathbb{Q}$. Let $k \in \mathbb{Z}$ and $m \in \mathbb{Z} \setminus \{0\}$. Then $\psi(\frac{1}{m}\rho) = c\rho$ for some $c \in \mathbb{Q}$. Hence by Proposition 2.2,

$$b\overline{\rho} = \psi \big((m(\frac{1}{m}))\rho \big) = (mc)\overline{\rho}$$

which implies that mc = b or mc = -b. Thus $c = \frac{b}{m}$ or $c = -\frac{b}{m}$. It follows that $\psi(\frac{1}{m}\rho) = \frac{b}{m}\overline{\rho}$. Again, by Proposition 2.2,

$$\psi\left(\frac{k}{m}\rho\right) = \psi\left((k\frac{1}{m})\rho\right) = \left(k(\frac{b}{m})\right)\overline{\rho} = \left(\frac{k}{m}b\right)\overline{\rho}$$

This shows that $\psi(x\rho) = (xb)\overline{\rho}$ for all $x \in \mathbb{Q}$. Define $\varphi : \mathbb{Q} \to \mathbb{Q}$ by $\varphi(x) = bx$ for all $x \in \mathbb{Q}$. Then $\varphi \in \operatorname{Hom}((\mathbb{Q}, +), (\mathbb{Q}, +))$ and $\psi(x\rho) = \varphi(x)\overline{\rho} = \overline{\varphi}(x\rho)$ for all $x \in \mathbb{Q}$.

Case 2: $\overline{G} = (\mathbb{R}^+, \cdot)$. Then $b \in \mathbb{R}^+$, so $b^{\frac{1}{m}} \in \mathbb{R}^+$ for all $m \in \mathbb{Z} \setminus \{0\}$. Let $k \in \mathbb{Z}$ and $m \in \mathbb{Z} \setminus \{0\}$, and let $c \in \mathbb{R}^+$ be such that $\psi(\frac{1}{m}\rho) = c\overline{\rho}$. From Proposition 2.2, we have

$$b\overline{\rho}=\psi\bigl((m\frac{1}{m})\rho\bigr)=c^m\overline{\rho},$$

so $c^m = b$ or $c^m = b^{-1}$. Hence $c = b^{\frac{1}{m}}$ or $c = b^{-\frac{1}{m}}$. Thus $\psi(\frac{1}{m}\rho) = b^{\frac{1}{m}}\overline{\rho}$. Also, by Proposition 2.2, we have

$$\psi\left(\frac{k}{m}\rho\right) = \psi\left((k\frac{1}{m})\rho\right) = \left(b^{\frac{1}{m}}\right)^k \overline{\rho} = b^{\frac{k}{m}} \overline{\rho}.$$

This proves that $\psi(x\rho) = b^x\overline{\rho}$ for all $x \in \mathbb{Q}$. Define $\varphi : \mathbb{Q} \to \mathbb{R}^+$ by $\varphi(x) = b^x$ for all $x \in \mathbb{Q}$. Then $\varphi \in \operatorname{Hom}((\mathbb{Q}, +), (\mathbb{R}^+, \cdot))$ and $\psi(x\rho) = \varphi(x)\overline{\rho} = \overline{\varphi}(x\rho)$ for all $x \in \mathbb{Q}$.

From Case 1 and Case 2, we have that Hom $((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ})) \subseteq \{\overline{\varphi} \mid \varphi \in \text{Hom}(G, \overline{G})\}$. Hence these two sets are identical by Proposition 2.4. \Box

If every nonidentity element of G has order 2, then $x = x^{-1}$ for all $x \in G$, and hence $x\rho = \{x\}$. Some examples of such a group G are the following ones.

- (1) $G = \prod_{i \in I} G_i$ with componentwise operation where $G_i = (\mathbb{Z}_2, +)$ for every $i \in I$.
- (2) X is a set and G = P(X), the power set of X, with the operation * defined by

$$A * B = (A \smallsetminus B) \cup (B \smallsetminus A)$$
 for all $A, B \in P(X)$.

The last theorem shows that if G has this property, the same result is also obtained.

Theorem 2.7. If every nonidentity element of G has order 2, then

 $Hom\left((G/\rho,\circ), (\overline{G}/\overline{\rho},\overline{\circ})\right) = \{\overline{\varphi} \mid \varphi \in Hom(G,\overline{G})\}.$

Proof. Let $\psi \in \text{Hom}\left((G/\rho, \circ), (\overline{G}/\overline{\rho}, \overline{\circ})\right)$. For each $x \in G$, there is an element $x' \in \overline{G}$ such that $\psi(x\rho) = x'\overline{\rho}$. Since $x^2 = e$ for all $x \in G$, by Corollary 2.3, $(x')^2 = \overline{e}$. Thus $x\rho = \{x\}$ and $x'\overline{\rho} = \{x'\}$ for all $x \in G$. Define $\varphi : G \to \overline{G}$ by $\varphi(x) = x'$ for all $x \in G$. Then $\psi(x\rho) = \varphi(x)\overline{\rho}$ for all $x \in G$. If $x, y \in G$, then $\psi(x\rho \circ y\rho) = \psi(x\rho) \circ \psi(y\rho)$, so

$$\{ (xy)'\overline{\rho} \} = \{ (xy)'\overline{\rho}, (xy^{-1})'\overline{\rho} \} \quad \text{since } y = y^{-1}$$

$$= \{ \psi((xy)\rho), \psi((xy^{-1})\rho) \}$$

$$= \psi\{(xy)\rho, (xy^{-1})\rho \}$$

$$= \psi(x\rho \circ y\rho)$$

$$= \psi(x\rho) \overline{\circ} \psi(y\rho)$$

$$= x'\overline{\rho} \overline{\circ} y'\overline{\rho}$$

$$= \{ (x'y')\overline{\rho}, (x'(y')^{-1})\overline{\rho} \}$$

$$= \{ (x'y')\overline{\rho} \} \quad \text{since } (y')^{-1} = y'.$$

Hence $(xy)'\overline{\rho} = (x'y')\overline{\rho}$. But $(xy)'\overline{\rho} = \{(xy)'\}$, so we have (xy)' = x'y'. Hence $\varphi(xy) = \varphi(x)\varphi(y)$. By Proposition 2.4, the result is obtained, as before. \Box

References

- [1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Udine, 1993.
- [2] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1984.

(Received 25 May 2006)

S. Nenthein, P. Youngkhong and Y. Punkla Department of Mathematics Faculty of Science Chulalongkorn University Bangkok 10330, THAILAND. e-mail: Sansanee.N@student.chula.ac.th