On a Semigroup of Sets of Transformations with Restricted Range

Ananya Anantayasethi ${ }^{\dagger}$ and Joerg Koppitz ${ }^{\ddagger} \uparrow$
${ }^{\dagger}$ Mathematics Department, Science Faculty, Mahasarakham University
Kantarawichai, Mahasarakham 44150, Thailand
e-mail : ananya.a@msu.ac.th
${ }^{\ddagger}$ Mathematics Institute, Potsdam University
14476 Potsdam, Germany
e-mail : koppitz@uni-potsdam.de

Abstract

This paper bases on the well-studied semigroup $T(X, Y)$ of all transformations on X with restricted range $Y \subseteq X$. We introduce the semigroup $T_{P}(X, Y)$ of all non-empty subsets of $T(X, Y)$ under the operation $A B:=\{a b:$ $a \in A, b \in B\}$. We determine the idempotent and regular elements in $T_{P}(X, Y)$ for the case that $|Y|=2$. In particular, we characterize the (maximal) regular subsemigroups of $T_{P}(X, Y)$, the largest semiband, and the (maximal) idempotent subsemigroups of $T_{P}(X, Y)$.

Keywords : transformation semigroup with restricted range; semigroups; idempotent; regular.
2010 Mathematics Subject Classification : 20M14; 20M18; 20 M 20 .

1 Introduction

Let $X=\{1, \ldots, n\}$, we denote by $T(X)$ the monoid of all full transformations on X (functions from X to X). The operation is the composition of functions. In the paper, we will write functions from the right, $x \alpha$ rather than $\alpha(x)$ and compose from the left to the right, $x(\alpha \beta)=(x \alpha) \beta$ rather than $(\alpha \beta)(x)=\alpha(\beta(x))$, $\alpha, \beta \in T(X), x \in X$.

[^0]We denote by $\operatorname{im\alpha }$ the image (the range) of α, i.e. $\operatorname{im\alpha }:=X \alpha:=\{x \alpha: x \in X\}$ and by rank α the cardinality of $\operatorname{im\alpha }$, i.e. $\operatorname{rank} \alpha:=|i m \alpha|$. The kernel of α is the set $\operatorname{ker} \alpha:=\{(x, y): x, y \in X, x \alpha=y \alpha\}$. It is an equivalence relation and thus ker α corresponds uniquely to a partition of X into blocks. The transformation α is called idempotent if $\alpha \alpha=\alpha$. Notice that α is idempotent if and only if α restricted to $i m \alpha$ is the identity mapping on $i m \alpha$. For more information about transformation semigroups and semigroups see [1] and [2], respectively.
By several reasons, it can happen that all transformations under consideration have a range in a proper subset of X. Let Y be a non-empty subset of X, say $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ for some $m \in\{1, \ldots, n\}$. Note that $X=Y$ if $n=m$. Let us consider the set $T(X, Y):=\{\alpha \in T(X): i m \alpha \subseteq Y\}$. In particular, $T(X, Y)$ is a subsemigroup of $T(X)$, which is a semigroup of transformations with restricted range due to J. S. V. Symons [3. Transformation semigroups with restricted range have been widely investigated (see for example [4, [5, [6, [7, 8, (9). If Y is a oneelement set, say $Y=\left\{y_{1}\right\}$, then $T(X, Y)$ is an one-element set, too, since the only transformation in $T(X, Y)$ is the constant mapping with the image y_{1}.
Let us now consider a two-element subset Y of X, say $Y=\left\{y_{1}, y_{2}\right\}$. Then, $T(X, Y)$ consists of the constant mapping with image y_{1} (denoted by c_{1}), the constant mapping with image y_{2} (denoted by c_{2}), and mappings with non-trivial kernel. For any $\alpha \in T(X, Y)$, we define a mapping $\alpha^{*} \in T(X, Y)$ by

$$
x \alpha^{*}:=\left\{\begin{array}{lll}
y_{2} & \text { if } & x \alpha=y_{1} \\
y_{1} & \text { if } & x \alpha=y_{2} .
\end{array}\right.
$$

It is easy to verify that $c_{1}^{*}=c_{2},\left(\alpha^{*}\right)^{*}=\alpha, \alpha \beta=\alpha$, and $\alpha \beta^{*}=\alpha^{*}$, whenever $\beta \in T(X, Y)$ is an idempotent with rank 2. We observe that $\alpha \beta=c_{i}$, whenever $y_{1} \beta=y_{2} \beta=c_{i}(i \in\{1,2\})$. For any non-empty set $A \subseteq T(X, Y)$, we put $A^{*}:=\left\{\alpha^{*}: \alpha \in A\right\}$.
This motivates the consideration of the following four subsets of $T(X, Y)$:

$$
\begin{aligned}
& T_{1}:=\{\alpha \in T(X, Y): \alpha \text { is idempotent with rank } 2\} ; \\
& T_{2}:=\left\{\alpha^{*}: \alpha \in T_{1}\right\} ; \\
& T_{2+i}:=\left\{\alpha \in T(X, Y): y_{1} \alpha=y_{2} \alpha=c_{i}\right\} \text { for } i \in\{1,2\} .
\end{aligned}
$$

Clearly, $T_{4}=\left\{\alpha^{*}: \alpha \in T_{3}\right\}$. It is easy to verify that $\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ is a partition of $T(X, Y)$. For any non-empty set $A \subseteq T(X, Y)$ and any $i \in\{1,2,3,4\}$, we put

$$
A_{i}:=A \cap T_{i} .
$$

Clearly, $A=A_{1} \dot{\cup} A_{2} \dot{\cup} A_{3} \dot{\cup} A_{4}$.
Let $A, B \subseteq T(X, Y)$ be non-empty sets. If $B_{1} \neq \emptyset$, i.e. there is an idempotent $\beta \in B$ with rank 2 such that $\alpha \beta=\alpha$ for all $\alpha \in A$, then $A \subseteq A B$ and $A=A B$ if $B=B_{1}$. If $B_{3} \neq \emptyset$, i.e. there is $\beta \in B$ with $y_{1} \beta=y_{2} \beta=c_{1}$ and $\alpha \beta=c_{1}$ for all $\alpha \in A$, then $c_{1} \in A B$ and $A B=\left\{c_{1}\right\}$ if $B=B_{3}$. By the same reasons, we have $c_{2} \in A B$, whenever $B_{4} \neq \emptyset$ and $A B=\left\{c_{2}\right\}$, whenever $B=B_{4}$. If $B \subseteq\left\{c_{1}, c_{2}\right\}$, then $A B=B$ since $\alpha c_{i}=c_{i}$ for all $i=1,2$ and all $\alpha \in A$. Finally if $B_{2} \neq \emptyset$, i.e.
there is an idempotent β^{*} with rank 2 such that $\beta \in B$ and $\alpha \beta=\alpha^{*}$ for all $\alpha \in A$, then $A^{*} \subseteq A B$ and $A^{*}=A B$ if $B=B_{2}$. So, if $B_{1} \neq \emptyset$ and $B_{2} \neq \emptyset$, then the set $R_{A}:=A \cup A^{*}$ is contained in $A B$ and $R_{A}=A B$ if $B=B_{1} \cup B_{2}$. The notation R_{A} is due to the Green's relation \mathcal{R}. Notice that, two transformations $\alpha, \beta \in T(X, Y)$ are \mathcal{R}-related, in symbols $\alpha \mathcal{R} \beta$, if and only if $\operatorname{ker} \alpha=\operatorname{ker} \beta[2]$. We observe that $\operatorname{ker} \alpha=\operatorname{ker} \beta$ if and only if $\alpha=\beta$ or $\alpha=\beta^{*}$, i.e. the \mathcal{R}-class of any $\alpha \in T(X, Y)$ is $\left\{\alpha, \alpha^{*}\right\}$. Throughout this paper, we will use these observations without to refer to them.
Let $T_{p}(X, Y)$ be the set of all non-empty subsets of $T(X, Y)$ and let us establish $T_{p}(X, Y)$ with a binary operation \cdot defined by

$$
A \cdot B:=\{a b: a \in A, b \in B\}
$$

for $A, B \in T_{p}(X, Y)$. Clearly, • is associative. We will write $A B$ rather than $A \cdot B$. Notice the semigroup $T(X, Y)$ can be isomorphic embedded into $T_{P}(X, Y)$ by $\Phi: T(X, Y) \rightarrow T_{P}(X, Y)$ with $\alpha \mapsto\{\alpha\}$ for $\alpha \in T(X, Y)$. The purpose of this paper is the study of several basic properties of the semigroup $T_{P}(X, Y)$.
The next section deals with the set E of all idempotents in $T_{P}(X, Y)$, i.e. with elements $A \in T_{P}(X, Y)$ satisfying $A A=A$. It is easy to see that $T(X, Y)$ is not a band (take any $\beta \in T_{1}$ and we have $\beta^{*} \beta^{*}=\left(\beta^{*}\right)^{*}=\beta$). Therefore, $T_{P}(X, Y)$ is also not a band since $T(X, Y)$ can be isomorphically embedded into $T_{P}(X, Y)$. We will determine the set E and characterize all maximal subsemigroups consisting entirely of idempotents. Moreover, we determine the semigroup generated by E, i.e. the greatest semiband within $T_{P}(X, Y)$. The third section is devoted to the regular elements. A set $A \in T_{P}(X, Y)$ is called regular if there is $B \in T_{P}(X, Y)$ such that $A B A=A$. We characterize the set of all regular elements in $T_{P}(X, Y)$. It is a proper subset of $T_{P}(X, Y)$, i.e. $T_{P}(X, Y)$ is not regular. But we can provide all maximal regular subsemigroups of $T_{P}(X, Y)$. Finally, we will obtain the least subsemigroup of $T_{P}(X, Y)$ containing all regular elements.

2 The Idempotent Elements

Note that an idempotent element $A \in E$ of $T_{P}(X, Y)$ is a subsemigroup of $T(X, Y)$, i.e. $A \leq T(X, Y)$, since $A A=A$. But conversely, not each subsemigroup of $T(X, Y)$ is idempotent in $T_{P}(X, Y)$. For example, T_{4} is a subsemigroup of $T(X, Y)$ but $T_{4} \notin E$ since $T_{4} T_{4}=\left\{c_{2}\right\} \varsubsetneqq T_{4}$. The following proposition characterizes all the idempotents in $T_{P}(X, Y)$.

Proposition 2.1. Let $A \in T_{P}(X, Y)$. Then $A \in E$ if and only if the following three conditions are satisfied:
(i) $R_{A}=A$ (i.e. $A=A^{*}$) if $A_{2} \neq \emptyset$.
(ii) $A \subseteq\left\{c_{1}, c_{2}\right\}$ if $A_{1} \cup A_{2}=\emptyset$.
(iii) $c_{i} \in A$ if $A_{2+i} \neq \emptyset, i=1,2$.

Proof. Suppose that (i), (ii), and (iii) are satisfied.
Assume that $A_{1} \neq \emptyset$. Then $A \subseteq A A$. Let now $\alpha \in A A$. Then there are $\alpha_{1}, \alpha_{2} \in A$
with $\alpha=\alpha_{1} \alpha_{2}$. If $\alpha_{2} \in A_{1}$ then $\alpha=\alpha_{1} \alpha_{2}=\alpha_{1} \in A$. If $\alpha_{2} \in A_{2}$ then $A_{2} \neq \emptyset$ and $\alpha=\alpha_{1} \alpha_{2}=\alpha_{1}^{*} \in A^{*}=A$ by (i). Let $i \in\{1,2\}$. If $\alpha_{2} \in A_{2+i}$ then $A_{2+i} \neq \emptyset$ and $\alpha=\alpha_{1} \alpha_{2}=c_{i} \in A$ by (iii).
Admit that $A_{1}=\emptyset$. Then $A_{2}=\emptyset$ by (i), i.e. $A_{1} \cup A_{2}=\emptyset$. Thus, $A \subseteq\left\{c_{1}, c_{2}\right\}$ by (ii) and we have $A A=A$. Suppose now that $A A=A$ and we have to show that (i), (ii), and (iii) are satisfied. Admit that $A_{2} \neq \emptyset$. Then $A^{*} \subseteq A A=A$ and thus $A=\left(A^{*}\right)^{*} \subseteq A^{*}$. This shows that $A=A^{*}$ and we have (i). Admit that $A_{1} \cup A_{2}=\emptyset$, i.e. $A \subseteq A_{3} \cup A_{4}$. Then $A=A A \subseteq\left\{c_{1}, c_{2}\right\}$. This shows (ii). Let $i \in\{1,2\}$ and suppose that $A_{2+i} \neq \emptyset$. Then we obtain $c_{i} \in A A=A$, i.e. we have shown (iii).

By Proposition 2.1, it is easy to verify that the following both sets D_{1} and D_{2} are subsets of E :

$$
\begin{aligned}
& D_{1}:=\left\{R_{A}: \emptyset \neq A \subseteq T_{1}\right\} \text { and } \\
& D_{2}:=\left\{A \cup B \cup\left\{c_{i}\right\}: \emptyset \neq A \subseteq T_{1}, B \subseteq T_{2+i}, i=1,2\right\}
\end{aligned}
$$

Lemma 2.2. We have $D_{1} D_{2} \cap E=\emptyset$.
Proof. Let $A \in D_{1}$ and $A^{\prime} \in D_{2}$. Then there are a non-empty set $\widehat{A} \subseteq T_{1}$ and a set $\widehat{B} \subseteq T_{2+i}$ such that $A^{\prime}=\widehat{A} \cup \widehat{B} \cup\left\{c_{i}\right\}$ for some $i \in\{1,2\}$. This gives $A A^{\prime}=A \cup\left\{c_{i}\right\}$. We have $\left(A A^{\prime}\right)_{2} \neq \emptyset\left(\right.$ since $\left.A_{2} \neq \emptyset\right)$ but $c_{i}^{*} \notin A A^{\prime}$ (since $A \subseteq T_{1} \cup T_{2}$). Thus, $A A^{\prime} \notin E$ by Proposition 2.1.

Lemma 2.2 shows that $T_{P}(X, Y)$ is not orthodox, i.e., its idempotent set does not form a subsemigroup and it arises the question for the (maximal) idempotent subsemigroups of $T_{P}(X, Y)$. A semigroup S is a maximal idempotent subsemigroup of $T_{P}(X, Y)$ if $S \subseteq E$ and each subsemigroup of $T_{P}(X, Y)$, which covers S properly, consists not entirely of idempotents. Let us put

$$
E_{1}:=E \backslash D_{1}
$$

Lemma 2.3. E_{1} is a maximal idempotent subsemigroup of $T_{P}(X, Y)$.
Proof. Let $A, B \in E_{1}$.
Suppose that $A_{1} \neq \emptyset$ and $B_{1} \neq \emptyset$. Since both A and B do not belong to D_{1}, we have $A_{2}=\emptyset$ or $\left\{c_{1}, c_{2}\right\} \subseteq A$ as well as $B_{2}=\emptyset$ or $\left\{c_{1}, c_{2}\right\} \subseteq B$. If $(A B)_{2}=\emptyset$ then $B_{2}=\emptyset$ since $A_{1} \neq \emptyset$. Thus, $A B=A \cup C$, where $C \subseteq\left\{c_{1}, c_{2}\right\}$. Notice that $A_{2}=\emptyset$ since $(A B)_{2}=\emptyset$ and $A B=A \cup C$. Thus $A B$ is an idempotent by Proposition 2.1. Because $(A B)_{2}=\emptyset$, we have $A B \in E_{1}$. If $(A B)_{2} \neq \emptyset$ then $A_{2} \neq \emptyset$ or $B_{2} \neq \emptyset$, i.e. $\left\{c_{1}, c_{2}\right\} \subseteq A$ (if $A_{2} \neq \emptyset$) or $\left\{c_{1}, c_{2}\right\} \subseteq B$ (if $B_{2} \neq \emptyset$). This provides $\left\{c_{1}, c_{2}\right\} \subseteq A B$. In both cases, we obtain $A B=R_{A} \cup\left\{c_{1}, c_{2}\right\}$. Thus $A B$ is an idempotent by Proposition [2.1, and in particular, $A B \in E_{1}$.
Suppose that $A_{1}=\emptyset$ or $B_{1}=\emptyset$. Then $A \subseteq\left\{c_{1}, c_{2}\right\}$ (if $A_{1}=\emptyset$, i.e. $A_{1} \cup A_{2}=\emptyset$) or $B \subseteq\left\{c_{1}, c_{2}\right\}$ (if $B_{1}=\emptyset$, i.e. $B_{1} \cup B_{2}=\emptyset$) by Proposition 2.1] Hence, $A B \subseteq$ $\left\{c_{1}, c_{2}\right\}$, i.e. $A B$ is idempotent by Proposition 2.1 and in particular, $A B \in E_{1}$.
We have shown that E_{1} is a semigroup and it remains to show that E_{1} is maximal. But this fact becomes clear by Lemma 2.2 and the fact $D_{2} \subseteq E_{1}$.

Now we put

$$
E_{2}:=E \backslash D_{2}
$$

It is easy to check that $R_{A}, R_{A} \cup\left\{c_{1}, c_{2}\right\} \in E_{2}$, for any $A \subseteq T_{1} \cup T_{2}$.
Lemma 2.4. E_{2} is a maximal idempotent subsemigroup of $T_{P}(X, Y)$.
Proof. Let $A, B \in E_{2}$. If $A \subseteq\left\{c_{1}, c_{2}\right\}$ or $B \subseteq\left\{c_{1}, c_{2}\right\}$, then $A B \subseteq\left\{c_{1}, c_{2}\right\}$, and $A B \in E_{2}$. Suppose now that $A, B \nsubseteq\left\{c_{1}, c_{2}\right\}$. Then $\left\{c_{1}, c_{2}\right\} \subseteq A$ or $A \cap\left\{c_{1}, c_{2}\right\}=\emptyset$ and the same for B.
Suppose that $A_{1} \neq \emptyset$ and $B_{1} \neq \emptyset$. Then $A B=A \cup A^{*} \cup C$ (if $B_{2} \neq \emptyset$) or $A B=A \cup C$ (if $B_{2}=\emptyset$), where $C=\emptyset$ or $C=\left\{c_{1}, c_{2}\right\}$. Since $A \in E_{2}$, it is easy to verify that $A B$ is idempotent by Proposition 2.1. Clearly, $A \cup A^{*} \cup C \notin D_{2}$ and $A \cup C \notin D_{2}$. Thus, $A B \in E_{2}$.
Suppose now that $B_{1}=\emptyset$. Then $B \subseteq\left\{c_{1}, c_{2}\right\}$ by Proposition 2.1 and thus $A B=$ $B \in E_{2}$.
Suppose that $A_{1}=\emptyset$ but $B_{1} \neq \emptyset$. Then $A \subseteq\left\{c_{1}, c_{2}\right\}$ by Proposition 2.1 and thus $A B=A \in E_{2}$. or $A B=\left\{c_{1}, c_{2}\right\}$. Notice that $\left\{c_{1}, c_{2}\right\} \in E_{2}$. Therefore, we have $A B \in E_{2}$.
So, we have shown that E_{2} is a semigroup. It remains to show that E_{2} is maximal, which is clear by Lemma 2.2 and the fact that $D_{1} \subseteq E_{2}$.

Theorem 2.5. Let $S \subseteq E$. Then S is a maximal idempotent subsemigroup of $T_{P}(X, Y)$ if and only if $S=E_{1}$ or $S=E_{2}$.

Proof. One direction is clear by Lemma 2.3 and Lemma 2.4 Suppose now that S is a maximal idempotent subsemigroup. Since $S \subset E$, we obtain $S \subseteq E \backslash D_{1}=E_{1}$ or $S \subseteq E \backslash D_{2}=E_{2}$ by Lemma [2.2. Hence, $S=E_{1}$ or $S=E_{2}$ because of the maximality of S.

Finally, we determine the greatest semiband in $T_{P}(X, Y)$. Let

$$
\begin{aligned}
D_{3} & :=\left\{R_{A} \cup\left\{c_{i}\right\}: \emptyset \neq A \subseteq T_{1}, i=1,2\right\} \text { and } \\
E_{3} & :=E \cup D_{3}
\end{aligned}
$$

Proposition 2.6. E_{3} is the greatest semiband in $T_{P}(X, Y)$.
Proof. We have to show that E_{3} is the least subsemigroup of $T_{P}(X, Y)$ containing E.

Let $A \subseteq T_{1}$ and let $i \in\{1,2\}$. Then $R_{A}\left(T_{1} \cup\left\{c_{i}\right\}\right)=R_{A} \cup\left\{c_{i}\right\}$, where both elements R_{A} and $\left(T_{1} \cup\left\{c_{i}\right\}\right)$ are idempotent. This shows that D_{3} belongs to the least subsemigroup of $T_{P}(X, Y)$ containing E.
For the converse direction, we have to show that the product of elements in E_{3} belongs to E_{3}. First, we check $E E \subseteq E_{3}$. By Lemma 2.3, Lemma 2.4 and the fact that $D_{1} \cap D_{2}=\emptyset$, it is enough to check the case that one factor belongs to D_{1} and the other factor belongs to D_{2}. For this let $\emptyset \neq A \subseteq T_{1}, k \in\{1,2\}$, and $B \subseteq T_{k+2}$. Further, let $R_{G} \in D_{1}$, where $\emptyset \neq G \subseteq T_{1}$. Then we get that
$\left(A \cup B \cup\left\{c_{k}\right\}\right) R_{G}=R_{A \cup B \cup\left\{c_{k}\right\}} \in E$ and $R_{G}\left(A \cup B \cup\left\{c_{k}\right\}\right)=R_{G} \cup\left\{c_{k}\right\} \in D_{3}$. It is easy to verify that the product of an idempotent with an element from D_{3} is equal to a product $e_{1} e_{2} e_{3}$ of three idempotents e_{1}, e_{2}, e_{3} and thus, it is equal to a product of two idempotents (if $e_{1} e_{2}$ or $e_{2} e_{3}$ is an idempotent) or of two elements in D_{3} (if both $e_{1} e_{2}$ and $e_{2} e_{3}$ are in D_{3}). So, it remains to show that $D_{3} D_{3} \subseteq E$. Indeed, let $\emptyset \neq A, A^{\prime} \subseteq T_{1}$ and $i, i^{\prime} \in\{1,2\}$. Then $\left(R_{A} \cup\left\{c_{i}\right\}\right)\left(R_{A^{\prime}} \cup\left\{c_{i^{\prime}}\right\}\right)=$ $R_{A} \cup\left\{c_{1}, c_{2}\right\} \in E$.

3 The Regular Elements

This section is devoted to the regular subsemigroups of $T_{p}(X, Y)$. Clearly, each idempotent is regular. Hence, we have still to find the regular elements in $T_{p}(X, Y)$ which are not idempotent. For this let

$$
\widehat{T}_{i+2}:=\left\{A \subseteq T_{i+2}: c_{i} \in A\right\} \cup\{\emptyset\} \text { for } i=1,2
$$

Lemma 3.1. If $\emptyset \neq A \subseteq T_{2}, B \in \widehat{T}_{3}$, and $C \in \widehat{T}_{4}$ then $A \cup B \cup C$ is regular in $T_{p}(X, Y)$.
Proof. We can calculate $(A \cup B \cup C) T_{2}=A^{*} \cup B^{*} \cup C^{*}$ and $\left(A^{*} \cup B^{*} \cup C^{*}\right) A=$ $A \cup B \cup C$. Because of $\left(A^{*} \cup B^{*} \cup C^{*}\right) B=\left\{c_{1}\right\} \subseteq B$ if $B \neq \emptyset$ and $\left(A^{*} \cup B^{*} \cup C^{*}\right) C=$ $\left\{c_{2}\right\} \subseteq C$ if $C \neq \emptyset$, we obtain $(A \cup B \cup C) T_{2}(A \cup B \cup C)=A \cup B \cup C$. Therefore, $A \cup B \cup C$ is regular in $T_{p}(X, Y)$.

We observe that, if $\emptyset \neq A \subseteq T_{2}, B \in \widehat{T}_{3}$, and $C \in \widehat{T}_{4}$, then $A \cup B \cup C$ is not idempotent by Proposition 2.1. Hence the set

$$
D_{4}:=\left\{A \cup B \cup C: \emptyset \neq A \subseteq T_{2}, B \in \widehat{T}_{3}, C \in \widehat{T}_{4}\right\}
$$

is a set of non-idempotent regular elements in $T_{p}(X, Y)$. Moreover, we have:
Lemma 3.2. If $A \in T_{p}(X, Y)$ is regular then $A \in E \cup D_{4}$.
Proof. Let $A \in T_{p}(X, Y)$ be regular. Then there is $B \in T_{p}(X, Y)$ such that $A B A=A$.
If $A_{3} \neq \emptyset$ then $c_{1} \in A B A=A$. This shows that $A_{3} \in \widehat{T}_{3}$. By the same reason, we obtain that $A_{4} \in \widehat{T}_{4}$ if $A_{4} \neq \emptyset$.
Suppose now that $A_{2}=\emptyset$ and $A_{1}=\emptyset$. Then $A \subseteq T_{3} \cup T_{4}$ and $A=A B A \subseteq\left\{c_{1}, c_{2}\right\}$, i.e. $A \in E$ by Proposition 2.1 Suppose that $A_{2}=\emptyset$ and $A_{1} \neq \emptyset$. Then by the previous observations concerning A_{3} and A_{4}, we obtain $A \in E$ by Proposition 2.1. Admit now that $A_{2} \neq \emptyset$. Clearly, then $B_{1} \cup B_{2} \neq \emptyset$. If $A_{1} \neq \emptyset$ then $(B A)_{2} \neq \emptyset$. Thus, $A^{*} \subseteq A B A=A$, i.e. $A=A^{*}$ (it follows from $A=\left(A^{*}\right)^{*} \subseteq A^{*}$) and we obtain $A \in E$ by Proposition 2.1. If $A_{1}=\emptyset$ then $A=A_{2} \cup A_{3} \cup A_{4} \in D_{4}$.

Proposition 3.3. Any $A \in T_{p}(X, Y)$ is regular if and only if $A \in E \cup D_{4}$.
Proof. Lemma 3.1 and Lemma 3.2 give the assertion.

It is easy to verify that $D_{3} \cap D_{4}=\emptyset$. Hence, the regular elements do not form a semigroup. We are asking for the maximal regular subsemigroups of $T_{p}(X, Y)$. A semigroup S is a maximal regular subsemigroup of $T_{P}(X, Y)$ if S is regular and each subsemigroup of $T_{P}(X, Y)$, which covers S properly, is not regular.

Lemma 3.4. $E_{1} \cup D_{4}$ is a semigroup.
Proof. We have to show that the product of two elements in $E_{1} \cup D_{4}$ belongs to $E_{1} \cup D_{4}$. By Lemma 2.3, it is enough to verify the case that at least one of the factors belongs to D_{4}. For this let $G \in E_{1}, \emptyset \neq A, A^{\prime} \subseteq T_{2}, B, B^{\prime} \in \widehat{T}_{3}$, and $C, C^{\prime} \in \widehat{T}_{4}$. Then $(A \cup B \cup C)\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right)=A^{*} \cup B^{*} \cup C^{*} \cup D$ with $D \subseteq\left\{c_{1}, c_{2}\right\}$, where $A^{*} \cup B^{*} \cup C^{*} \cup D \in E$ by Proposition 2.1. Because $\left(A^{*} \cup B^{*} \cup C^{*} \cup D\right) \cap T_{2}=\emptyset$, we have $A^{*} \cup B^{*} \cup C^{*} \cup D \in E_{1}$.
Suppose that $G_{2} \neq \emptyset$. Then $G=G^{*}$ and $\left\{c_{1}, c_{2}\right\} \subseteq G$. This implies $(A \cup B \cup C) G=$ $R_{A \cup B \cup C} \cup\left\{c_{1}, c_{2}\right\} \in E_{1}$ and $G(A \cup B \cup C)=G^{*}=G \in E_{1}$.
Suppose that $G_{2}=\emptyset$. If $G_{1}=\emptyset$, then $G \subseteq\left\{c_{1}, c_{2}\right\}$ and thus $(A \cup B \cup C) G, G(A \cup$ $B \cup C) \subseteq\left\{c_{1}, c_{2}\right\}$, i.e. $(A \cup B \cup C) G, G(A \cup B \cup C) \in E_{1}$. Admit now that $G_{1} \neq \emptyset$. Then $(A \cup B \cup C) G=A \cup B \cup C \cup D^{\prime}$ with $D^{\prime}:=(A \cup B \cup C)\left(G_{3} \cup G_{4}\right) \subseteq\left\{c_{1}, c_{2}\right\}$. Let $B^{\prime}:=B \in \widehat{T}_{3}$ if $c_{1} \notin D^{\prime}$ and let $B^{\prime}:=B \cup\left\{c_{1}\right\} \in \widehat{T}_{3}$ if $c_{1} \in D^{\prime}$. In the same matter, we define $C^{\prime} \in \widehat{T}_{4}$. Then $A \cup B \cup C \cup D^{\prime}=A \cup B^{\prime} \cup C^{\prime} \in D_{4}$. Finally, we have $G(A \cup B \cup C)=G^{*} \cup\left((B \cup C) \cap\left\{c_{1}, c_{2}\right\}\right)$. Notice, we have $G^{*}=G_{1}^{*} \cup G_{3}^{*} \cup G_{4}^{*}$, where $\emptyset \neq G_{1}^{*} \subseteq T_{2}$ and $G_{3}^{*} \in \widehat{T}_{4}$ as well as $G_{4}^{*} \in \widehat{T}_{3}$. Thus, $G(A \cup B \cup C)=G^{*} \cup\left((B \cup C) \cap\left\{c_{1}, c_{2}\right\}\right) \in D_{4}$ by the same argumentation as above.

Proposition 3.5. $E_{1} \cup D_{4}$ is a maximal regular subsemigroup of $T_{p}(X, Y)$.
Proof. $E_{1} \cup D_{4}$ is a semigroup by Lemma 3.4. This semigroup is regular since for any $A \in D_{4}$, we have $A T_{2} A=A$ (see the proof of Lemma 3.1), where $T_{2} \in D_{4}$. It remains to show that $E_{1} \cup D_{4}$ is maximal. It is easy to see that D_{1} is the set of all regular elements in $T_{p}(X, Y)$ which not belong to $E_{1} \cup D_{4}$. By Lemma 2.2 and Proposition 2.6 we have $D_{1} D_{2} \subseteq D_{3}$, where $D_{2} \subseteq E_{1}$ and $D_{3} \cap\left(E \cup D_{4}\right)=$ \emptyset. This shows that $E_{1} \cup D_{4}$ is a maximal regular subsemigroup of $T_{p}(X, Y)$ by Lemma 3.2.

Let us denote by D_{5} the set of all $A \in D_{4}$ with $A_{3} \neq \emptyset$ if and only if $A_{4} \neq \emptyset$.
Lemma 3.6. $E_{2} \cup D_{5}$ is a semigroup.
Proof. We have to show that the product of two elements in $E_{2} \cup D_{5}$ belongs to $E_{2} \cup D_{5}$ again. It is enough to verify the case that at least one of the both factors belongs to D_{5}. For this let $G \in E_{2}, \emptyset \neq A, A^{\prime} \subseteq T_{2}, B, B^{\prime} \in \widehat{T}_{3}$, and $C, C^{\prime} \in \widehat{T}_{4}$ such that $B \neq \emptyset$ if and only if $C \neq \emptyset$ and $B^{\prime} \neq \emptyset$ if and only if $C^{\prime} \neq \emptyset$. Then $(A \cup B \cup C)\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right)=A^{*} \cup B^{*} \cup C^{*}$ or $(A \cup B \cup C)\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right)=$ $A^{*} \cup B^{*} \cup C^{*} \cup\left\{c_{1}, c_{2}\right\}$, where $A^{*} \subseteq T_{1}, C^{*}, C^{*} \cup\left\{c_{1}\right\} \in \widehat{T}_{3}$, and $B^{*}, B^{*} \cup\left\{c_{2}\right\} \in \widehat{T}_{4}$ such that $B^{*} \neq \emptyset$ if and only if $C^{*} \neq \emptyset$. Then, $(A \cup B \cup C)\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right)$ is
idempotent by Proposition 2.1 and moreover, $(A \cup B \cup C)\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right) \in E_{2}$ since $B^{*} \neq \emptyset$ if and only if $C^{*} \neq \emptyset$.
If $G_{1}=\emptyset$, then $G \subseteq\left\{c_{1}, c_{2}\right\}$. It follows that $G(A \cup B \cup C),(A \cup B \cup C) G \subseteq\left\{c_{1}, c_{2}\right\}$. Therefore, $G(A \cup B \cup C),(A \cup B \cup C) G \in E_{2}$. If $G_{1} \neq \emptyset$, we notice that $G_{3} \neq \emptyset$ if and only if $G_{4} \neq \emptyset$. It follows that

$$
G(A \cup B \cup C)= \begin{cases}G^{*} & \text { if } B \cup C=\emptyset \\ G^{*} \cup\left\{c_{1}, c_{2}\right\} & \text { otherwise } .\end{cases}
$$

We observe that $G^{*}=G$ (if $G_{2} \neq \emptyset$) and $G^{*} \subseteq T_{2} \cup T_{3} \cup T_{4}$ such that $\left(G^{*}\right)_{2} \neq \emptyset$ and $\left(G^{*}\right)_{3} \neq \emptyset$ if and only if $\left(G^{*}\right)_{4} \neq \emptyset$ (if $G_{2}=\emptyset$). Therefore, $G(A \cup B \cup C) \in E_{2}$ if $G_{2} \neq \emptyset$ and $G(A \cup B \cup C) \in D_{5}$ if $G_{2}=\emptyset$. On the other hand, we have

$$
(A \cup B \cup C) G=\left\{\begin{array}{llll}
A \cup B \cup C \cup\left\{c_{1}, c_{2}\right\} & \in D_{5} & \text { if } & G_{2}=\emptyset \text { and } G_{3} \neq \emptyset \\
A \cup B \cup C & \in D_{5} & \text { if } & G_{2}=\emptyset \text { and } G_{3}=\emptyset \\
R_{A \cup B \cup C} & \in E_{2} & \text { if } & G_{2} \neq \emptyset \text { and } G_{3}=\emptyset \\
R_{A \cup B \cup C} \cup\left\{c_{1}, c_{2}\right\} & \in E_{2} & \text { if } & G_{2} \neq \emptyset \text { and } G_{3} \neq \emptyset .
\end{array}\right.
$$

This shows that $(A \cup B \cup C) G \in E_{2} \cup D_{5}$.
Proposition 3.7. $E_{2} \cup D_{5}$ is a maximal regular subsemigroup of $T_{p}(X, Y)$.
Proof. By Lemma [3.6] we know that $E_{2} \cup D_{5}$ is a semigroup. Since $T_{2} \in D_{5}$ and $A T_{2} A=A$ for all $A \in D_{5} \subseteq D_{4}$ (see the proof of Lemma 3.1), the semigroup $E_{2} \cup D_{5}$ is regular.
It remains to show that $E_{2} \cup D_{5}$ is maximal. We show that any semigroup which covers $E_{2} \cup D_{5}$ properly, contains non-regular elements. For this let A be a regular element, which not belongs to $E_{2} \cup D_{5}$. It is easy to verify that $A \in D_{2} \cup\left(D_{4} \backslash D_{5}\right)$. Suppose that $A \in D_{2}$. Then $B A \in D_{3}$ for all $B \in D_{1}$ by Lemma [2.2] where $D_{1} \subseteq E_{2}$ and $D_{3} \cap D_{4}=\emptyset$, i.e. $B A$ is not regular for all $B \in D_{1} \subseteq E_{2}$.
Suppose now that $A \in D_{4} \backslash D_{5}$. Then there are $\emptyset \neq A^{\prime} \subseteq T_{2}$ and $B \in \widehat{T}_{2+k}$ for some $k \in\{1,2\}$ such that $A=A^{\prime} \cup B$. We have $T_{2} \in D_{5}$, we calculate $A T_{2}=\left(A^{\prime}\right)^{*} \cup B^{*}$, where $B^{*} \in\left\{\begin{array}{lll}\widehat{T}_{3} & \text { if } & k=2 \\ \widehat{T}_{4} & \text { if } & k=1\end{array}\right.$ and $\emptyset \neq\left(A^{\prime}\right)^{*} \subseteq T_{1}$, i.e. $A T_{2} \in D_{2}$.

Theorem 3.8. Let $S \leq T_{p}(X, Y)$. Then S is a maximal regular subsemigroup of $T_{p}(X, Y)$ if and only if $S=E_{1} \cup D_{4}$ or $S=E_{2} \cup D_{5}$.

Proof. One direction is clear by Proposition [3.5 and Proposition 3.7 Suppose now that S is a maximal regular subsemigroup of $T_{p}(X, Y)$. By Lemma 3.2, we have $S \subseteq E \cup D_{4}$. Assume that $S \nsubseteq E_{1} \cup D_{4}$ and $S \nsubseteq E_{2} \cup D_{5}$. Then there are $A \in S \backslash\left(E_{1} \cup D_{4}\right)$ and $B \in S \backslash\left(E_{2} \cup D_{5}\right)$. Since $A, B \in E \cup D_{4}$, we have $A \in D_{1}$ and $B \in D_{2} \cup\left(D_{4} \backslash D_{5}\right)$. If $B \in D_{2}$ then $A B \in D_{3}$ by Lemma 2.2
Admit now that $B \in D_{4} \backslash D_{5}$. Then there are $\emptyset \neq C^{\prime} \subseteq T_{2}$ and $C \in \widehat{T}_{2+i}$ for some $i \in\{1,2\}$ such that $B=C \cup C^{\prime}$. Since $A^{*}=A=R_{A_{1}}$ we can calculate $A B=A \cup\left\{c_{i}\right\}$, i.e. $A B \in D_{3}$, too. But $D_{3} \cap\left(E \cup D_{4}\right)=\emptyset$. This contradicts $A B \in S \subseteq E \cup D_{4}$. Consequently, $S \subseteq E_{1} \cup D_{4}$ or $S \subseteq E_{2} \cup D_{5}$. Finally, the maximality of S provides $S=E_{1} \cup D_{4}$ or $S=E_{2} \cup D_{5}$.

Finally, we determine the least semigroup containing all regular elements in $T_{p}(X, Y)$, i.e. the least semigroup containing $E \cup D_{4}$.

Proposition 3.9. The least semigroup containing all regular elements in $T_{p}(X, Y)$ is $E \cup D_{3} \cup D_{4}$.

Proof. Notice, $E \cup D_{3}$ is the greatest semiband in $T_{p}(X, Y)$ by Proposition 2.6. Therefore, it is clear that the least semigroup containing all regular elements of $T_{p}(X, Y)$ covers $E \cup D_{3} \cup D_{4}$. So, it remains to show that $E \cup D_{3} \cup D_{4}$ is a semigroup. Notice that $E_{1} \cup D_{4}$ is a regular semigroup by Lemma 3.4. Thus, it is enough to check that $D_{1} D_{4}$ and $D_{4} D_{1}$ as well as $D_{3} D_{4}$ and $D_{4} D_{3}$ are subsets of $E \cup D_{3} \cup D_{4}$.
Let $R_{A^{\prime}} \in D_{1}$ with $\emptyset \neq A^{\prime} \subseteq T_{1}$ and let $A \cup B \cup C \in D_{4}$ with $\emptyset \neq A \subseteq T_{2}, B \in \widehat{T}_{3}$, and $C \in \widehat{T}_{4}$. Then $R_{A^{\prime}}(A \cup B \cup C)=\left\{\begin{array}{lll}R_{A^{\prime}} \cup\left\{c_{1}\right\} & \in D_{3} & \text { if } B \neq \emptyset \text { and } C=\emptyset \\ R_{A^{\prime}} \cup\left\{c_{2}\right\} & \in D_{3} & \text { if } B=\emptyset \text { and } C \neq \emptyset \\ R_{A^{\prime}} \cup\left\{c_{1}, c_{2}\right\} & \in E & \text { if } B \neq \emptyset \text { and } C \neq \emptyset \\ R_{A^{\prime}} & \in E & \text { if } B=\emptyset \text { and } C=\emptyset .\end{array}\right.$ This shows that $D_{1} D_{4} \in E \cup D_{3} \subseteq E \cup D_{3} \cup D_{4}$. On the other hand, we have $(A \cup B \cup C) R_{A^{\prime}}=R_{A \cup B \cup C}$. By Proposition [2.1, we can check that $R_{A \cup B \cup C}$ is idempotent. This provides $D_{4} D_{1} \subseteq E \subseteq E \cup D_{3} \cup D_{4}$. Let additional $i \in\{1,2\}$. Then $\left\{c_{i}\right\}(A \cup B \cup C)=D$ for some $\emptyset \neq D \subseteq\left\{c_{1}, c_{2}\right\}$ and $(A \cup B \cup C)\left\{c_{i}\right\}=$ $\left\{c_{i}\right\}$. Hence, $\left(R_{A^{\prime}} \cup\left\{c_{i}\right\}\right)(A \cup B \cup C)=R_{A^{\prime}}(A \cup B \cup C) \cup D$ and $(A \cup B \cup$ $C)\left(R_{A^{\prime}} \cup\left\{c_{i}\right\}\right)=(A \cup B \cup C) R_{A^{\prime}} \cup\left\{c_{i}\right\}$. By the previous observations, we obtain $\left(R_{A^{\prime}} \cup\left\{c_{i}\right\}\right)(A \cup B \cup C)=R_{A^{\prime}} \cup D^{\prime} \in E \cup D_{3}$, where $D \subseteq D^{\prime} \subseteq\left\{c_{1}, c_{2}\right\}$, and $(A \cup B \cup C)\left(R_{A^{\prime}} \cup\left\{c_{i}\right\}\right)=R_{A \cup B \cup C} \cup\left\{c_{i}\right\} \in E \cup D_{3}$. So, we have shown that $D_{3} D_{4}, D_{4} D_{3} \subseteq E \cup D_{3}$.

Acknowledgements : We would like to thank the referees for their comments and suggestions on the manuscript. We also would like to thank the Faculty of Science and Division of the Development Fund of Mahasarakham University, Thailand for the financial support.

References

[1] J.M. Howie, Fundamentals in Semigroup Theory, Oxford University Press, London, 2003.
[2] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation SemigroupsAn Introduction, Series: Algebra and Applications, Springer-Verlag, 2008.
[3] J.S.V. Symons, Some Results Concerning a Transformation Semigroups, Australian Mathematical Society, Series A (19) 4 (1975) 413-425.
[4] V.H. Fernandes, P. Honyam, T.M. Quinteiro, B. Singha, On Semigroups of Orientation-preserving Transformations with Restriced Range, Communications in Algebra 44 (1) (2016) 253-264.
[5] V.H. Fernandes, J. Sanwong, On the Ranks of Semigroups of Transformations on a Finite Set with Restricted Range, Algebra Colloq 21 (3) (2014) 497-510.
[6] S. Mendes-Goncalves, R.P. Sullivan, The Ideal Structure of Transformation Semigroups with Restricted Range, Bull. Aust. Math. Soc. 83 (2001) 289-300.
[7] S. Nenthein, P. Youngkhong, Y. Kemprasit, The Regular Part of Some Transformation Semigroups, Pure Math. Appl. 16 (3) (2005) 307-314.
[8] J. Sanwong, W. Sommanee, Regularrity and Green's Relations of Transformation Semigroups with Restricted Range, Int. Journal of Mathematics and Mathematical Sciences (2008) doi:10.1155/2008/794013.
[9] R.P. Sullivan, Semigroups of Linear Transformations with Restricted Range, Bull. Austral. Math. Soc. 77 (2008) 441-453.
(Received 4 August 2016)
(Accepted 20 December 2016)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.

