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1 Preliminaries, Background and Notation

By e and e(™ (n =0,1,2,...), we denote the sequences such that e, = 1 for
k=0,1,..., and eSLn) =1 and eén) =0 for k # n.

An FK space is a complete linear metric sequence space with the property that
convergence implies that coordinatewise convergence; a BK space is normed FK
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space. A BK space X D ¢ is said to have AK if every sequence x = (z3) € X has
a unique representation r = ZZOZO zpe™.

Let w be the set of all complex sequences, ¢ be the set of all finite sequences
and X and Y be subsets of w. We write ., ¢ and cg for the sets of all bounded,
convergent and null sequences. The sequence spaces £, ¢ and ¢y are BK-spaces
with usual sup-norm given by ||z||,., = supy |zx|, where the supremum is taken
over all k € N. Also, we write

ﬁl{x(xk)Ew:i|xk|<oo}

k=0

and the space ¢; is a BK space with the usual ¢;—norm defined by |z|, =
Do x| M-

By (X,Y) we denote the set of all matrices that map X into Y. Let X be a
normed space. Then, we write Sx and Bx for the unit sphere and the closed unit
ball in X, that is, Sx = {x € X : ||z|| =1} and Bx = {x € X : |z|| < 1}. If
X and Y are Banach spaces, then B(X,Y’) denotes the set of all bounded linear
operators L : X — Y. If we denote by A = (ank)3_, an infinite matrix with
complex entries and by A,, its nth row, we write 7

An(@) =) ankar and  A(z) = (An(2))7o; (1.1)
k=0

then A € (X,Y) if and ouly if A, (z) converges for all x € X and all n and
A(x) € Y. Furthermore,

XP = {a Ew: Zakzk converges for all x € X}
k

denotes the 5- dual of X. The set
Xa={recw: Alx) € X} (1.2)

is called the matriz domain of A in X.
If X D ¢ is a BK space and a € w we write

oo
lallx = Sup{ Zakxk

k=0
Throughout, let T' = (tnk)f;’kzo be a triangle, that is t,,;, = 0 for k > n and t,,,, # 0
(n=0,1,2,...), and S be its inverse and F be a finite subset of N.

The theory of FK spaces is the most important tool in the characterization
of matrix transformations between certain sequence spaces. The most important
result is that matrix transformations between FK spaces are continuous. It is quite
natural to find conditions for a matrix map between FK spaces to define a compact

) = 1}. (1.3)
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operator. This can be achieved by applying the Hausdorff measure of noncom-
pactness. The Hausdorff measure of noncompactness was defined by Goldenstein,
Gohberg and Markus in 1957, later studied by Goldenstein and Markus in 1968
2.

Let X and Y be Banach spaces. A linear operator L : X — Y is called
compact if its domain is all of X and for every bounded sequence (z,,)2, in X,
the sequence (L(zy))52, has a convergent subsequence in Y. We denote the class
of such operators by K(X,Y).

Here, we will recall some basic definitions and results. More results about
measure of noncompactness can be found in [2] [3].

By Mx, we denote the collection of all bounded subsets of a metric space
(X,d). Let @ be a bounded subset of X and K(z,r) = {y € X : d(z,y) < r}.
Then the Hausdorff measure of noncompactness of @), denoted by x(Q), is defined
by

X(Q)inf{5>0:QC UK(%,H), veX, rn<e(i=1,2,..), nGNo}.

i=1
If Q, Q1 and Q2 are bounded subsets of the metric space (X, d), then we have

x(Q) = 0 if and only if @ is a totaly bounded set,

Q1 C Q2 implies x(Q1) < x(Q2),

X(Q1 U Q2) = max {x(Q1), x(Q2)}

and

X(Q1NQ2) < min {x(Q1), x(Q2)}-

If Q,Q; and Q are bounded subsets of the normed space X, then we have
X(Q1+ Q2) < x(@Q1) + x(Q2),
X(Q@+2)=x(Q) (ze€X)

and
xX(AQ) = |AIx(Q) for all X € C.
For our investigation we also need the following results [2] [4] [5].

Lemma 1.1. Let X denote any of the spaces co, ¢ or {ss. Then, we have XP =,
and |lall% = llalle, for all a € 41.
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Lemma 1.2. Let X D ¢ and Y be BK spaces. Then, we have (X,Y) C B(X,Y),
that is, every matriz A € (X,Y) defines an operator Lo € B(X,Y) by La(z) = Ax
forallxze X.

Lemma 1.3. Let X D ¢ be a BK space and Y be any of the spaces cy,c or Lo.
If A€ (X,Y), then we have

[Lall = lAll(x,e00) = sup [[An]l% < oo

Lemma 1.4. Let T be a triangle matriz. Then, we have
(i) For arbitrary subsets X andY of w, A € (X,Yr) if and only if B=TA €
(X,Y).

(11) Further, if X andY are BK spaces and A € (X,Yr), then |Lall = || Lg]-

Lemma 1.5. Let Q € Mx and P. : X — X (r € N) be the operator defined by
P.(xz) = (xo, 21, ...,2r,0,0,...) for all x = (x) € X where X is €, for 1 < p < oo
or cg. Then, we have

mmznm(ﬁya—amm&)

T—00

where I is the identity operator on X.

Further, we know by [2| Theorem 1.10] that every z = (z,) € ¢ has a unique
representation z = Ze + ZZOZO(Z'!‘L — Z)e(”), where Z = lim,, , 2,. Then, we define
the projectors P, : ¢ — ¢ (r € N) by

P.(z)=ze+ Z(Zn —2)el™: (reN) (1.4)

for all z = (z,) € ¢ with Z = lim;,_,0 2. In this situation, the following result
gives an estimate for the Hausdorff measure of noncompactness in the BK space
c.

Lemma 1.6. Let Q € M. and P, : ¢ — ¢ (r € N) be the projector onto the linear
span of {e,e® M .. e}, Then, we have

5 m (s (7= P)@le ) < 3(@ < i (w7~ Rl ).

T—00

where I is the identity operator on c.

Moreover, we have the following result concerning with the Hausdorff measure
of noncompactness in the matrix domain of triangles in normed sequence spaces.

Lemma 1.7. Let X be a normed sequence space, T a triangle and xT and x denote
the Hausdorff measures of noncompactness on Mx, and Mx, the collections of
all bounded sets in Xp and X, respectively. Then, xr(Q) = x(T(Q)) for all
Q S MXT .
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X and Y be Banach spaces. Then, the Hausdorff measure of noncompactness
of L, denoted by ||L||, is defined by

1Ll = x(L(5x)) (1.5)

and we have
L is compact if and only if ||L||, = 0. (1.6)

2 Sequence Spaces Derived by The Domain of
The Matrix B(r, s,t)

Let r,s and ¢ be non-zero real numbers, and define the generalized difference
matrix B(r,s,t) = {bnk(r,s,t)} by

r, (k
, (k=

bk (1, s,t) = : Ek’
0 <n—1lork>n)

for all n,k € N. Recently, the difference sequence spaces co(B), loo(B) and £,(B)
have been introduced by Snmez [6] as follows:

co(B) = {x = (z) Ew: lim |rzg + swp_1 + tTp—2| = 0}
k—o0

l(B) = {ac = (x) € w:sup|re, + sTp—1 + trp_2| < oo}
keN

and

p(B) = {:c = (xp) Ew: Z |rey + sxp—1 + tep—2|P < oo}.
k

With the notation of (I.Z), one can redefine the spaces co(B), o (B) and £,(B) as
CO(B) = {CO}B(T,s,t)a EOO(B) = {EOO}B(T,S,t)7 Ep(B) = {EP}B(T,s,t)-
It is obvious that ¢g(B) and £, (B) are BK spaces with the norm given by

Izl = 1B(r, s, t)()]len = Sup |Bn(r, s,t)(x)|- (2.1)

Throughout for any sequence = = (xj) € w, we define the associated sequence
y = (yk), which will frequently be used, as the B(r,s,t)—transform of z, that is
y = B(r,s,t)(z). Then, it can easily be shown that

Yk = 1ok + sTp—1 +tr_2, (k€N) (2.2)
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and hence,
k Jj—1 k—v—1 v
1 —5+ /52 — 4tr —5 — /82 — 4tr
=3 (: > (Fr=) () Jwens e,
j= -

(2.3)

A be any of the spaces ¢y and /... If the sequences x and y are connected by
the relation ([Z2)), then z € A\(B) if and only if y € A; furthermore if z € A\(B),
then, ||z||lp = ||ylle.- In fact, since B(r,s,t) is a triangle, the linear operator
Lp: X — Y, which maps every sequence in X to its associated sequence in Y, is
bijective and norm preserving; where X = A(B) and Y = A.

If we take ¢t = 0, then we get B(r,s,t) = B(r,s). We should record here that
the matrix B(r,s,t) can be reduced to the difference matrices A® and AM in
caser =1,s = —-2t=1and r =1,s = —1,¢t = 0, respectively. So, the results
related to the matrix domain of the matrix B(r, s,t) are more general and more
comprehensive than the consequences of the matrices domain of B(r, s), A® and
AWM and include them, where B(r,s) = {bx(r,5)} and A = (§,,;) are defined
by

r, (k=n) L
-1" (n—1<k<n)
b"k(r’ 5) = s, (k=n-1) Onk = { ( 7
0, (otherwise) 0, (0<k<n-—1lork>n).

In [6l Corollary 3.5 and Corollary 4.2], the S— and y— duals of the spaces
co(B), o (B) and ¢,(B) have been determined and some related matrix transfor-
mations have also been characterized.

The following results will be needed in establishing our results.

Lemma 2.1. Let X denote any of the spaces co(B) and oo (B). Ifa = (ax) € X7,
then a = (ax) € £1 and the equality

o0 (o)
> akwi =Y ary (2.4)
k=0 k=0

holds for every x = (xx) € X, where y = B(r,s,t)(x) is the associated sequence

defined by (22) and
.1 i]ik <s+\/524tr>jkv<sx/524tr

2r

>vaj; (k e N).

Proof. This follows immediately by [7, Theorem 5.6]. O

Lemma 2.2. Let X denote any of the spaces co(B) and €oo(B). Then, we have
lall% = llalle, = lar] < oo
k=0

for all a = (ax) € X?, where @ = (ay) is as in Lemma (21l
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Proof. Let Y be the respective one of the spaces ¢y or £, and take any a = (ay) €
X?. Then, we have by Lemma 2] that @ = (ax) € ¢; and the equality (Z4) holds
for all sequences = (zx) € X and y = (yx) € Y which are connected by the
relation ([22). Further, it follows by (1)) that « € Sx if and only if y € Sy.
Therefore, we derive from (3] and (24) that

E ATk

k=0

Z arYrk

k=0

lall% = sup = llally-

reSx

= sup
yeSy

and since a € ¢1, we obtain from Lemma [[.1] that
lallx = llally = llalle, < oo
which concludes the proof. O

Lemma 2.3. Let X be any of the spaces co(B) and loo(B), Y the respective one
of the spaces co or b, Z a sequence space and A = (ank) an infinite matriz. If
A€ (X,Z), then A € (Y,Z) such that Az = Ay for all sequences x € X and
y € Y which are connected by the relation (Z3), where A = (@ny) is the associated
matriz defined by

oo j—k v
—+v — & sV &
T =

j=k v=0
(2.5)
provided the series on the right converge for all n,k € N.

Proof. Let x € X and y € Y be connected by the relation (Z2]) and suppose that
A € (X,Z). Then A, € X? for all n € N. Thus, it follows by Lemma 1] that
A, € ¢, = YP for all n € N, and the equality A:L' = Ay holds, hence Ay € Z.
Further, we have by (23] that every y € Y is the associated sequence of some
x € X. Hence, we deduce that A € (Y, Z). This completes the proof. O

Lemma 2.4. Let X be any of the spaces co(B) and {(B), A = (ank) an in-
finite matriz and A = (ani) the associated matriz. If A is any of the classes
(X,c0),(X,c) or (X,l), then

IZall = 1 Alxey = s (Z G ) < co.

k=0

Proof. This is immediate by combining Lemmas [[.3] and O
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3 Compact Operators on The Spaces ¢)(B), {~(B)
and /,(B)

In this section, we determine the Hausdorff measures of noncompactness of
certain matrix operators on the spaces co(B), {0 (B) and ¢,(B), and apply our
results to characterize some classes of compact operators on those spaces. For the
most recent works on this topic, we refer to [§] - [19].

We begin with the following lemma [20, Lemma 3.1] which will be used in
proving results.

Lemma 3.1. Let X denote any of the spaces ¢y or L. If A € (X,c), then we
have

ar = lim any exists for every k € N,
n—oo

a=(ay) € b,
[o ]
sup (Z ‘ank — ak|) < 00,
™ Nk=0

lim A, (x) = Zakack for all x = (zx) € X.

n—o00
k=0

Now, let A = (anx) be an infinite matrix and A= (Gnk) the associated matrix
defined by ([Z.5). Then, we have the following result on the Hausdorff measures of
noncompactness.

Theorem 3.2. Let X denote any of the spaces co(B) and loo(B). Then, we have

(i) If A € (X,cp), then
|Lally = limsup <Z |ank|>. (3.1)
n—oo k=0

(i) If A € (X,c), then

I — |- _ . . _
5+ limsup (Z [ ak|) < | Lally < lim sup <Z s — ak|>, (3.2)

where a = limy, o0 Gng for all k € N.

(i11) If A € (X, lo), then

oo
0 < ||Lally < limsup (Z |ank|). (3.3)
n—oo

k=0
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Proof. Let us remark that the expressions in (B1) and [B.3) exists by Lemma 24
Also, by combining Lemmas and B we deduce that the expressions in (3.2))
exists.

We write S = Sx, for short. Then, we obtain by (5] and Lemma [[Z2 that
[Lallx = x(AS). (3.4)

For (i), we have AS € M,,. Thus, it follows by applying Lemma [[.H] that

X(AS) = lim (sup (I — Pr)(A$)||€oc>7 (3.5)
r—=00 \ z€S

where P, : ¢g — ¢o (r € N) is the operator by P,.(z) = (z¢, z1, ..., ,, 0,0, ...) for all

x = (x) € co. This yields that [|(I — P,)(Az)||¢. = sup,s, |[An(z)| for all z € X

and every r € N. Therefore, by using (LT and (I3) and Lemma [Z2] we have for

every r € N that

sup (I = P,)(Az)|le., = sup [|[Anl|% = sup || An]le,-
€S n>r n>r

This and (3.5) imply that

(45) = tim ((sup Aulle ) = msup 4,
=0 \ n>r n—00
Hence, we get (B1)) by (34).

To prove (ii), we write AS € M,.. Thus, we are going to apply Lemma to
get an estimate for the value x(AS) in ([34). For this, let P. : ¢ — ¢ (r € N) be
the projectors defined by ([4). Then, we have every r € N that (I — P.)(z) =
S ii(zn — 2)el™ and hence,

I(I = Pr)(2)llea = sup |2 — 2| (3.6)

n>r

for all z = (z,) € ¢ and every r € N, where Z = lim,,_,0 25, and [ is the identity
operator on c¢. Now, by using (84]), we obtain by applying Lemma [[.6 that

3 Jm (sup 7= Pl ) < 2l < i (suplr - P4 ).
T \ zeS To0 \ zeS
(3.7)
On the other hand, it is given that X = ¢o(B) or X = ¢ (B), and let YV
be the respective one of the spaces ¢y or £o. Also, for every given x € X, let
y € Y be the associated sequence defined by ([2.2). Since A € (X,¢), we have
by Lemma that A € (Y,¢) and Az = Ay. Further, it follows from Lemma
B0 that the limits ax = lim,, oo Gni exists for all k, & = (ax) € ¢ = Y7 and
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limy,—yo0 Ay, (y) = Z;OZO aryk. Consequently, we derive from (B.6]) that

(I = P)(AD)[le. = |11 = Pr)(AY) e
= sup |An(y) = > drun
n>r k=0

NE

= sup (Gnk — Gk)Yk

n>r

k=0

for all » € N. Moreover, since z € S if and only if y € Sy, we obtain by (L3) and
Lemma [[T] that

Z(énk — Q)Y

k=0

sug”([ — P)(AZ) e, = sup( sup
S

n>r yESy

= sup||A, —ally
n>r

= sup || A, —dll,

n>r

for all » € N. Hence, from (37) we get (32)).
Finally, to prove (iii) we define the operators P, : {oc — oo (1 € N) as in the
proof of part (i) for all x = (x1) € foo. Then, we have

AS € P.(AS) + (I — P,)(AS); (r € N).

Thus, it follows by the elementary properties of the function x that

0 < x(AS) < x(P-(AS)) + x((I — P.)(AS))
= x((I - P.)(AS))
< ilelgH(I—PT)(Ax)lleoo

sup || Ap|le,
n>r
for all » € N and hence,
0 < x(AS) < lim <sup|/~1n||41> = limsuprlnHzl.
T—=00 \ n>r n—o00

This and ([34) together imply (3.3) and complete the proof. O

Corollary 3.3. Let X denote any of the spaces co(B) and £oo(B). Then, we have

(i) If A € (X, ), then

[e.e]
L is compact if and only if lim (Z |dnk|) =0.
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(i) If A € (X,c), then
L4 is compact if and only if lim (Z |Gnk — dk|) =0.

where ay = limy, 00 Gng for all k € N.
(i11) If A € (X, lo), then

Ly is compact if nh—>Holo (Z |dnk|) =0. (3.8)
k=0
Proof. The result follows from Theorem by using (L4)). O

It is worth mentioning that the condition in (B.8)) is only a sufficient condition
for the operator L4 to be compact, where A € (X, ) and X is any of the
spaces ¢o(B) and £ (B). More precisely, the following example will show that it

is possible for L 4 to be compact while lim,, <Z;O=O |énk|> #0.

Example 3.4. Let X be any of the spaces c¢o(B) and {o(B), and define the
matrix A = (ank) by ano = 1 and apx, = 0 for k£ > 1 (n € N). Then, we have
Az = zge for all z = (x) € X, hence A € (X,4s). Also, since Ly is of finite
rank, L4 is compact. On the other hand, by using (23], it can easily be seen that
A= A. Thus A, = e©® and so ||A,|¢, =1 for all n € N. This implies that

lim [ A, = 1.
n—oo
Finally, we characterize classes of compact operators given by infinite matrices
from £,(B) to co, ¢, £oo and £1. Also, we give the necessary and sufficient conditions

for A € (¢1(B),£p) to be compact, where 1 < p < oco.
It is easy to see that the space £,(B) is BK-space with the norm

00 1/p
el s = 1B(r, s, D(@)lle, = <Z|Bn<r,s,t><x>|”> . (1<p<x). (39)
n=0

Lemma 3.5. Let 1 < p < oo. Then, we have Eg =/, and

lallz, = llalle,
for all a = (ax) € 4,.

Lemma 3.6. If a = (ax) € {{,(B)}’, then a = (ay) € £, and the equality

o0 o0
Z apTr = Z Yk (3.10)
k=0 k=0

holds for every x = (xy) € {€,(B)}?, where @ = (ax) is as in Lemma (21l
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Lemma 3.7. Let 1 < p < oo and a = (ax) be defined as in Lemmal[Zdl Then, we
have

00 1/q
% ax|? , (I<p<
el ) = (;O'“’“'> Herssd

supy, ||, (p=1)
for all a = (ax) € {£,(B)}".

Proof. Let a = (ay) € {¢,(B)}”. Then we have from Lemma[Z.8that & = (a.) € ¢,
and the equality (I0) holds for all z = (z}) € {¢,(B)}? and y = (yx) € £p, which
are connected by the relation ([2.2). Also, we can write by (3.9) that = € Sy (p) if
and only if y € S;,. Thus, we have from (B.10) that

oo
IIaIIZp<B> = sup Zakwk
;CESgp(B) k=0
= sup deyk. (3.11)
yely k=0
Further, since & € 4,4, we get by Lemma .5 and (B.11]) that
lall; ) = llallz, = llalle, < oo
which concludes the proof. O
Lemma 3.8. Let X D ¢ be a BK-space. If A € (X,£1), then
lim ( sup ZA” ) <||Lally <4- lim < sup ZA” )
e ANesllnen lx rooo \NeF T ix
Also, L4 is compact if and only if
lim | sup A, > =0.
r—00 (Ne}-r neZ]V X
Theorem 3.9. Let 1 <p < oo. If A € ({1(B),£p), then
o 1/p
— 3 5 P
IZal = i (sup Y lal) (312)

n=r

Proof. Let S = Sy, (p). Then, we have by Lemma [[2 that La(S) = AS € £,.
Thus, from (LH) and Lemma [[5 we can write that

Ll = x(45) =t (sup (2 = P, ), (3.13)
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where P, : ¢, = {, (r € N) is the operator defined by P, (x) = (2o, 21, ..., %+, 0,0, ...)
for all z = (xx) € 4.

Now, let « = (z3) € ¢1(B). Since A € (¢1(B),£,), we obtain that A € (¢1,£,)
and Az = Ay, where y = (yi) € /1 is the associated sequence defined by (Z2).
Therefore, we have that

17 = P)(Ax)le, = 1= P)(Ay)le,

Il I
A~
NERINE

?
S
N

S

IN IN
= I[V]8
S
7 N
)]
= M8
o]
VRS 3
] S
Mg &
ol
__ )
N N——
3 -
= ~
= 3
N~
—_
~
k)
~__

for every n € N. This yields that
o 1/p

sup (1= )40, <sup (2 fanel)

z€s k n=r+1
for every n € N. Hence, from (B13) we have that

o 1/p
i g, P
IZally < lim { sup ( Zﬂ || ) } (3.14)

Conversely, let eg) € ¢1(B) such that B(r,s,t)(eg)) = e  (k € N), that
is, e(®) is the associated sequence of e(Bk) for each & € N. Then, we have that
Ae(Bk) = Ae™ = (@,1)2, for every k € N. Now, let E = {egf) : k € N}. Then,
E C S and AE C AS which implies that

X(AE) < x(AS) = || Lal|x- (3.15)
Moreover, we can write from Lemma [[5l and (315) that

X(AE) = Tliggo{sup( i |An(e(§))\p)1/p}

k n=r-+1
00 1/p
. ~ p
= lim { sup g |ank|
700 k
n=r+1

IN

[Lallx-
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Thus, we get (312) from BI4) and GFI5). O

Corollary 3.10. Let 1 < p < co. If A € (¢1(B),¥,), then L4 is compact if and

only if
© 1/p
; i, P —
Thﬁrgo (st}ipnz;mnﬂ > =0.
Proof. This is an immediate consequence of (L8) and Theorem 3.9 O

Theorem 3.11. Let 1 <p < oo and g =p/(p—1). If A€ ({,(B), 1), then

> a\ 1/q 0 a\ 1/
)EEO(NSQE (Z > ik ) )S|LA|X§4'7-1$H§O<;2%(Z >k ) q)

k=0 'neN k=0'neN
(3.16)

)/) —0. (317)

Proof. Let A € (¢,(B),41). Since A, € {£,(B)}? for all n € N, we derive from
Lemma B.7] that

and

D

oo

L4 is compact if and only if lim ( sup (Z
r—

nenN

CANEF N1 D)

Z A, = Z A, (3.18)
neN £,(B) nenN £Lq
Thus, we get (310) and BI1) from Lemma 3.8 and BIT). O
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