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Abstract : In the present paper, we introduce and study a generalization of
Mittag-Leffler type functions. We obtain several results which include integral
representations, recurrence relations, differential formula, fractional derivative and
integral, Mellin Barnes integral representation and images of this function under
the Laplace and Mellin transforms. We also introduce and investigate fractional
calculus integral operator involving this generalized Mittag-Leffler type function.
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1 Introduction and Preliminaries

The Mittag-Leffler function has gained importance and popularity due to its
applications in solutions of fractional-order differential, integral, integro-differential
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and difference equations arising in several problems of applied sciences such as
physics, chemistry, biology and engineering (See for example [I]. This function
was introduced by the Swedish mathematician Mittag-Leffler [2] in terms of the
following power series

z:: om+1 ,x,a € C, Re(a) > 0. (1.1)

The Mittag-Leffler function (IJ) reduces to the exponential function when
a = 1. For 0 < a < 1 it interpolates between the pure exponential e and the
geometric function = =" J2™; (Jz| < 1).

A generalization of (II)) was studied by Wiman [3] in the form

n

Ew@ﬂE;F@%:Ey%mﬁeciﬁ@%Rdm>0~ (1.2)

A further generalization of (2] was studied by Prabhakar [4] as

oo

s s, an 1 (1)
Ew@‘%rm+mﬁ‘<f%[%>

] x,a, 3,7 € C, Re (o) > 0,

(1.3)
where ,1, is the Fox-Wright function defined as [5]

,lp (al,Al)a---a(a’pa p
b (blaBl)a-"a(b% q

Z (a1 + Ain)..T (ap + Apn) ﬁ (1.4)
I (b1 + Bin)..I' (by + Bgn) n!’ '
x,a5,A;,b;,B; € C, Re (aj),Re (Aj) >0,7=1,....,p, Re (Bj) >0,5=1,...,q
and 1+ Re (S0, B; ~ -, 4;) = 0.

Kiryakova [6] defined a multi-index Mittag-Leffler type function by means of
the following power series

o0

E< Z — (1.5)
_] 1 r (NJ + p_j)
where m > 1 is an integer, p1, p2, ..., pm and 1, po, ...., by are arbitrary and real

parameters.
Shukla & Prajapati [7] defined a generalization of Mittag-Leffler type function
([3) in the form

B (x) = i - Oan ﬁ =T { ((6, q)) H (1.6)

where a, 8,7 € C, Re (a),Re(8),Re(y) >0, ¢ € (0,1) UN.
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A further generalization of the above function (6] has been introduced and
studied by Srivastava & Tomovski [§] wherein the parameter ¢ is replaced by K
with Re (K) > 0.

Some extensions of Mittag-Leffler type functions ([ and (6) have been
introduced and studied by Saxena & Nishimoto [9] in the form

E’y,K (Oéjaﬂj)lﬁm ,I':| = E’y,K [(alaﬂl) y ey (amaﬂm 3L Z H (’Y)O:JIj«igJ)(T)l

1 (7, K) N
F(7)1¢m |: (B1,1), (B2, @2) ,weeey (B, am) ] ) (1.7)

where z, 7,05, 8; € C, 270 Re (o) > Re(K) —1,j = 1,....,m, Re(K) > 0 and
by Paneva-Konovska [I0] as 3m-indices M-L type functions in the form:

(i), m (ym)k a*

R Zra1k+61) Tk T B (R

=0

(1.8)

A multivariate analogue of generalized Mittg-leffler type function is defined by
Saxena et al. [I1] in the form

1 m 1)k, k) ko, 2Pl pkm
B 15 o) = B0 (21 2m) = 050 F(infzm(? = k) BTl el
where A, 7;,p;,2; € C,Re(p;) >0,7=1,2,....m
A generalized multiparameter function of Mittag-Leffler type is defined by
Kalla et al. [12] in the form

’f Ak+M
HEM 200000 HE) (2 ( ) 1.9
1,2 e (2) = ZH 1+uz+)\k) A ’ (1.9)

where p; € C, A >0, =1,2,...,m, >0 _ i =M and >0, A = A.
Recently, Garg et al. [13] studied a Mittag-Leffler type function of two vari-
ables in the form
)
Y

_ — (Wl)alm (72)6171 xm y"
=2 2 TGt et ) TG T TG Ty (A0

B Y1, 01572, B1
E (I,y) = I ( 517a2,ﬂ2;52,a3;53a63

m=0n=0

2 A New Mittag-Leffler Type Function

Let us note that special functions mentioned in Section 1, such as the classical

Mittag-Leffler function ([L1]), (L2) and its generalizations as (I3), (LH), (LJ)) can
be presented as particular cases of the Fox-Wright function (L.4]).
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Avoiding increasing number of variables and parameters, in the present paper,
we investigate the following Mittag-Leffler type function with four parameters
a,B,7,0 € C as

oo

v6Ea g (z) = Z;) %x", z € C,Re (o) > Re(d) > 0. (2.1)

Remark 2.1. Particularly for 6 =1 in 21)), 4 sEa,p (z) reduces to another new
generalized Mittag-Leffler type function as

1B (2) = nz::o %. (2.2)

Remark 2.2. On taking 6 — 0 in (1), 4,sEa,p (x) reduces to the Mittag-Leffler
function E, g (x) as

n

v0Bap (0) = 3 oy = Fa (@), (2.3)

n=0

Remark 2.3. On taking 6 — 0, 8 =1 in 1)), 4,sEaq,p (z) reduces to the Mittag-
Leffler function E, (x) as

v0Eai (z) = ;O F(#RH) = B, (z). (2.4)

Theorem 2.4. For Re (o) > Re (0) > 0, the Mittag-Leffler type function o sEq g ()
defined by (1)) is an entire function in the complex plane. The order p and type
o of y.5Fa g(x) are given by

1
i Re (o — 6) (2.5)
and Re(@) \ #
L ( {Re (@)}

Further when Re (o) = Re (8) > 0, the power series in (Z1I) converges absolutely
for |z| < 1.

Proof. Here we follow the classical techniques used by Kriyakova [6], and Paneva-
Konovska [I0] to find the order and type of Mittag-Leffler type functions. The ra-

dius of convergence R of the power series  sEq g () = Y Want” Yoo o Pnx™

n=0 Tantp) —
is given by
R = limsup ‘ . (2.7)
n—00 n+1
Using the asymptotic formula [14]

I'(z+a) b 1 1
— =2 1+ —(a—05 b—1 Ol —= 2.8
T'(z+0b) i [ +22(a J(a+ )+ <22)]’ (2:8)
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where a and b are fixed arbitrary complex numbers and —7 < argz < w, we get

from (2))

D(y+6n) D(an+atB)|  {Re()}®*)  Re(a—s)

¢n P 3
=l ‘ TOokem)  DantB) |~ [Re(o) =@ "

Pnt1

R = limsup

n—oo

Re () >0
Re(0)>0 (2.9)

| oo, when Re(a) >
1 1, when Re(a)=

which proves first part of the theorem.
The order p of an entire function - sE, g (x) = Y oo, dna™ is given by the
formula

nlnn
= limsup ——————. 2.10
PP W16 210
The Stirling formula in the form [14]
T(z+a)~ V212"t 2 7%, |2| = oo, (2.11)
gives
o = | 1 el et in— )=l o,
(2.12)
Hence by definition [2I0), we have
In[1
L e Bl
00 nlnn

1n\F(’y)|+Re[(an+B—%) ln(om)—(’y—i-én—%) ln(én)—(a—é)n]

nlnn

= lim
n—oo

= Re(a—19),
which is the required result (Z.3]).

Further, the type o of the function - sEqs 5 () = > oo ¢na™ of order p is
determined by the relation

oep = limsup [n |¢)n|p/"] . (2.13)
n—oo

Proceeding as above for finding p, we can easily obtain

1 [ {Re(@)}™\"
g = ; (W y (214)

which is as given by (2.0). O
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3 Some Results for . ;E, 3 (z)

Integral Representations
Result 1(a). For z,«, 3,7, € C, Re (a) > Re (0) > 0, Re () > 0, the following
integral representation of ., 5Eq g (x) holds

1 [ee]
E,g(x) = —/ e LR, 5 (xt®) dt. 3.1
5,0 ,B ( ) F (,}/) 0 B ( ) ( )

(b) For z,«,8,7,5 € C, Re(a) > Re(d) > 0, Re(S) > Re(y) > 0, we obtain an
integral representation of ., Eq g (), as follows:

x,; l’v—l _ p\B—-1 _ et L
v.aBas( )F(’Y)F(ﬁ—V)/o t (1—1%) (1 )7 dt. (3.2)

Proof. (a) The gamma function is defined by
o0
I'(2) :/ e '*71dt, Re (2) > 0, (3.3)
0

we obtain the integral representation ([B.I]) by making use of this definition in the
power series given by (2] with Re (y) > 0 and changing the order of summation
and integration, permissible under the conditions stated with the result, evaluating
the integral and expressing the power series thus obtained, in terms of the Mittag-
Leffler function using definition (T2)).

(b) For the integral representation (3.2) of - oEq g (), we write

S O a1 ETGrenl(B-y,
vebas @0 =2 T G TTHTE- 2 Tents

(3.4)

Now using the definition of beta function in (4], changing the order of sum-
mation and integration and evaluating the integral thus obtained, we arrive at the
integral representation (3.2]). O

Recurrence Relations
Result 2. For z,a, 3,7,6 € C, Re(a) > Re (§) > 0, we have

(a)
v,5Ea,8 (z) = BrysFa,pr1 (z) + amv,éE&,BJrl (7), (3.5)

(b) B(B+1)5Ea,p+3(2)tax {2+ a+ 28} 716E(I)C,B+3 (x)+a2$27,5Eg7ﬂ+3 (z)

= ’Y,tsEOt,BJrl (:L') - v,éEa,ﬁJrQ (l‘) ) (36)

where 4 s E, 5 (z) denotes differentiation of , 5Eq s (z) with respect to .
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Proof. (a) The recurrence relation (33 can easily be obtained by considering its
right-hand side, performing differentiation and then writing the two series in one
to form ~ sEq g ().

(b) To prove recurrence relation (3.6]), we begin with  sE4 g2 (x) and write
it as

v6Ba,p+2 () = 5 50 p41 (z) — 5, (3.7)
where
o) (7)6
S = n ", 3.8
nz;) (an+ B+ DT (an+p)" (3:8)

Using simple identity 1 = m + #_1 and the result I' (n 4+ 1) = nI' (n), we
can write

o W@t B) s Wgn lon+ B+ 1) (an+B)
S‘%r(imms)x +;) ; T (an + 5 +3) v

n

—pz an+ﬁ+3 +a Z om,+ﬁ+3x +TZ om,JrﬁJr?))Jc7

(3.9)
where p=3(8+2), ¢=2a(8+1) and r = o
Next, we observe that
d =~ (Vs (n+1)
E n
x[-ﬁ’yé ,,6+3 Z OF(an+ﬂ+3)$
and N ( ) )
&? 2 (7)5 n+3n+ 2
—_ FE — n n
A2 [x v,6 L, 343 (30)] T;) T lantA+3) ",
which gives
- (7)6n n n /
Z T = 2y 5B gy s (2) (3.10)
nzOF(an—i—ﬁ—i—S)
and
Z T (an + B + 3) = 2y6E4 gy (2) + 27 5Bl 545 (7). (3.11)

Using (B10) and BII) in (3X9), we obtain the value of S which being substi-
tuted in (B70), provides the recurrence relation (B.6]). O

Differential Formula
Result 3. For w,z,a,3,7,0 € C, Re(a) > Re (§) > 0 and m € N, we have

d m
<£) [:cﬁflnga,g (wa®)] = 2P 5By gom (wa®). (3.12)
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Proof. Using the definition of , 5E, g (wz®) given by (ZI), in the left hand side
of (BI2), then changing the order of differentiation and summation and writing
the result in terms of - 5Eq g_n, (wz®) we arrive at the required result (3.12). O

Fractional Calculus Operators
Result 4. Let a € R and w, A\, «, 3,7,8 € C, Re () > Re (§) > 0 then for z > a
there hold the relations

R (=)’ sBap o (t-0)) (@) = (@ = @) s Bapia o (@~ 0)],
(3.13)

DY, (= @)™ s sBap o (t = )]) (1) = (2 — @) 71 5 Bagpon [ (2 — )7
(3.14)

Proof. The Riemann-Liouville fractional integral operator of order A € C, Re (\) >
0 is defined as (Miller & Ross [16], Samko et al. [15])

1

RO =5 “@— 0ty d e > a. (3.15)

The Riemann-Liouville fractional derivative of order A € C,n—1 < Re (A) < n,
n € N is defined as (Miller & Ross [16])

Dt)z\Jr (f @) (z) = Dn[;:)\ (z) = —)Dn /x (x — t)n_/\_l f@)dt,z > a.

(3.16)
Using definitions (315) and (ZI)) and applying the known result (Samko et al.

[15])

I, ((x - a)B_1> - % ( —a)® 1 X\, 6 € C,Re(\), Re (B) >0, (3.17)

we obtain ([B.I3). O
Next, using 1)), BI6) and BI3) we arrive at (3).

Mellin-Barnes Integral Representation
Result 5. For min (4, ) > 0, < 0 + 2 and |argz| < 5 (§ — a + 2) we have

B 1 I‘(fs)I‘(1+s)F(fy+5s)xs .
~2mil (v) /L '8+ as) ds, (3.18)

voEap ()

where for details of contour L and convergence of ([B.I8), we refer the book by
Srivastava et al. [17].
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Proof. Making use of relation between - sEq g (x) and the H-function by compar-
ing their series representations, we obtain the Mellin-Barnes integral representation
as follows

_ ryl2 (1 -7 5) ) (07 1) _ 1 I'(—s)I'(14+8)0(y+6s) s
v,6Ea,p (2) = H2,2 [ac ‘ 0,1),(1-8,0) | ~ 2ml M i T(B+as) z7ds.
(3.19)
[l

Integral Transforms
Result 6. Euler (Beta) transform
For a,b, o, 8,7,0,0 € C, Re(a),Re(b), Re () >0, Re () > Re () > 0, we have

T(y)’ (6, )(a+b,0);
(3.20)
Particularly for a = 8, b = p, 0 = a, (B20) reduces to the integral
! 1
/ w1 = u)* T 5Ba s (2u®) du =T (1) 4.5 Ea gy (7). (3.21)
0

Proof. Using the definition of , sE, g (z) given by (ZI)), changing the order of
differentiation and integration, which is permissible under the given conditions,
using the definition of the beta function and writing the power series thus obtained
in terms of the Fox-Wright function ,1, defined by ([L4)), we arrive at the required

result ([3.20).

Particularly for a = 3, b = u, 0 = «, we have

T'(p r = I'(v+dn n
AN ((ﬂ) )((H)b(z )1) 4 _ FE:; > D)4~ T (1) 5 B (@)

which proves (3.21]). O

Result 7. Laplace transform
(a) For a,a, 8,7,6,0,s € C, Re(a) > Re (6 + ), Re(d),Re (o), Re(s) > 0,

we have

L {u“flv,(;Ea,B (xu?); s}

Y e —— o\ gy — S (7,9),(a,0),(1,1); 2
_/O u le 7,5Ea,5 (xu )du- F(’y)3w1 (ﬂ,a)' S":|7

(b) Lt {S_lnga”@ ( ) } E’y 5
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Proof. (a) Using the definition of the generalized Mittag-Leffler type function
~v,6Fq,p (z) given by (2.]]), changing the order of summation and integration, eval-
uating the integral and writing the resulting series in terms of the Fox-Wright
function ,v, defined by ([4)), we arrive at the result (3:22]).

(b) By taking the Laplace transform of the generalized Mittag-Leffler type function
EZ?& (x), we arrive at the required result. O

Result 8. Mellin transform
For a > ¢ > 0,0 < s < Twe have

F'(s)T(1—s)T (y—0ds)

wl (7)1 (B — as)
(3.23)

o0
M{,sEqp(wz);s}t = / :Es_lnga,g (wzx) de =
0

Proof. Let M { sEq g (wx);s} = f(s) then by the Mellin inversion theorem, we
have

MY {f(s);z} = ﬁ /L f(s)xz™?ds. (3.24)

Using the Mellin Barnes integral representation of ., sFEq g (x), given by B.I8)
and the Mellin inversion theorem ([B.24)), we obtain

F(—s)T'(1—s5)T (y —ds)
T T (B=as)

which proves the required result (3:23). O

fls) =

4 An Integral Operator Involving the Generalized
Mittag-Leffler Type Function and Its Proper-
ties

We consider the following integral operator

(%ﬁ;f,ﬁ ) () = /a (@ =)' sEap [w (@ —1)"] ¢ (D) dt,z > a,

where 7,w € C, Re (o) > Re (§) > 0, Re (8) > 0.
Particularly for w = 0, %‘;in s corresponds to the right handed Riemann-

Liouville fractional integral operator.

Theorem 4.1. Under the various parametric constraints stated with the definition
@10, let the function ¢ be in the space L (a,b) of Lebesgue measurable functions
given by

b
Lm@={ﬁwm=/uumm<m} (@)
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then the integral operator + a Bd) is bounded on L (a,b) and

Y50
|s42:8.0] < BlslL

where
(b _ a)Re(a) n

B= Z{Re n+Re( BT (an+ B)|

(4.3)

Proof. First of all, we observe that if ¢, denote the n‘* term of the series in ([@3)

then

¢n+1 _ |IP(y+0+46n)| {Re(a)n+Re(B)} T'(an+p8)| |Ld| (b N a)Re(oc)
On [D(y+on)| " {Re(a)(n+1)+Re(B)} " [T (anta+p)]|

Re(d6 Re(a
N 9] ( )|W|F(zb(—) a) ( )nRe(é)—Re(a)
|a| el

— 0, as n — oo, whenRe(«) > Re(d) > 0 (4.4)

Hence the series in right hand side of ([£3)) is bounded and the constant B is

finite.
Using the definition of ||.||;, given in ([@I]) and the definition of integral oper-

ator, given in (2] and then interchanging the order of integration, we have

Qw0 _
Sat; a”@(’le o /
a

< S @ =0 5B o (@ = )% da] o (1) dt
= [ [0 uFeO | 5B fwue] du | (1) dt

b b—a
</ [ A du] 6(8) dt.
a 0

b x
/ (z—t)"1 5Bapw(x—1)¢(t) dt‘ da

For the inner integral, using (21), carrying out term by term integration and
taking into account ([@3)), we obtain
b—a

b—a
w
/ w1 |y,6Eq,p [wu®]| du < Z 7|F (of;zl l; I ulteB)+Re(c)n=1g, — B,
0
(4.5)
([

Now using ([£3) in, we arrive at ([£2).

Theorem 4.2. Let A € C, Re (\) > 0 and w,~,0,a, B € C, then the relations

I’\Jr%;ﬂ:a‘fﬁ(ﬁ = °§ﬁ§5+A¢ %zggﬁlé\rqb hold for function ¢ € L (a,b).
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Proof. Using [21)) and (3I5) and interchanging the order of integration, we have
forx >a

(23208 0o =ty [l | [l 07 B o 0] 0 ) et

a

_ / [/t (@ =) (= 0P sBas w(u—1)°] du} & (t) dt

I'(A)
= ﬁ/f |:/0:” (x—t_T)A_l TB?I’y,éEa,B (WTQ)CZT:| ¢(t) dt
— ﬁ /I [y [P 6Bas (wr®)] (z —1)] ¢ (1) dt. (4.6)

Using formula (313]), we obtain

1 * _ o
(1209578 50) () = 0 / (@ —1)" Y 5Eapir (w(@— 1)) 6 (t) dt

Y50
= (35705009) @),

which proves first part of the relation ([£.2]) and the rest can be proved similarly. [
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