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1 Introduction

It proved a turning point in the development of mathematics when the notion
of fuzzy set was introduced by Zadeh [1]. This notion laid the foundation of fuzzy
mathematics. Kramosil and Michalek [2] introduced the notion of a fuzzy metric
space by generalizing the concept of the probabilistic metric space to the fuzzy
situation. George and Veeramani [3] modified the concept of fuzzy metric spaces
introduced by Kramosil and Michalek [2]. There are many view points of the
notion of the metric space in fuzzy topology for instance one can refer to Kaleva
and Seikkala [4], Kramosil and Michalek [2] and George and Veeramani [3]. This
proved a milestone in fixed point point theory of fuzzy metric space and afterwards

1
Corresponding author.

Copyright c© 2016 by the Mathematical Association of Thailand.

All rights reserved.



628 Thai J. Math. 14 (2016)/ M. Jain and S. Kumar

a flood of papers appeared for fixed point theorems in fuzzy metric space.
Mishra et al. [5] introduced the concept of compatible maps in FM-spaces

which was further generalised by Singh and Jain [6] by introducing the notion of
weak compatibility in FM-spaces. In 2002, Aamri and Moutawakil [7] introduced
property (E.A.), which is a true generalization of non-compatible maps in metric
spaces. Common fixed points for a pair of maps under the notion of property
(E.A.) and non-compatible maps were studied by Pant and Pant [8]. Recently,
Sintunavarat and Kumam [9] introduced a new concept of property (CLRg). The
importance of property (CLRg) ensures that one does not require the closeness of
range subspaces and hence, now a days, authors are giving much attention to this
property for generalizing the results present in the literature. Works noted in the
references [10–14] are some examples.

Popa [15, 16] introduced the idea of implicit function to prove a common
fixed point theorem in metric spaces. Jain [17] further extended the result of
Popa [15, 16] in fuzzy metric spaces. Afterwards, implicit relations are used as a
tool for finding common fixed point of contraction maps (see, [18–23]). Altun and
Turkoglu [24] proved two common fixed point theorems on complete FM-space with
an implicit relation. In [24], common fixed point theorems have been proved for
continuous compatible maps of type (α) or (β). Kumar and Fisher [25] generalized
the results of Altun and Turkoglu [24] by removing the assumption of continuity,
relaxing compatibility to weak compatibility and replacing the completeness of the
space with a set of four alternative conditions for functions satisfying an implicit
relation in FM-space. Our aim is to further generalize the result of Kumar and
Fisher [25] by using the property (CLRg) and relaxing many conditions involved.

2 Preliminaries

Before we give our main result we need the following definitions:

Definition 2.1 ([1]). A fuzzy set A in X is a function with domain X and values
in [0, 1].

Definition 2.2 ([26]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous
t-norm if ([0, 1], ∗) is a topological abelian monoid with unit 1 s.t. a ∗ b ≤ c ∗ d

whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.3 ([3]). The 3-tuple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × [0,∞)
satisfying the following conditions:

(FM-1) M(x, y, 0) > 0,

(FM-2) M(x, y, t) = 1 iff x = y,

(FM-3) M(x, y, t) = M(y, x, t),

(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s),
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(FM-5) M(x, y, .) : (0,∞) → [0, 1] is continuous, for all x, y, z ∈ X and s, t > 0.

Throughout this paper, we consider M to be a fuzzy metric space with condition:

(FM-6) limt→∞ M(x, y, t) = 1 for all x, y ∈ X and t > 0.

Definition 2.4 ([3]). Let (X,M, ∗) be fuzzy metric space. A sequence {xn} in X

is said to be

(i) Convergent to a point x ∈ X , if lim
n→∞

M(xn, x, t) = 1 for all t > 0;

(ii) Cauchy sequence if limn→∞ M(xn+p, xn, t) = 1, for all t > 0 and p > 0.

Definition 2.5 ([3]). A fuzzy metric space (X,M, ∗) is said to be complete if and
only if every Cauchy sequence in X is convergent.

Lemma 2.6 ([27]). M(x, y, ·) is non-decreasing for all x, y ∈ X.

Lemma 2.7 ([27]). Let xn → x and yn → y, then

(i) limn→∞ M(xn, yn, t) ≥ M(x, y, t), for all t > 0,

(ii) limn→∞(xn, yn, t) = M(x, y, t), for all t > 0, if M(x, y, t) is continuous.

Lemma 2.8 ([5]). If for all x, y ∈ X, t > 0 and for a number k ∈ (0, 1);

M(x, y, kt) ≥ M(x, y, t), then x = y.

Definition 2.9 ([5]). Let A and B be maps from a FM-space (X,M, ·) into itself.
The maps A and B are said to be compatible (or asymptotically commuting), if for
all t,

lim
n→∞

M(ABxn, BAxn, t) = 1,

whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X.

From the above definition it is inferred that A and B are non-compatible maps
from a FM-space (X,M, ·) into itself if limn→∞ Axn = limn→∞ for some z ∈ X ,
but either limn→∞ M(ABxn, BAxn, t) 6= 1 or the limit does not exist.

Definition 2.10 ([6]). Let A and B be maps from a FM-space (X,M, ·) into itself.
The maps are said to be weakly compatible if they commute at their coincidence
points. Note that compatible mappings are weakly compatible but converse is not
true in general.

Definition 2.11 ([8]). Let A and B be two self-maps of a FM-space (X,M, ·).
We say that A and B satisfy the property (E.A.) if there exists a sequence {xn}
such that

lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X.
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Note that weakly compatible and property (E.A.) are independent to each other
(see [15], Example 2.2).

Definition 2.12 ([9]). Let (X, d) be a metric space. Two mappings f : X → X

and g : X → X are said to satisfy property (CLRg) if there exists sequences {xn}
in X such that

lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(p), for some p in X.

Similarly, we can have the property (CLRT ) and the property (CLRS) if in the
Definition 2.12, the mapping g : X → X has been replaced by the mapping
T : X → X and S : X → X respectively.

Our result deal with the following implicit relation used by Altun and Turkoglu
[24].

Definition 2.13 ([24]). Let I = [0, 1], ∗ be a continuous t-norm and F be the set
of all real continuous functions F : I6 → R satisfying the following conditions:

(F-1) F is non-increasing in the fifth and sixth variables,

(F-2) if for some constant k ∈ (0, 1) we have

(F-a) F

(

u(kt) · v(t), v(t), u(t), 1, u

(

t

2

)

∗ v

(

t

2

))

≥ 1,

or

(F-b) F

(

u(kt), v(t), u(t), v(t), u

(

t

2

)

∗ v

(

t

2

)

, 1

)

≥ 1,

for any fixed t > 0 and any non-decreasing functions u, v : (0,∞) → I, then
there exists h ∈ (0, 1) with u(ht) ≥ v(t) ∗ u(t),

(F-3) if for some constant k ∈ (0, 1), we have F (u(kt), u(t), 1, 1, u(t), u(t)) ≥ 1
for any fixed t > 0 and any non-decreasing function u : (0,∞) → I then
u(kt) ≥ u(t).

3 Main Results

In [24], Altun and Turkoglu proved the following result:

Theorem 3.1. Let (X,M, ∗) be a complete fuzzy metric space with a ∗ b =
min{a, b}. Let A,B, S, T be maps from X into itself satisfying the following con-
ditions:

(3.1) A(X) ⊆ T (X), B(X) ⊆ S(X);

(3.2) one of the maps A, B, S, T is continuous;

(3.3) the pairs (A,S) and (B, T ) are compatible of type (α);
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(3.4) there exists k ∈ (0, 1) and F ∈ F such that

F{M(Ax,By, kt),M(Sx, T y, t),M(Ax, Sx, t),M(By, Ty, t),M(Ax, Ty, t),

M(By, Sx, t)} ≥ 1

for all x, y ∈ X and t > 0.

Then A,B, S, T have a unique common fixed point in X.

In [25], Kumar and Fisher generalized Theorem 3.1 (which is Theorem 1 in
[24]) as follows:

Theorem 3.2. Let (X,M, ∗) be a fuzzy metric space with a ∗ b = min{a, b}. Fur-
ther, let (A,S) and (B, T ) be weakly compatible pairs of self-maps of X satisfying
(3.1), (3.4) with the following condition:

(3.5) one of the pairs (A,S) or (B, T ) satisfies property (E.A.).

If the range of one of the maps A,B, S or T is a complete subspace of X, then
A,B, S, T have a unique common fixed point in X.

We now generalize Theorem 3.2 as follows:

Theorem 3.3. Let (X,M, ∗) be a fuzzy metric space with a ∗ b = min{a, b}. Let
A,B, S, T be maps from X into itself satisfying (3.4) with the following conditions:

(3.6) B(X) ⊆ S(X) and the pair (B, T ) satisfies property (CLRT ),

or

A(X) ⊆ T (X) and the pair (A,S) satisfies property (CLRS);

(3.7) the pairs (A,S) and (B, T ) are weakly compatible.

Then A,B, S, T have a unique common fixed point in X.

Proof. Without loss of generality, assume that B(X) ⊆ S(X) and the pair (B, T )
satisfies property (CLRT ), then there exists a sequence {xn} in X such that Bxn

and Txn converges to Tx, for some x in X as n → ∞. Since B(X) ⊆ S(X), so
there exists a sequence {yn} in X such that Bxn = Syn, hence Syn → Tx as
n → ∞.

We shall show that limn→∞ Ayn = Tx. Let limn→∞ Ayn = z. Taking x = yn,
y = xn in (3.4),

F{M(Ayn, Bxn, kt),M(Syn, T xn, t),M(Ayn, Syn, t),M(Bxn, T xn, t),

M(Ayn, T xn, t),M(Bxn, Syn, t), } ≥ 1.

Letting n → ∞, we have

F{M(z, Tx, kt), 1,M(z, Tx, t), 1,M(z, Tx, t), 1} ≥ 1.
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On the other hand, since

M(z, Tx, t) ≥ M

(

z, Tx,
t

2

)

= M

(

z, Tx,
t

2

)

∗ 1,

and F is non-increasing in the fifth variable, we have, for any t > 0

F

{

M(z, Tx, kt), 1,M(z, Tx, t), 1,M

(

z, Tx,
t

2

)

, 1

}

≥ F{M(z, Tx, kt), 1,M(z, Tx, t), 1,M(z, Tx, t)} ≥ 1,

which implies by (F-2), that z = Tx. Subsequently, we have Bxn, Txn, Syn, Ayn
converges to z. We shall show that Bx = z.

Taking x = yn, y = x in (3.4),

F{M(Ayn, Bx, kt),M(Syn, T x, t),M(Ayn, Syn, t),M(Bx, Tx, t),

M(Ayn, T x, t),M(Bx, Syn, t)} ≥ 1.

Letting n → ∞, we have

F{M(z,Bx, kt), 1, 1,M(z,Bx, t), 1,M(z,Bx, t)} ≥ 1.

On the other hand, since

M(z,Bx, t) ≥ N

(

z,Bx,
t

2

)

= M

(

z,Bx,
t

2

)

∗ 1,

and F is non-increasing in the sixth variable, we have, for any t > 0

F

{

M(z,Bx, kt), 1, 1,M(z,Bx, t), 1,M

(

z,Bx,
t

2

)

∗ 1

}

≥ F{M(z,Bx, kt), 1, 1,M(z,Bx, t), 1,M(z,Bx, t)} ≥ 1,

which implies by (F-2) that z = Bx = Tx. Since, the pair (B, T ) is weak compat-
ible, it follows that Bz = Tz.

Also, since B(X) ⊆ S(X), there exists some y in X such that Bx = Sy(= z).
We next show that Sy = Ay(= z). Taking y = xn, x = y in (3.4),

F{M(Ay,Bxn, kt),M(Sy, Txn, t),M(Ay, Sy, t),M(Bxn, T xn, t),

M(Ay, Txn, t),M(Bxn, Sy, t)} ≥ 1.

Letting n → ∞, we have

F{M(Ay, z, kt), 1,M(Ay, z, t), 1,M(Ay, z, t), 1} ≥ 1.

Other the other hand, since

M(Ay, z, t) ≥ M

(

Ay, z,
t

2

)

= M

(

Ay, z,
t

2

)

∗ 1,
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and F is non-increasing in the fifth variable, we have, for any t > 0

F

{

M(Ay, z, kt), 1,M(Ay, z, t), 1,M

(

Ay, z,
t

2

)

∗ 1, 1

}

≥ F{M(Ay, z, kt), 1,M(Ay, z, t), 1,M(Ay, z, t), 1} ≥ 1,

which implies by (F-2) that Ay = z = Sy. But the pair (A,S) is weakly compati-
ble, it follows that Az = Sz.

Next, we claim that Az = Bz. Taking x = z, y = z in (3.4),

F{M(Az,Bz, kt),M(Az,Bz, t), 1, 1,M(Az,Bz, t),M(Az,Bz, t)} ≥ 1,

which implies by (F-3) that Az = Bz. Hence, Az = Bz = Sz = Tz.
We now show that z = Az. Taking x = z, y = x in (3.4),

F{M(Az,Bx, kt),M(Sz, Tx, t),M(Az, Sz, t),M(Bx, Tx, t),

M(Az, Tx, t),M(Bx, Sz, t)} ≥ 1,

that is,

F{M(Az, z, kt),M(Az, z, t), 1, 1,M(Az, z, t),M(Az, z, t)} ≥ 1.

Therefore, z = Az = Bz = Sz = Tz, that is z is the common fixed point of the
maps A,B, S, T . Uniqueness of z follows immediately from (F-3) and (3.4).

Example 3.4. Let (X,M, ∗) be a fuzzy metric space with X = [0, 1], a t-norm
∗ be defined by a ∗ b = min{a, b} for all a, b in [0,1] and M be a fuzzy set on
X2 × (0,∞) defined by

M(x, y, t) =

[

exp

(

|x− y|

t

)]

−1

for all x, y in X and t > 0.

Let F : I6 → R be defiend by F (u1, u2, u3, u4, u5, u6) =
u1

min{u2, u3, u4, u5, u6}
.

Let t > 0, 0 < u(t), v(t) ≤ 1, k ∈ (0, 1

2
), where u, v : [0,∞) → I are non-decreasing

functions. Suppose that

F

(

u(kt), v(t), v(t)u(t), 1, u

(

t

2

)

∗ v

(

t

2

))

≥ 1,

that is,

F

(

u(kt), v(t), v(t), u(t), 1, u

(

t

2

)

∗ v

(

t

2

))

=
u(kt)

min
{

v(t), v(t), u(t), 1, u( t
2
) ∗ v t

2

}

≥ 1.
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Thus u(ht) ≥ v(t) ∗ u(t) if h = 2k ∈ (0, 1). A similar argument works if (Fb) is
assumed. Finally, suppose that t > 0 is fixed, u : [0,∞) → I is a non-decreasing
function and

F (u(kt), u(t), 1, 1u(t), u(t)) =
u(kt)

u(t)
≥ 1,

for some k ∈ (0, 1). Then we have u(kt) ≥ u(t) and thus F ∈ F .
Define the mappings A,B, S, T : X → X by

Ax =
x

27
, Bx =

x

9
, Sx =

x

3
, T x = x,

respectively. Then, for some k ∈ [ 1
9
, 1), we have

M(Ax,By, kt) =

[

exp

(

| x
27

− y
9
|

kt

)]

−1

≥

[

exp

(

|x
3
− y|

t

)]

−1

= M(Sx, T y, t)

≥ min{M(Sx, T y, t),M(Ax, Sx, t),M(By, Ty, t),M(Ax, Ty, t),

M(By, Sx, t)}.

Thus, the condition (3.4) of Theorem 3.3 is satisfied.
Further, the pairs (A,S) and (B, T ) are weakly compatible. Also, B(X) =

[0, 1

9
] ⊆ [0, 1

3
] = S(X). Considering the sequence {xn} = { 1

n
} so that limn→∞ Bxn

= limn→∞ Txn = 0 = T (0), hence the pair (B, T ) satisfies property (CLRT ).
Therefore, all the conditions of Theorem 3.3 are satisfied. Indeed 0 is the unique

common fixed point of the mappings A,B, S, T .
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