Subtractive Extension of Ideals in Ternary Semirings

Jayprakash Ninu Chaudhari and Kunal Julal Ingale¹

Department of Mathematics, M.J. College, Jalgaon-425 002, India e-mail : jnchaudhari@rediffmail.com (J.N. Chaudhari)
ikjingale@rediffmail.com (K.J. Ingale)

Abstract

In this paper, we introduce the concept of subtractive extension of an ideal of a ternary semiring. Further, 1) A characterization of subtractive extensions of ideals in the ternary semiring of non-positive integers is investigated. 2) The relation between subtractive extensions of a Q-ideal I in a ternary semiring S and the ideals in the quotient ternary semiring $S / I_{(Q)}$ is obtained. 3) We show that a subtractive extension P of a Q-ideal I in a ternary semiring S is a prime (semiprime) ideal if and only if $P / I_{(Q \cap P)}$ is a prime (semiprime) ideal in the quotient ternary semiring $S / I_{(Q)}$.

Keywords : ternary semiring; subtractive ideal; prime ideal; semiprime ideal; Quotient ternary semiring; subtractive extension of an ideal.
2010 Mathematics Subject Classification : 16Y60; 16 Y 99.

1 Introduction

Generalizing the notion of ternary ring introduced by Lister [1], Dutta and Kar [2] introduced the notion of ternary semiring. A non-empty set S together with a binary operation called addition (+) and a ternary operation called ternary multiplication (\cdot) is called ternary semiring if it satisfies the following conditions for all $a, b, c, d, e \in S$:

1. $(a+b)+c=a+(b+c)$;
2. $a+b=b+a$;
[^0]Copyright © 2016 by the Mathematical Association of Thailand. All rights reserved.
3. $(a \cdot b \cdot c) \cdot d \cdot e=a \cdot(b \cdot c \cdot d) \cdot e=a \cdot b \cdot(c \cdot d \cdot e)$;
4. there exists $0 \in S$ such that $a+0=a=0+a, a \cdot b \cdot 0=a \cdot 0 \cdot b=0 \cdot a \cdot b=0$;
5. $(a+b) \cdot c \cdot d=a \cdot c \cdot d+b \cdot c \cdot d ;$
6. $a \cdot(b+c) \cdot d=a \cdot b \cdot d+a \cdot c \cdot d$;
7. $a \cdot b \cdot(c+d)=a \cdot b \cdot c+a \cdot b \cdot d$.

Clearly, every semiring is a ternary semiring. Denote the sets of all non-positive, negative, non-negative, and positive integers respectively by $\mathbb{Z}_{0}^{-}, \mathbb{Z}^{-}, \mathbb{Z}_{0}^{+}$, and \mathbb{N}. The set \mathbb{Z}_{0}^{-}is a ternary semiring under usual addition and ternary multiplication of non-positive integers but it is not a semiring.

If there exists an element e in a ternary semiring S such that eex $=e x e=x e e$ $=x$ for all $x \in S$, then e is called the identity element of S. A ternary semiring S is said to be commutative if $a b c=a c b=c a b$ for all $a, b, c \in S$. The ternary semiring $\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$ is commutative with identity element -1 . A non-empty subset I of a ternary semiring S is called an ideal of S if the following conditions are satisfied:

1. $a, b \in I$ implies $a+b \in I$;
2. $a \in I, r, s \in S$ implies rsa, ras, ars $\in I$.

An ideal I of a ternary semiring S is called a subtractive ideal ($=k$-ideal) if x, $x+y \in I, y \in S$, then $y \in I$. If S is a commutative ternary semiring with identity element, then a proper ideal I of S is called i) prime if $a b c \in I, a, b, c \in S$ implies $a \in I$ or $b \in I$ or $c \in I$; ii) semiprime if $a^{3} \in I, a \in S$ implies $a \in I$. Clearly, every prime ideal is a semiprime ideal. An ideal I of a ternary semiring S is called a Q-ideal (= partitioning ideal) if there exists a subset Q of S such that

1. $S=\cup\{q+I: q \in Q\}$;
2. if $q_{1}, q_{2} \in Q$, then $\left(q_{1}+I\right) \cap\left(q_{2}+I\right) \neq \emptyset \Leftrightarrow q_{1}=q_{2}$.

Let I be a Q-ideal of a ternary semiring S. Then $S / I_{(Q)}=\{q+I: q \in Q\}$ forms a ternary semiring under the following addition " \oplus " and ternary multiplication " \odot ", $\left(q_{1}+I\right) \oplus\left(q_{2}+I\right)=q^{\prime}+I$ where $q^{\prime} \in Q$ is a unique element such that $q_{1}+q_{2}$ $+I \subseteq q^{\prime}+I$ and $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot\left(q_{3}+I\right)=q_{4}+I$ where $q_{4} \in Q$ is a unique element such that $q_{1} q_{2} q_{3}+I \subseteq q_{4}+I$. This ternary semiring is called a quotient ternary semiring of S by I and denoted by $\left(S / I_{(Q)}, \oplus, \odot\right)$ or just $S / I_{(Q)}$. If q_{0} $\in Q$ is a unique element such that $q_{0}+I=I$, then $q_{0}+I$ is the zero element of $S / I_{(Q)}$ [3, Lemma 2.3].

For $a, b \in\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$ and $a \neq 0$, we define $a \mid b$ if and only if $b=\alpha \beta a$ for some $\alpha, \beta \in \mathbb{Z}_{0}^{-}$. An ideal I of $\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$ is said to be generated by a subset $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ of \mathbb{Z}_{0}^{-}if for every $x \in I$, there exist $\alpha_{i}, \beta_{i} \in \mathbb{Z}_{0}^{-}$such that $x=\sum_{i=1}^{n} \alpha_{i} \beta_{i} a_{i}$. If $A=\{a\}$, then $\mathbb{Z}_{0}^{-} \mathbb{Z}_{0}^{-} a$ is called a principal ideal generated by a. For $a_{1}, a_{2}, \cdots, a_{k} \in \mathbb{Z}_{0}^{-}$, we denote i) $\left\langle a_{1}, a_{2}, \cdots, a_{k}\right\rangle=$ the ideal generated by $a_{1}, a_{2}, \cdots, a_{k}$ in the ternary semiring \mathbb{Z}_{0}^{-}; ii) $\left(a_{1}, a_{2}, \cdots, a_{k}\right)=$ g.c.d. of $a_{1}, a_{2}, \cdots, a_{k}$. For example, $(-4,-6)=2$.

The concept of subtractive extension of ideals in semirings is recently introduced by Chaudhari and Bonde [7. In section 2, we extend this concept of subtractive extension of an ideal to ternary semirings and obtain a characterization of subtractive extension of ideals in the ternary semiring $\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$. In section 3, we obtain the relation between subtractive extensions of a Q-ideal I in a ternary semiring S and the ideals in the quotient ternary semiring $S / I_{(Q)}$ and hence prove that a subtractive extension P of a Q-ideal of a ternary semiring S is a prime (semiprime) ideal if and only if $P / I_{(Q \cap P)}$ is a prime (semiprime) ideal of the quotient ternary semiring $S / I_{(Q)}$.

Here we list some results that we need throughout the paper.
Lemma 1.1. [4, Lemma 3.12] Let $I=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle \subseteq \mathbb{Z}_{0}^{-}$. If $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ $=d$, then there exists a largest $r \in \mathbb{Z}_{0}^{-}$such that $(-1)(-d) k \in I$ for all $k \leq r$.

Theorem 1.2. [5, Theorem 2.7] Every ideal of \mathbb{Z}_{0}^{-}is finitely generated.
Theorem 1.3. [6, Theorem 5.5] An ideal I of \mathbb{Z}_{0}^{-}is a subtractive ideal if and only if I is a principal ideal.

Lemma 1.4. [3, Lemma 1.4] Let I be an ideal of a ternary semiring S and a, x $\in S$ such that $a+I \subseteq x+I$. Then

1. $a+r+I \subseteq x+r+I$;
2. $r s a+I \subseteq r s x+I$;
3. $r a s+I \subseteq r x s+I$;
4. ars $+I \subseteq x r s+I$ for all $r, s \in S$.

Lemma 1.5. 3, Lemma 2.2] Let I be a Q-ideal of a ternary semiring S. If $x \in S$, then there exists a unique $q \in Q$ such that $x+I \subseteq q+I$. Hence $x=q+a$ for some $a \in I$.

2 Subtractive Extension of Ideals in the Ternary Semiring \mathbb{Z}_{0}^{-}

In this section, we extend the concept of subtractive extension of an ideal for semirings to ternary semirings and obtain a characterization of subtractive extension of ideals in the ternary semiring $\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$.

Definition 2.1. Let I be an ideal of a ternary semiring S. An ideal A of S with $I \subseteq A$ is said to be a subtractive extension of I if $x \in I, x+y \in A, y \in S$, then $y \in A$.

Clearly, every subtractive ideal of a ternary semiring S containing an ideal I of S is a subtractive extension of I. Also every ideal of a ternary semiring S is a subtractive extension of $\{0\}$. Let $\left(\mathbb{Z}^{-} \cup\{-\infty\}\right.$, $\left.\max , \cdot\right)$, the commutative
ternary semiring with zero element $-\infty$ and identity -1 . For $n \in \mathbb{Z}^{-}$, we denote $I_{n}=\left\{r \in \mathbb{Z}^{-}: r \leq n\right\} \cup\{-\infty\}$. Clearly, I_{n} is an ideal in the ternary semiring $\left(\mathbb{Z}^{-} \cup\{-\infty\}\right.$, max,$\left.\cdot\right)$. The following lemma can be proved easily.
Lemma 2.2. Let $I \subseteq A$ be non-zero ideals of the ternary semiring $S=\left(\mathbb{Z}^{-} \cup\right.$ $\{-\infty\}$, max,$\cdot)$. Then

1) I is a subtractive ideal of S if and only if $I=I_{n}$ for some $n \in \mathbb{Z}^{-}$;
2) A is a subtractive extension of I if and only if $I \subseteq I_{n} \subseteq A$ for some $n \in \mathbb{Z}^{-}$.

Example 2.3. Let $I=\{-6\} \cup I_{-8}, A=\{-4\} \cup I_{-6}$ be ideals in the ternary semiring $S=\left(\mathbb{Z}^{-} \cup\{-\infty\}\right.$, max,$\left.\cdot\right)$. Then by Lemma $2.2, A$ is a subtractive extension of I but not a subtractive ideal.

By Theorem 1.2 , every ideal of $\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$ is finitely generated. Now the following theorem gives a characterization of subtractive extensions of non-zero ideals in the ternary semiring $\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$:

Theorem 2.4. Let $I=\left\langle b_{1}, b_{2}, \ldots, b_{m}\right\rangle$ be a non-zero ideal of $S=\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$ and $d=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$. Then an ideal A of S is a subtractive extension of I if and only if $A=\langle a\rangle$ where $a \mid-d$.
Proof. Let A be a subtractive extension of I. Suppose that A is not a principal ideal. Then by Theorem 1.2, $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ where $a_{n}<a_{n-1}<\ldots<a_{1}<-1$, $a_{i} \nmid a_{j}$ for all $i<j, j=2,3, \ldots, n, n \geq 2$. Let $d^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. By Lemma 1.1, there exist $r_{1}, r_{2} \in \mathbb{Z}^{-}$such that $(-1)(-d) k \in I$ and $(-1)\left(-d^{\prime}\right) s \in A$ for all $k \leq r_{1}, s \leq r_{2}$. Hence $(-1)(-d) k \in I$ and $(-1)\left(-d^{\prime}\right) k \in A$ for all $k \leq r$ where $r=\min \left\{r_{1}, r_{2}\right\} \ldots(1)$. Since $-d,-d^{\prime}<0,(-1)\left(-d^{\prime}\right) r,(-1)(-d) r+(-1) \leq$ r. So by $(1),(-d)\left(-d^{\prime}\right) r=(-1)(-d)(-1)\left(-d^{\prime}\right) r \in I$ and $(-d)\left(-d^{\prime}\right) r+\left(-d^{\prime}\right)$ $=(-1)\left(-d^{\prime}\right)((-1)(-d) r+(-1)) \in A$. Since A is a subtractive extension of I, $-d^{\prime} \in A$. Hence $-d^{\prime}=a_{1}$. So $a_{1} \mid a_{2}$, a contradiction. Now $A=\langle a\rangle$ for some $a \in \mathbb{Z}_{0}^{-}$. Since $I \subseteq A, a \mid-d$. Conversely, suppose that $A=\langle a\rangle$ where $a \mid-d$. Clearly, $I \subseteq A$. By Theorem 1.3, A is a subtractive ideal of S and hence A is a subtractive extension of I.

The following example shows that the sum (union) of two subtractive extensions of I need not be a subtractive extension of I.
Example 2.5. Let $I=\langle-12,-18\rangle, A=\langle-2\rangle$ and $B=\langle-3\rangle$ be ideals in the ternary semiring \mathbb{Z}_{0}^{-}. By Theorem 2.4, A, B are subtractive extensions of I, but $A+B=\{0,-2,-3,-4,-5,-6, \ldots\}=\langle-2,-3\rangle$, is not a subtractive extension of I. An inspection will show that $A \cup B$ is not an ideal of \mathbb{Z}_{0}^{-}and hence $A \cup B$ is not a subtractive extension of I.

Denote $\mathbb{Z}_{0}^{+} \times \mathbb{Z}_{0}^{+}=\left(\mathbb{Z}_{0}^{+},+, \cdot\right) \times\left(\mathbb{Z}_{0}^{+},+, \cdot\right)$, the semiring with pointwise addition and pointwise multiplication. Also denote $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}=\left(\mathbb{Z}_{0}^{-},+, \cdot\right) \times\left(\mathbb{Z}_{0}^{-},+, \cdot\right)$, the ternary semiring with pointwise addition and pointwise ternary multiplication. For a subset A of $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$, we denote $A^{*}=\left\{(n, m) \in \mathbb{Z}_{0}^{+} \times \mathbb{Z}_{0}^{+}:(-n,-m) \in A\right\}$. The following lemma can be proved easily.

Lemma 2.6. Let I be a subset of $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$. Then

1) I is an ideal if and only if I^{*} is an ideal of $\mathbb{Z}_{0}^{+} \times \mathbb{Z}_{0}^{+}$.
2) I is a Q-ideal if and only if I^{*} is a Q^{*}-ideal of $\mathbb{Z}_{0}^{+} \times \mathbb{Z}_{0}^{+}$.
3) I is a subtractive ideal if and only if I^{*} is a subtractive ideal of $\mathbb{Z}_{0}^{+} \times \mathbb{Z}_{0}^{+}$.
4) If $I \subseteq A$ are ideals of $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$, then A is a subtractive extension of I if and only if A^{*} is a subtractive extension of I^{*} in $\mathbb{Z}_{0}^{+} \times \mathbb{Z}_{0}^{+}$.

Theorem 2.7. Let I be a subset of $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$. Then

1) I is an ideal if and only if $I=J_{1} \times J_{2}$ where J_{1}, J_{2} are ideals of the ternary semiring \mathbb{Z}_{0}^{-}.
2) I is a principal ideal if and only if $I=J_{1} \times J_{2}$ where J_{1}, J_{2} are principal ideals in the ternary semiring \mathbb{Z}_{0}^{-}.
3) I is a Q-ideal if and only if $I=J_{1} \times J_{2}$ where J_{1}, J_{2} are Q_{1}, Q_{2}-ideals respectively in the ternary semiring \mathbb{Z}_{0}^{-}with $Q=Q_{1} \times Q_{2}$.
4) I is a subtractive ideal if and only if $I=J_{1} \times J_{2}$ where J_{1}, J_{2} are subtractive ideals in the ternary semiring \mathbb{Z}_{0}^{-}.

Proof. Follows from Lemma 2.6, [7, Lemma 2.1 and Lemma 2.2] and 5, Lemma 2.3 and Lemma 2.4].

Theorem 2.8. Let I be an ideal of $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$. Then the following statements are equivalent:

1) I is a principal ideal;
2) I is a Q-ideal;
3) I is a subtractive ideal.

Proof. Follows from Theorem 2.7 and [5, Theorem 2.6].
Theorem 2.9. Let $I \subseteq A$ be ideals of the ternary semiring $\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$. Then A is a subtractive extension of I if and only if $A=A_{1} \times A_{2}$ where an ideal A_{i} is a subtractive extension of an ideal $J_{i}\left(i=1\right.$, 2) in the ternary semiring \mathbb{Z}_{0}^{-}with I $=J_{1} \times J_{2}$.

Proof. Let A be a subtractive extension of I. By Theorem 2.7, $A=A_{1} \times A_{2}$ and I $=J_{1} \times J_{2}$ where $A_{1}, A_{2}, J_{1}, J_{2}$ are ideals of the ternary semiring \mathbb{Z}_{0}^{-}. Let $x \in J_{1}$, $x+y \in A_{1}, y \in \mathbb{Z}_{0}^{-}$. Then $(x, 0) \in I$ and $(x, 0)+(y, 0)=(x+y, 0) \in A_{1} \times A_{2}=A$. Since A is a subtractive extension of $I,(y, 0) \in A$ and hence $y \in A_{1}$. Now A_{1} is a subtractive extension of J_{1}. Similarly, A_{2} is a subtractive extension of J_{2}. Conversely, suppose that $A=A_{1} \times A_{2}$ where A_{i} is a subtractive extension of J_{i} $(i=1,2)$ with $I=J_{1} \times J_{2}$. Since A_{i} is a subtractive extensions of $J_{i}(i=1,2)$, $A_{1} \times A_{2}=A$ is a subtractive extension of $J_{1} \times J_{2}=I$.

Corollary 2.10. Let $I \subseteq A$ be ideals of the semiring $\mathbb{Z}_{0}^{+} \times \mathbb{Z}_{0}^{+}$. Then A is a subtractive extension of I if and only if $A=A_{1} \times A_{2}$ where an ideal A_{i} is a subtractive extension of an ideal $J_{i}\left(i=1\right.$, 2) with $I=J_{1} \times J_{2}$.

Proof. Follows from Lemma 2.6 (4) and Theorem 2.9.

3 Ideal Theory in Quotient Ternary Semirings

Let $I \subseteq A$ be ideals of a ternary semiring S. Then we denote

1) $\overline{A_{I}}=\{x \in S: x+i \in A$ for some $i \in I\}$, and will be called the closure of A with respect to I;
2) $\widetilde{A}=\left\{x \in S\right.$: there exists $q+I \in S / I_{(Q)}$ such that $x \in q+I$ and $(q+$ $I) \cap A \neq \emptyset\}$, and will be called the closure of A with respect to $I_{(Q)}$ where I is a Q-ideal of S;
3) $\bar{A}=\{x \in S: x+y \in A$ for some $y \in A\}$, is called the k-closure of A [6].

We can easily show that i) $I \subseteq \bar{I} \subseteq \overline{A_{I}} \subseteq \bar{A}$; ii) $\overline{A_{A}}=\bar{A}$ where $I \subseteq A$ are ideals of S.

Example 3.1. Let $I=\{-8\} \cup I_{-10}, A=\{-6\} \cup I_{-8}$ be ideals in the ternary semiring $S=\left(\mathbb{Z}^{-} \cup\{-\infty\}\right.$, max,$\left.\cdot\right)$. An inspection will show that $\overline{A_{I}}=\{-6\} \cup I_{-8}$, $\bar{I}=I_{-8}$ and $\bar{A}=I_{-6}$. Now $I \subsetneq \bar{I} \subsetneq \overline{A_{I}} \subsetneq \bar{A}$.

Theorem 3.2. Let $I \subseteq A$ be ideals of a ternary semiring S. Then $\overline{A_{I}}$ is the smallest subtractive extension of I containing A.

Proof. 1) Let $a_{1}, a_{2} \in \overline{A_{I}}$ and $r, s \in S$. Then there exist $i_{1}, i_{2} \in I$ such that $a_{1}+i_{1}, a_{2}+i_{2} \in A$. Hence $\left(a_{1}+a_{2}\right)+\left(i_{1}+i_{2}\right)=a_{1}+i_{1}+a_{2}+i_{2} \in \underline{A}$ where $i_{1}+i_{2} \in I$. So $a_{1}+a_{2} \in \overline{A_{I}}$. Similarly, $r s a_{1}, r a_{1} s, a_{1} r s \in \overline{A_{I}}$. Hence $\overline{A_{I}}$ is an ideal of S.
2) Clearly, $A \subseteq \overline{A_{I}}$.
3) Let $i \in I, a+i \in \overline{A_{I}}, a \in S$. Then there exists $i^{\prime} \in I$ such that $a+i+i^{\prime} \in A$. Now $i+i^{\prime} \in I$ implies $a \in \overline{A_{I}}$. Hence $\overline{A_{I}}$ is a subtractive extension of I.
4) Let J be a subtractive extension of I containing A and let $x \in \overline{A_{I}}$. Then there exists $i \in I$ such that $x+i \in A \subseteq J$. Since J is a subtractive extension of $I, x \in J$. Hence $\overline{A_{I}} \subseteq J$.

Corollary 3.3. Let $I \subseteq A$ be ideals of a ternary semiring S. Then

$$
\overline{A_{I}}=\cap\{J: J \text { is a subtractive extension of } I \text { containing } A\} .
$$

Now we have the following:
Theorem 3.4. Let I, A, B be ideals of a ternary semiring S such that $I \subseteq A, B$. Then

1) A is a subtractive extension of $I \Leftrightarrow \overline{A_{I}}=A$.
2) $\overline{\left(\overline{A_{I}}\right)_{I}}=\overline{A_{I}}$.
3) $A \subseteq B \Rightarrow \overline{A_{I}} \subseteq \overline{B_{I}}$.
4) $\overline{(A \cap B)_{I}}=\overline{A_{I}} \cap \overline{B_{I}}$.
5) If A, B are subtractive extensions of I, then $A \cap B$ is a subtractive extension of I.
6) If J is an ideal of S such that $I \subseteq J \subseteq A$, then $\overline{A_{I}} \subseteq \overline{A_{J}}$.

Now by Theorem 3.4, we have i) A is a subtractive ideal of $S \Leftrightarrow \bar{A}=A$. ii) $\overline{\bar{A}}$ $=\bar{A}$. iii) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$.

Corollary 3.5. Let A, B be ideals of a ternary semiring S. Then $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$.
Proof. By Theorem 3.4 (3), $\overline{A \cap B}=\overline{(A \cap B)_{(A \cap B)}} \subseteq \overline{A_{(A \cap B)}}$. Since $A \cap B \subseteq A$, by Theorem 3.4 (6), $\overline{A_{(A \cap B)}} \subseteq \overline{A_{A}}=\bar{A}$. Hence $\overline{A \cap B} \subseteq \bar{A}$. Similarly, $\overline{A \cap B} \subseteq \bar{B}$. Now $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$.

The following example shows that equality in Corollary 3.5 may not hold.
Example 3.6. Let $A=\{-4\} \cup I_{-8}, B=\{-6,-7\} \cup I_{-10}$ be ideals in the ternary semiring $S=\left(\mathbb{Z}^{-} \cup\{-\infty\}\right.$, max,$\left.\cdot\right)$. Then $A \cap B=I_{-10}$. By Lemma 2.2, $A \cap B$ is a subtractive ideal of S and hence $\overline{A \cap B}=I_{-10}$. An inspection will show that $\bar{A}=I_{-4}$ and $\bar{B}=I_{-6}$. Hence $\bar{A} \cap \bar{B}=I_{-6}$. Now $\overline{A \cap B} \subsetneq \bar{A} \cap \bar{B}$.

In the next lemma we give the relation between $\overline{A_{I}}$ and \widetilde{A}.
Lemma 3.7. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S with $I \subseteq A$. Then $\overline{A_{I}}=\widetilde{A}$.

Proof. Let $x \in \overline{A_{I}}$. Then there exists $i_{1} \in I$ such that $x+i_{1} \in A \ldots$ (1). By Lemma 1.5 , there exists $q \in Q$ such that $x \in q+I$. Then $x=q+i_{2}$ for some $i_{2} \in I$. So $x+i_{i}=q+i_{2}+i_{1} \in q+I$. Thus $(q+I) \cap A \neq \emptyset$. Hence $x \in \widetilde{A}$. Now $\overline{A_{I}} \subseteq \widetilde{A}$. For other inclusion, let $z \in \widetilde{A}$. Then there exists $q+I \in S / I_{(Q)}$ such that $z \in q+I$ and $(q+I) \cap A \neq \emptyset$. So $z=q+i^{\prime}$ for some $i^{\prime} \in I$. Let $y=q+i^{\prime \prime} \in(q+I) \cap A$ where $i^{\prime \prime} \in I$. Since $i^{\prime} \in I \subseteq A$ and A is an ideal of $S, z+i^{\prime \prime}=q+i^{\prime \prime}+i^{\prime} \in A$. Hence $z \in \overline{A_{I}}$. Now $\widetilde{A} \subseteq \overline{A_{I}}$.

Theorem 3.8. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S with $I \subseteq A$. Then \widetilde{A} is the smallest subtractive extension of I containing A.

Proof. Follows from Lemma 3.7 and Theorem 3.2.
Corollary 3.9. 77, Proposition 2.16] Let I be a Q-ideal of a semiring S and A be an ideal of S with $I \subseteq A$. Then \widetilde{A} is the smallest subtractive extension of I containing A.

Now we extend results of Chaudhari and Bonde [7, Lemma 2.6 and Theorems 2.7, 2.10, 2.12] for semirings to ternary semirings. For the sake of completeness we give the proof of the following lemma which is exactly similar to the proof of [7) Lemma 2.6].

Lemma 3.10. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S with $I \subseteq A$. Then A is a subtractive extension of I if and only if I is a $Q \cap A$-ideal of A.

Proof. Let A be a subtractive extension of I. Let $a \in A$. Then there exists a unique $q \in Q$ such that $a \in q+I$. So $a=q+i$ for some $i \in I$. Since A is a subtractive extension of $I, q \in A$. Hence $q \in Q \cap A$. If $\left(q_{1}+I\right) \cap\left(q_{2}+I\right) \neq \emptyset$ for some $q_{1}, q_{2} \in Q \cap A$, then $q_{1}=q_{2}$ because I is a Q-ideal of S. Thus I is a $Q \cap A$-ideal of A. Conversely, suppose that I is a $Q \cap A$-ideal of A and $x \in I$, $x+y \in A, y \in S$. Since I is a $Q \cap A$-ideal of A, there exists a unique $q_{1} \in Q \cap A$ such that $x+y+I \subseteq q_{1}+I$. Also since I is a Q-ideal of S, there exists a unique $q_{2} \in Q$ such that $y+I \subseteq q_{2}+I$. By using Lemma 1.4, $x+y+I \subseteq x+q_{2}+I \subseteq q_{2}+I$ as $x \in I$. So $\left(q_{1}+I\right) \cap\left(q_{2}+I\right) \neq \emptyset$. Since I is a Q-ideal of $S, q_{2}=q_{1} \in A$. Now $y \in q_{2}+I \subseteq A$. Hence A is a subtractive extension of I.

Theorem 3.11. Let $I \subseteq A$ be ideals of a ternary semiring S and I a Q-ideal of S. Then following statements are equivalent:

1) A is a subtractive extension of I;
2) I is a $Q \cap A$-ideal of A;
3) $A / I_{(Q \cap A)}$ is an ideal of a ternary semiring $S / I_{(Q)}$;
4) $A / I_{(Q \cap A)} \subseteq S / I_{(Q)}$.

Proof. (1) \Rightarrow (2) Follows from Lemma 3.10.
$(2) \Rightarrow(3)$ As A is an ideal of $S, A / I_{(Q \cap A)}$ is an ideal of ternary semiring $S / I_{(Q)}$.
$(3) \Rightarrow$ (4) Trivial.
(4) \Rightarrow (1) Let $x \in I, x+y \in A, y \in S$. Then $x \in I=q_{0}+I$ where $q_{0}+I$ is the zero element of $S / I_{(Q)}$. Now by definition of quotient ternary semiring, there exists a unique $q_{1}+I \in A / I_{(Q \cap A)} \subseteq S / I_{(Q)}$ and a unique $q_{2}+I \in S / I_{(Q)}$ such that $x+y \in q_{1}+I$ and $y \in q_{2}+I$. Here $x+y \in\left(q_{0}+I\right) \oplus\left(q_{2}+I\right)=q_{2}+I$. So $\left(q_{1}+I\right) \cap\left(q_{2}+I\right) \neq \emptyset$. Hence $q_{2}=q_{1} \in A$. Now $y \in q_{2}+I \subseteq A$.

Corollary 3.12. [3, Lemma 3.4] Let I a Q-ideal of a ternary semiring S and A a subtractive ideal of S with $I \subseteq A$. Then I is a $Q \cap A$-ideal of A.

The following example shows that the converse of Corollary 3.12 is not true.
Example 3.13. Let $I=\langle-4\rangle \times\{0\}, A=\langle-2\rangle \times\langle-2,-3\rangle$ be ideals in the ternary semiring $S=\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$. By [8, Example 6], [5, Lemma 2.4] and Theorem 2.7, I is a Q-ideal of S where $Q=\{0,-1,-2,-3\} \times \mathbb{Z}_{0}^{-}$. Clearly, $I \subseteq A$. By Theorem 2.4, $\langle-2\rangle$ is a subtractive extension of $\langle-4\rangle$. Also $\langle-2,-3\rangle$ is a subtractive extension
of $\{0\}$. Hence by Theorem 2.9, A is a subtractive extension of I. By Lemma 3.10, I is a $Q \cap A$-ideal of A. But by Theorem 1.3 and Theorem 2.7(4), A is not a subtractive ideal of S.

Theorem 3.14. Let I be a Q-ideal of a ternary semiring S. Then L is an ideal of $S / I_{(Q)}$ if and only if there exists an ideal A of S such that A is a subtractive extension of I and $A / I_{(Q \cap A)}=L$.

Proof. Let L be an ideal of a ternary semiring $S / I_{(Q)}$. Denote $A=\{x \in S$: there exist a unique $q \in Q$ such that $x+I \subseteq q+I \in L\}$.
(1) Let $a \in I$. Then $a+I \subseteq I=q_{0}+I \in L$, so $a \in A$. Now $I \subseteq A$.
(2) Let $x, y \in A$. Then there exist unique $q_{1}, q_{2} \in Q$ such that $x+I \subseteq q_{1}+I \in L$ and $y+I \subseteq q_{2}+I \in L$. Again there exists unique $q_{3} \in Q$ such that $\left(q_{1}+I\right) \oplus\left(q_{2}+I\right)$ $=q_{3}+I \in L$ where $q_{1}+q_{2}+I \subseteq q_{3}+I$. By Lemma $1.4, x+I \subseteq q_{1}+I$ and $y+I \subseteq q_{2}+I \Rightarrow x+y+I \subseteq q_{1}+y+I \subseteq q_{1}+q_{2}+I \subseteq q_{3}+I \in L$. Now $x+y \in A$. Similarly, if $x \in A$ and $r, s \in S$, then $r s x, r x s, x r s \in A$. Hence A is an ideal of S.
(3) Let $x \in I, x+y \in A, y \in S$. So $x+y \in q+I \in L$. Since I is a Q-ideal of S, there exists a unique $q^{\prime} \in Q$ such that $y \in q^{\prime}+I$. Since $x \in I, x+y \in q^{\prime}+I$. So $(q+I) \cap\left(q^{\prime}+I\right) \neq \emptyset$ implies $q=q^{\prime}$. Now $y \in q^{\prime}+I=q+I \in L$. Thus $y \in A$. Hence A is a subtractive extension of I.
(4) Clearly, $A / I_{(Q \cap A)} \subseteq L$. Now if $q+I \in L$, then $q \in A$. So $L \subseteq A / I_{(Q \cap A)}$. Thus $A / I_{(Q \cap A)}=L$.
Conversely, suppose that A is a subtractive extension of I and $A / I_{(Q \cap A)}=L$. Then by Theorem $3.11, L$ is an ideal of $S / I_{(Q)}$.

Theorem 3.15. Let S be a ternary semiring, I a Q-ideal of S and P a subtractive extension of I. Then P is a prime ideal of S if and only if $P / I_{(Q \cap P)}$ is a prime ideal of $S / I_{(Q)}$.

Proof. Let P be a prime ideal of S. Suppose that $q_{1}+I, q_{2}+I, q_{3}+I \in S / I_{(Q)}$ and $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot\left(q_{3}+I\right)=q_{4}+I \in P / I_{(Q \cap P)}$ where $q_{4} \in Q \cap P$ is a unique element such that $q_{1} q_{2} q_{3}+I \subseteq q_{4}+I$. So $q_{1} q_{2} q_{3}=q_{4}+i$ for some $i \in I$. Now $q_{1} q_{2} q_{3} \in P$ implies $q_{1} \in P$ or $q_{2} \in P$ or $q_{3} \in P$. Hence $q_{1}+I \in P / I_{(Q \cap P)}$ or $q_{2}+I \in P / I_{(Q \cap P)}$ or $q_{3}+I \in P / I_{(Q \cap P)}$. Conversely, suppose that $P / I_{(Q \cap P)}$ is a prime ideal of $S / I_{(Q)}$. Let $a b c \in P$ where $a, b, c \in S$. Since I is a Q-ideal of S, there exist unique $q_{1}, q_{2}, q_{3}, q_{4} \in Q$ such that $a \in q_{1}+I, b \in q_{2}+I, c \in q_{3}+I$ and $a b c \in\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot\left(q_{3}+I\right)=q_{4}+I$ where $q_{1} q_{2} q_{3}+I \subseteq q_{4}+I$. So $a b c=q_{4}+i^{\prime}$ for some $i^{\prime} \in I$. Since P is a subtractive extension of $I, q_{4} \in P$. So $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot\left(q_{3}+I\right)=q_{4}+I \in P / I_{(Q \cap P)}$. Since $P / I_{(Q \cap P)}$ is a prime ideal, we may assume $q_{1}+I \in P / I_{(Q \cap P)}$. Now $a \in q_{1}+I \Rightarrow a=q_{1}+i^{\prime \prime}$ for some $i^{\prime \prime} \in I \Rightarrow a \in P$ as $q_{1} \in Q \cap P \subseteq P$.

Theorem 3.16. Let S be a ternary semiring, I a Q-ideal of S and P a subtractive extension of I. Then P is a semiprime ideal of S if and only if $P / I_{(Q \cap P)}$ is a semiprime ideal of $S / I_{(Q)}$.

Proof. Let P be a semiprime ideal of S. Suppose that $q+I \in S / I_{(Q)}$ and $(q+$ $I) \odot(q+I) \odot(q+I)=q^{\prime}+I \in P / I_{(Q \cap P)}$ where $q^{\prime} \in Q \cap P$ is a unique element such that $q^{3}+I \subseteq q^{\prime}+I$. So $q^{3}=q^{\prime}+i$ for some $i \in I$. Now $q^{3} \in P$ implies $q \in P$. Hence $q+I \in P / I_{(Q \cap P)}$. Conversely, suppose that $P / I_{(Q \cap P)}$ is a semiprime ideal of $S / I_{(Q)}$. Let $a^{3} \in P$ where $a \in S$. Since I is a Q-ideal of S, there exist unique $q, q^{\prime} \in Q$ such that $a \in q+I$ and $a^{3} \in(q+I) \odot(q+I) \odot(q+I)=q^{\prime}+I$. So $a^{3}=q^{\prime}+i^{\prime}$ for some $i^{\prime} \in I$. Since P is a subtractive extension of $I, q^{\prime} \in P$ where $q^{3}+I \subseteq q^{\prime}+I$. So $(q+I) \odot(q+I) \odot(q+I)=q^{\prime}+I \in P / I_{(Q \cap P)}$. Since $P / I_{(Q \cap P)}$ is a semiprime ideal, $q+I \in P / I_{(Q \cap P)}$. Now $a \in q+I \Rightarrow a=q+i^{\prime \prime}$ for some $i^{\prime \prime} \in I \Rightarrow a \in P$ as $q \in Q \cap P \subseteq P$.

Chaudhari and Ingale [5, Theorem 3.4], proved that if I, J are subtractive ideals of a ternary semiring S, then $I \cup J$ is an ideal of S if and only if $I \subseteq J$ or $J \subseteq I$. For subtractive extensions we have:

Example 3.17. Let $I=\langle-4\rangle \times\{0\}, A=\langle-2\rangle \times\langle-2\rangle, B=\langle-4\rangle \times T$ be ideals in the ternary semiring $S=\mathbb{Z}_{0}^{-} \times \mathbb{Z}_{0}^{-}$where $T=\left\{n \in \mathbb{Z}_{0}^{-}: n \leq-3\right\} \cup\{0\}$. By Theorem 2.4, $\langle-2\rangle$ and $\langle-4\rangle$ are subtractive extensions of $\langle-4\rangle$. Also $\langle-2\rangle, T$ are subtractive extensions of $\{0\}$. Hence by Theorem $2.9, A, B$ are subtractive extensions of I. By Example 3.13, $A \cup B=\langle-2\rangle \times\langle-2,-3\rangle$ is a subtractive extension of I. But $A \nsubseteq B$ and $B \nsubseteq A$.

Acknowledgement. The authors are highly grateful to referees for severable valuable comments and suggestions which improved the manuscript.

References

[1] W. G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37-55.
[2] T.K. Dutta, S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific (2003) 343-355.
[3] J.N. Chaudhari, K.J. Ingale, On partitioning and subtractive ideals of ternary semirings, Kyungpook Math. Journal 51 (1) (2011) 69-76.
[4] S. Kar, Ideal theory in the ternary semiring \mathbb{Z}_{0}^{-}, Bull. Malays. Math. Sci. Soc. 34 (1)(2) (2011) 69-77.
[5] J.N. Chaudhari, K.J. Ingale, Prime avoidance theorem for ternary semirings, Journal of Advanced Research in Pure Mathematics 5 (1) (2013) 80-85.
[6] T.K. Dutta, S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Calcutta Math. Soc. 97 (5) (2005) 445-454.
[7] J.N. Chaudhari, D.R. Bonde, Ideal theory in quotient semirings, Thai J. Math. (To appear).
[8] Paul J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412-416.
(Received 19 September 2012)
(Accepted 8 April 2014)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.

