Thai Journal of Mathematics Volume 14 (2016) Number 3 : 615–625

http://thaijmath.in.cmu.ac.th ISSN 1686-0209

Subtractive Extension of Ideals in Ternary Semirings

Jayprakash Ninu Chaudhari and Kunal Julal Ingale¹

Abstract : In this paper, we introduce the concept of subtractive extension of an ideal of a ternary semiring. Further, 1) A characterization of subtractive extensions of ideals in the ternary semiring of non-positive integers is investigated. 2) The relation between subtractive extensions of a Q-ideal I in a ternary semiring S and the ideals in the quotient ternary semiring $S/I_{(Q)}$ is obtained. 3) We show that a subtractive extension P of a Q-ideal I in a ternary semiring S is a prime (semiprime) ideal if and only if $P/I_{(Q \cap P)}$ is a prime (semiprime) ideal in the quotient ternary semiring $S/I_{(Q)}$.

Keywords : ternary semiring; subtractive ideal; prime ideal; semiprime ideal; Quotient ternary semiring; subtractive extension of an ideal. **2010 Mathematics Subject Classification :** 16Y60; 16Y99.

1 Introduction

Generalizing the notion of ternary ring introduced by Lister [1], Dutta and Kar [2] introduced the notion of ternary semiring. A non-empty set S together with a binary operation called addition (+) and a ternary operation called ternary multiplication (\cdot) is called ternary semiring if it satisfies the following conditions for all $a, b, c, d, e \in S$:

- 1. (a+b) + c = a + (b+c);
- 2. a + b = b + a;

Copyright 2016 by the Mathematical Association of Thailand. All rights reserved.

¹Corresponding author.

- 3. $(a \cdot b \cdot c) \cdot d \cdot e = a \cdot (b \cdot c \cdot d) \cdot e = a \cdot b \cdot (c \cdot d \cdot e);$
- 4. there exists $0 \in S$ such that a + 0 = a = 0 + a, $a \cdot b \cdot 0 = a \cdot 0 \cdot b = 0 \cdot a \cdot b = 0$;
- 5. $(a+b) \cdot c \cdot d = a \cdot c \cdot d + b \cdot c \cdot d;$
- 6. $a \cdot (b+c) \cdot d = a \cdot b \cdot d + a \cdot c \cdot d;$
- 7. $a \cdot b \cdot (c+d) = a \cdot b \cdot c + a \cdot b \cdot d$.

Clearly, every semiring is a ternary semiring. Denote the sets of all non-positive, negative, non-negative, and positive integers respectively by \mathbb{Z}_0^- , \mathbb{Z}^- , \mathbb{Z}_0^+ , and \mathbb{N} . The set \mathbb{Z}_0^- is a ternary semiring under usual addition and ternary multiplication of non-positive integers but it is not a semiring.

If there exists an element e in a ternary semiring S such that eex = exe = xee = x for all $x \in S$, then e is called the identity element of S. A ternary semiring S is said to be commutative if abc = acb = cab for all $a, b, c \in S$. The ternary semiring $(\mathbb{Z}_0^-, +, \cdot)$ is commutative with identity element -1. A non-empty subset I of a ternary semiring S is called an ideal of S if the following conditions are satisfied:

- 1. $a, b \in I$ implies $a + b \in I$;
- 2. $a \in I, r, s \in S$ implies $rsa, ras, ars \in I$.

An ideal I of a ternary semiring S is called a subtractive ideal (= k-ideal) if x, $x + y \in I$, $y \in S$, then $y \in I$. If S is a commutative ternary semiring with identity element, then a proper ideal I of S is called i) prime if $abc \in I$, $a, b, c \in S$ implies $a \in I$ or $b \in I$ or $c \in I$; ii) semiprime if $a^3 \in I$, $a \in S$ implies $a \in I$. Clearly, every prime ideal is a semiprime ideal. An ideal I of a ternary semiring S is called a Q-ideal (= partitioning ideal) if there exists a subset Q of S such that

- 1. $S = \cup \{q + I : q \in Q\};$
- 2. if $q_1, q_2 \in Q$, then $(q_1 + I) \cap (q_2 + I) \neq \emptyset \Leftrightarrow q_1 = q_2$.

Let I be a Q-ideal of a ternary semiring S. Then $S/I_{(Q)} = \{q + I : q \in Q\}$ forms a ternary semiring under the following addition " \oplus " and ternary multiplication " \odot ", $(q_1 + I) \oplus (q_2 + I) = q' + I$ where $q' \in Q$ is a unique element such that $q_1 + q_2 + I \subseteq q' + I$ and $(q_1 + I) \odot (q_2 + I) \odot (q_3 + I) = q_4 + I$ where $q_4 \in Q$ is a unique element such that $q_1q_2q_3 + I \subseteq q_4 + I$. This ternary semiring is called a quotient ternary semiring of S by I and denoted by $(S/I_{(Q)}, \oplus, \odot)$ or just $S/I_{(Q)}$. If $q_0 \in Q$ is a unique element such that $q_0 + I = I$, then $q_0 + I$ is the zero element of $S/I_{(Q)}$ [3, Lemma 2.3].

For $a, b \in (\mathbb{Z}_0^-, +, \cdot)$ and $a \neq 0$, we define $a \mid b$ if and only if $b = \alpha\beta a$ for some $\alpha, \beta \in \mathbb{Z}_0^-$. An ideal I of $(\mathbb{Z}_0^-, +, \cdot)$ is said to be generated by a subset $A = \{a_1, a_2, \cdots, a_n\}$ of \mathbb{Z}_0^- if for every $x \in I$, there exist $\alpha_i, \beta_i \in \mathbb{Z}_0^-$ such that $x = \sum_{i=1}^n \alpha_i \beta_i a_i$. If $A = \{a\}$, then $\mathbb{Z}_0^- \mathbb{Z}_0^- a$ is called a principal ideal generated by a. For $a_1, a_2, \cdots, a_k \in \mathbb{Z}_0^-$, we denote i) $\langle a_1, a_2, \cdots, a_k \rangle =$ the ideal generated by a_1, a_2, \cdots, a_k in the ternary semiring \mathbb{Z}_0^- ; ii) $(a_1, a_2, \cdots, a_k) =$ g.c.d. of a_1, a_2, \cdots, a_k . For example, (-4, -6) = 2.

The concept of subtractive extension of ideals in semirings is recently introduced by Chaudhari and Bonde [7]. In section 2, we extend this concept of subtractive extension of an ideal to ternary semirings and obtain a characterization of subtractive extension of ideals in the ternary semiring $(\mathbb{Z}_0^-, +, \cdot)$. In section 3, we obtain the relation between subtractive extensions of a Q-ideal I in a ternary semiring S and the ideals in the quotient ternary semiring $S/I_{(Q)}$ and hence prove that a subtractive extension P of a Q-ideal of a ternary semiring S is a prime (semiprime) ideal if and only if $P/I_{(Q\cap P)}$ is a prime (semiprime) ideal of the quotient ternary semiring $S/I_{(Q)}$.

Here we list some results that we need throughout the paper.

Lemma 1.1. [4, Lemma 3.12] Let $I = \langle a_1, a_2, \dots, a_n \rangle \subseteq \mathbb{Z}_0^-$. If $(a_1, a_2, \dots, a_n) = d$, then there exists a largest $r \in \mathbb{Z}_0^-$ such that $(-1)(-d)k \in I$ for all $k \leq r$.

Theorem 1.2. [5, Theorem 2.7] Every ideal of \mathbb{Z}_0^- is finitely generated.

Theorem 1.3. [6, Theorem 5.5] An ideal I of \mathbb{Z}_0^- is a subtractive ideal if and only if I is a principal ideal.

Lemma 1.4. [3, Lemma 1.4] Let I be an ideal of a ternary semiring S and a, $x \in S$ such that $a + I \subseteq x + I$. Then

1. $a + r + I \subseteq x + r + I;$ 2. $rsa + I \subseteq rsx + I;$ 3. $ras + I \subseteq rxs + I;$ 4. $ars + I \subseteq xrs + I$ for all $r, s \in S.$

Lemma 1.5. [3, Lemma 2.2] Let I be a Q-ideal of a ternary semiring S. If $x \in S$, then there exists a unique $q \in Q$ such that $x + I \subseteq q + I$. Hence x = q + a for some $a \in I$.

2 Subtractive Extension of Ideals in the Ternary Semiring \mathbb{Z}_0^-

In this section, we extend the concept of subtractive extension of an ideal for semirings to ternary semirings and obtain a characterization of subtractive extension of ideals in the ternary semiring $(\mathbb{Z}_0^-, +, \cdot)$.

Definition 2.1. Let *I* be an ideal of a ternary semiring *S*. An ideal *A* of *S* with $I \subseteq A$ is said to be a *subtractive extension* of *I* if $x \in I$, $x + y \in A$, $y \in S$, then $y \in A$.

Clearly, every subtractive ideal of a ternary semiring S containing an ideal I of S is a subtractive extension of I. Also every ideal of a ternary semiring S is a subtractive extension of $\{0\}$. Let $(\mathbb{Z}^- \cup \{-\infty\}, \max, \cdot)$, the commutative

ternary semiring with zero element $-\infty$ and identity -1. For $n \in \mathbb{Z}^-$, we denote $I_n = \{r \in \mathbb{Z}^- : r \leq n\} \cup \{-\infty\}$. Clearly, I_n is an ideal in the ternary semiring $(\mathbb{Z}^- \cup \{-\infty\}, \max, \cdot)$. The following lemma can be proved easily.

Lemma 2.2. Let $I \subseteq A$ be non-zero ideals of the ternary semiring $S = (\mathbb{Z}^- \cup \{-\infty\}, max, \cdot)$. Then

- 1) I is a subtractive ideal of S if and only if $I = I_n$ for some $n \in \mathbb{Z}^-$;
- 2) A is a subtractive extension of I if and only if $I \subseteq I_n \subseteq A$ for some $n \in \mathbb{Z}^-$.

Example 2.3. Let $I = \{-6\} \cup I_{-8}$, $A = \{-4\} \cup I_{-6}$ be ideals in the ternary semiring $S = (\mathbb{Z}^- \cup \{-\infty\}, \max, \cdot)$. Then by Lemma 2.2, A is a subtractive extension of I but not a subtractive ideal.

By Theorem 1.2, every ideal of $(\mathbb{Z}_0^-, +, \cdot)$ is finitely generated. Now the following theorem gives a characterization of subtractive extensions of non-zero ideals in the ternary semiring $(\mathbb{Z}_0^-, +, \cdot)$:

Theorem 2.4. Let $I = \langle b_1, b_2, ..., b_m \rangle$ be a non-zero ideal of $S = (\mathbb{Z}_0^-, +, \cdot)$ and $d = (b_1, b_2, ..., b_m)$. Then an ideal A of S is a subtractive extension of I if and only if $A = \langle a \rangle$ where $a \mid -d$.

Proof. Let A be a subtractive extension of I. Suppose that A is not a principal ideal. Then by Theorem 1.2, $A = \langle a_1, a_2, ..., a_n \rangle$ where $a_n < a_{n-1} < ... < a_1 < -1$, $a_i \nmid a_j$ for all $i < j, j = 2, 3, ..., n, n \ge 2$. Let $d' = (a_1, a_2, ..., a_n)$. By Lemma 1.1, there exist $r_1, r_2 \in \mathbb{Z}^-$ such that $(-1)(-d)k \in I$ and $(-1)(-d')s \in A$ for all $k \le r_1, s \le r_2$. Hence $(-1)(-d)k \in I$ and $(-1)(-d')k \in A$ for all $k \le r$ where $r = \min\{r_1, r_2\} ...(1)$. Since $-d, -d' < 0, (-1)(-d')r, (-1)(-d)r + (-1) \le r$. So by (1), $(-d)(-d')r = (-1)(-d)(-1)(-d')r \in I$ and (-d)(-d')r + (-d') = $(-1)(-d')((-1)(-d)r + (-1)) \in A$. Since A is a subtractive extension of I, $-d \in A$. Hence $-d' = a_1$. So $a_1 \mid a_2$, a contradiction. Now $A = \langle a \rangle$ for some $a \in \mathbb{Z}_0^-$. Since $I \subseteq A, a \mid -d$. Conversely, suppose that $A = \langle a \rangle$ where $a \mid -d$. Clearly, $I \subseteq A$. By Theorem 1.3, A is a subtractive ideal of S and hence A is a subtractive extension of I. □

The following example shows that the sum (union) of two subtractive extensions of I need not be a subtractive extension of I.

Example 2.5. Let $I = \langle -12, -18 \rangle$, $A = \langle -2 \rangle$ and $B = \langle -3 \rangle$ be ideals in the ternary semiring \mathbb{Z}_0^- . By Theorem 2.4, A, B are subtractive extensions of I, but $A + B = \{0, -2, -3, -4, -5, -6, ...\} = \langle -2, -3 \rangle$, is not a subtractive extension of I. An inspection will show that $A \cup B$ is not an ideal of \mathbb{Z}_0^- and hence $A \cup B$ is not a subtractive extension of I.

Denote $\mathbb{Z}_0^+ \times \mathbb{Z}_0^+ = (\mathbb{Z}_0^+, +, \cdot) \times (\mathbb{Z}_0^+, +, \cdot)$, the semiring with pointwise addition and pointwise multiplication. Also denote $\mathbb{Z}_0^- \times \mathbb{Z}_0^- = (\mathbb{Z}_0^-, +, \cdot) \times (\mathbb{Z}_0^-, +, \cdot)$, the ternary semiring with pointwise addition and pointwise ternary multiplication. For a subset A of $\mathbb{Z}_0^- \times \mathbb{Z}_0^-$, we denote $A^* = \{(n, m) \in \mathbb{Z}_0^+ \times \mathbb{Z}_0^+ : (-n, -m) \in A\}$. The following lemma can be proved easily.

Lemma 2.6. Let I be a subset of $\mathbb{Z}_0^- \times \mathbb{Z}_0^-$. Then

- 1) I is an ideal if and only if I^* is an ideal of $\mathbb{Z}_0^+ \times \mathbb{Z}_0^+$.
- 2) I is a Q-ideal if and only if I^* is a Q^* -ideal of $\mathbb{Z}_0^+ \times \mathbb{Z}_0^+$.
- 3) I is a subtractive ideal if and only if I^* is a subtractive ideal of $\mathbb{Z}_0^+ \times \mathbb{Z}_0^+$.
- If I ⊆ A are ideals of Z₀⁻ × Z₀⁻, then A is a subtractive extension of I if and only if A^{*} is a subtractive extension of I^{*} in Z₀⁺ × Z₀⁺.

Theorem 2.7. Let I be a subset of $\mathbb{Z}_0^- \times \mathbb{Z}_0^-$. Then

- 1) I is an ideal if and only if $I = J_1 \times J_2$ where J_1, J_2 are ideals of the ternary semiring \mathbb{Z}_0^- .
- 2) I is a principal ideal if and only if $I = J_1 \times J_2$ where J_1, J_2 are principal ideals in the ternary semiring \mathbb{Z}_0^- .
- 3) I is a Q-ideal if and only if $I = J_1 \times J_2$ where J_1, J_2 are Q_1, Q_2 -ideals respectively in the ternary semiring \mathbb{Z}_0^- with $Q = Q_1 \times Q_2$.
- I is a subtractive ideal if and only if I = J₁ × J₂ where J₁, J₂ are subtractive ideals in the ternary semiring Z₀[−].

Proof. Follows from Lemma 2.6, [7, Lemma 2.1 and Lemma 2.2] and [5, Lemma 2.3 and Lemma 2.4]. \Box

Theorem 2.8. Let I be an ideal of $\mathbb{Z}_0^- \times \mathbb{Z}_0^-$. Then the following statements are equivalent:

- 1) I is a principal ideal;
- 2) I is a Q-ideal;
- 3) I is a subtractive ideal.

Proof. Follows from Theorem 2.7 and [5, Theorem 2.6].

Theorem 2.9. Let $I \subseteq A$ be ideals of the ternary semiring $\mathbb{Z}_0^- \times \mathbb{Z}_0^-$. Then A is a subtractive extension of I if and only if $A = A_1 \times A_2$ where an ideal A_i is a subtractive extension of an ideal J_i (i = 1, 2) in the ternary semiring \mathbb{Z}_0^- with $I = J_1 \times J_2$.

Proof. Let A be a subtractive extension of I. By Theorem 2.7, $A = A_1 \times A_2$ and $I = J_1 \times J_2$ where A_1, A_2, J_1, J_2 are ideals of the ternary semiring \mathbb{Z}_0^- . Let $x \in J_1, x + y \in A_1, y \in \mathbb{Z}_0^-$. Then $(x, 0) \in I$ and $(x, 0) + (y, 0) = (x + y, 0) \in A_1 \times A_2 = A$. Since A is a subtractive extension of I, $(y, 0) \in A$ and hence $y \in A_1$. Now A_1 is a subtractive extension of J_1 . Similarly, A_2 is a subtractive extension of J_2 . Conversely, suppose that $A = A_1 \times A_2$ where A_i is a subtractive extension of J_i (i = 1, 2) with $I = J_1 \times J_2$. Since A_i is a subtractive extension of $J_1 \times J_2 = I$.

Corollary 2.10. Let $I \subseteq A$ be ideals of the semiring $\mathbb{Z}_0^+ \times \mathbb{Z}_0^+$. Then A is a subtractive extension of I if and only if $A = A_1 \times A_2$ where an ideal A_i is a subtractive extension of an ideal J_i (i = 1, 2) with $I = J_1 \times J_2$.

Proof. Follows from Lemma 2.6 (4) and Theorem 2.9.

3 Ideal Theory in Quotient Ternary Semirings

Let $I \subseteq A$ be ideals of a ternary semiring S. Then we denote

- 1) $\overline{A_I} = \{x \in S : x + i \in A \text{ for some } i \in I\}$, and will be called the closure of A with respect to I;
- 2) $A = \{x \in S : \text{ there exists } q + I \in S/I_{(Q)} \text{ such that} x \in q + I \text{ and } (q + I) \cap A \neq \emptyset\}$, and will be called the closure of A with respect to $I_{(Q)}$ where I is a Q-ideal of S;
- 3) $\overline{A} = \{x \in S : x + y \in A \text{ for some } y \in A\}$, is called the k-closure of A [6].

We can easily show that i) $I \subseteq \overline{I} \subseteq \overline{A_I} \subseteq \overline{A}$; ii) $\overline{A_A} = \overline{A}$ where $I \subseteq A$ are ideals of S.

Example 3.1. Let $I = \{-8\} \cup I_{-10}$, $A = \{-6\} \cup I_{-8}$ be ideals in the ternary semiring $S = (\mathbb{Z}^- \cup \{-\infty\}, \max, \cdot)$. An inspection will show that $\overline{A_I} = \{-6\} \cup I_{-8}$, $\overline{I} = I_{-8}$ and $\overline{A} = I_{-6}$. Now $I \subsetneq \overline{I} \subsetneq \overline{A_I} \subsetneq \overline{A}$.

Theorem 3.2. Let $I \subseteq A$ be ideals of a ternary semiring S. Then $\overline{A_I}$ is the smallest subtractive extension of I containing A.

Proof. 1) Let $a_1, a_2 \in \overline{A_I}$ and $r, s \in S$. Then there exist $i_1, i_2 \in I$ such that $a_1 + i_1, a_2 + i_2 \in A$. Hence $(a_1 + a_2) + (i_1 + i_2) = a_1 + i_1 + a_2 + i_2 \in A$ where $i_1 + i_2 \in I$. So $a_1 + a_2 \in \overline{A_I}$. Similarly, $rsa_1, ra_1s, a_1rs \in \overline{A_I}$. Hence $\overline{A_I}$ is an ideal of S.

2) Clearly, $A \subseteq \overline{A_I}$.

3) Let $i \in I$, $a + i \in \overline{A_I}$, $a \in S$. Then there exists $i' \in I$ such that $a + i + i' \in A$. Now $i + i' \in I$ implies $a \in \overline{A_I}$. Hence $\overline{A_I}$ is a subtractive extension of I.

4) Let J be a subtractive extension of I containing A and let $x \in \overline{A_I}$. Then there exists $i \in I$ such that $x + i \in A \subseteq J$. Since J is a subtractive extension of I, $x \in J$. Hence $\overline{A_I} \subseteq J$.

Corollary 3.3. Let $I \subseteq A$ be ideals of a ternary semiring S. Then

 $\overline{A_I} = \cap \{J : J \text{ is a subtractive extension of } I \text{ containing } A\}.$

Now we have the following:

Theorem 3.4. Let I, A, B be ideals of a ternary semiring S such that $I \subseteq A, B$. Then

- 1) A is a subtractive extension of $I \Leftrightarrow \overline{A_I} = A$.
- 2) $\overline{(\overline{A_I})_I} = \overline{A_I}.$
- 3) $A \subseteq B \Rightarrow \overline{A_I} \subseteq \overline{B_I}$.
- 4) $\overline{(A \cap B)_I} = \overline{A_I} \cap \overline{B_I}.$
- 5) If A, B are subtractive extensions of I, then $A \cap B$ is a subtractive extension of I.
- 6) If J is an ideal of S such that $I \subseteq J \subseteq A$, then $\overline{A_I} \subseteq \overline{A_J}$.

Now by Theorem 3.4, we have i) A is a subtractive ideal of $S \Leftrightarrow \overline{A} = A$. ii) $\overline{\overline{A}} = \overline{A}$. iii) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$.

Corollary 3.5. Let A, B be ideals of a ternary semiring S. Then $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

Proof. By Theorem 3.4 (3), $\overline{A \cap B} = \overline{(A \cap B)_{(A \cap B)}} \subseteq \overline{A_{(A \cap B)}}$. Since $A \cap B \subseteq A$, by Theorem 3.4 (6), $\overline{A_{(A \cap B)}} \subseteq \overline{A_A} = \overline{A}$. Hence $\overline{A \cap B} \subseteq \overline{A}$. Similarly, $\overline{A \cap B} \subseteq \overline{B}$. Now $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

The following example shows that equality in Corollary 3.5 may not hold.

Example 3.6. Let $A = \{-4\} \cup I_{-8}, B = \{-6, -7\} \cup I_{-10}$ be ideals in the ternary semiring $S = (\mathbb{Z}^- \cup \{-\infty\}, \max, \cdot)$. Then $A \cap B = I_{-10}$. By Lemma 2.2, $A \cap B$ is a subtractive ideal of S and hence $\overline{A \cap B} = I_{-10}$. An inspection will show that $\overline{A} = I_{-4}$ and $\overline{B} = I_{-6}$. Hence $\overline{A \cap B} = I_{-6}$. Now $\overline{A \cap B} \subsetneq \overline{A \cap B}$.

In the next lemma we give the relation between $\overline{A_I}$ and \tilde{A} .

Lemma 3.7. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S with $I \subseteq A$. Then $\overline{A_I} = \widetilde{A}$.

Proof. Let $x \in \overline{A_I}$. Then there exists $i_1 \in I$ such that $x + i_1 \in A...(1)$. By Lemma 1.5, there exists $q \in Q$ such that $x \in q + I$. Then $x = q + i_2$ for some $i_2 \in I$. So $x + i_i = q + i_2 + i_1 \in q + I$. Thus $(q + I) \cap A \neq \emptyset$. Hence $x \in \widetilde{A}$. Now $\overline{A_I} \subseteq \widetilde{A}$. For other inclusion, let $z \in \widetilde{A}$. Then there exists $q + I \in S/I_{(Q)}$ such that $z \in q + I$ and $(q + I) \cap A \neq \emptyset$. So z = q + i' for some $i' \in I$. Let $y = q + i'' \in (q + I) \cap A$ where $i'' \in I$. Since $i' \in I \subseteq A$ and A is an ideal of S, $z + i'' = q + i'' + i' \in A$. Hence $z \in \overline{A_I}$. Now $\widetilde{A} \subseteq \overline{A_I}$.

Theorem 3.8. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S with $I \subseteq A$. Then \widetilde{A} is the smallest subtractive extension of I containing A.

Proof. Follows from Lemma 3.7 and Theorem 3.2.

Corollary 3.9. [7, Proposition 2.16] Let I be a Q-ideal of a semiring S and A be an ideal of S with $I \subseteq A$. Then \widetilde{A} is the smallest subtractive extension of I containing A.

Now we extend results of Chaudhari and Bonde [7, Lemma 2.6 and Theorems 2.7, 2.10, 2.12] for semirings to ternary semirings. For the sake of completeness we give the proof of the following lemma which is exactly similar to the proof of [7, Lemma 2.6].

Lemma 3.10. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S with $I \subseteq A$. Then A is a subtractive extension of I if and only if I is a $Q \cap A$ -ideal of A.

Proof. Let A be a subtractive extension of I. Let $a \in A$. Then there exists a unique $q \in Q$ such that $a \in q + I$. So a = q + i for some $i \in I$. Since A is a subtractive extension of I, $q \in A$. Hence $q \in Q \cap A$. If $(q_1 + I) \cap (q_2 + I) \neq \emptyset$ for some $q_1, q_2 \in Q \cap A$, then $q_1 = q_2$ because I is a Q-ideal of S. Thus I is a $Q \cap A$ -ideal of A. Conversely, suppose that I is a $Q \cap A$ -ideal of A and $x \in I$, $x + y \in A$, $y \in S$. Since I is a $Q \cap A$ -ideal of A, there exists a unique $q_1 \in Q \cap A$ such that $x + y + I \subseteq q_1 + I$. Also since I is a Q-ideal of S, there exists a unique $q_2 \in Q$ such that $y + I \subseteq q_2 + I$. By using Lemma 1.4, $x + y + I \subseteq x + q_2 + I \subseteq q_2 + I$ as $x \in I$. So $(q_1 + I) \cap (q_2 + I) \neq \emptyset$. Since I is a Q-ideal of S, $q_2 = q_1 \in A$. Now $y \in q_2 + I \subseteq A$. Hence A is a subtractive extension of I.

Theorem 3.11. Let $I \subseteq A$ be ideals of a ternary semiring S and I a Q-ideal of S. Then following statements are equivalent:

- 1) A is a subtractive extension of I;
- 2) I is a $Q \cap A$ -ideal of A;
- 3) $A/I_{(Q\cap A)}$ is an ideal of a ternary semiring $S/I_{(Q)}$;
- 4) $A/I_{(Q\cap A)} \subseteq S/I_{(Q)}$.

Proof. $(1) \Rightarrow (2)$ Follows from Lemma 3.10.

(2) \Rightarrow (3) As A is an ideal of S, $A/I_{(Q \cap A)}$ is an ideal of ternary semiring $S/I_{(Q)}$. (3) \Rightarrow (4) Trivial.

 $(4) \Rightarrow (1)$ Let $x \in I$, $x + y \in A$, $y \in S$. Then $x \in I = q_0 + I$ where $q_0 + I$ is the zero element of $S/I_{(Q)}$. Now by definition of quotient ternary semiring, there exists a unique $q_1 + I \in A/I_{(Q\cap A)} \subseteq S/I_{(Q)}$ and a unique $q_2 + I \in S/I_{(Q)}$ such that $x + y \in q_1 + I$ and $y \in q_2 + I$. Here $x + y \in (q_0 + I) \oplus (q_2 + I) = q_2 + I$. So $(q_1 + I) \cap (q_2 + I) \neq \emptyset$. Hence $q_2 = q_1 \in A$. Now $y \in q_2 + I \subseteq A$.

Corollary 3.12. [3, Lemma 3.4] Let I a Q-ideal of a ternary semiring S and A a subtractive ideal of S with $I \subseteq A$. Then I is a $Q \cap A$ -ideal of A.

The following example shows that the converse of Corollary 3.12 is not true.

Example 3.13. Let $I = \langle -4 \rangle \times \{0\}$, $A = \langle -2 \rangle \times \langle -2, -3 \rangle$ be ideals in the ternary semiring $S = \mathbb{Z}_0^- \times \mathbb{Z}_0^-$. By [8, Example 6], [5, Lemma 2.4] and Theorem 2.7, I is a Q-ideal of S where $Q = \{0, -1, -2, -3\} \times \mathbb{Z}_0^-$. Clearly, $I \subseteq A$. By Theorem 2.4, $\langle -2 \rangle$ is a subtractive extension of $\langle -4 \rangle$. Also $\langle -2, -3 \rangle$ is a subtractive extension

of $\{0\}$. Hence by Theorem 2.9, A is a subtractive extension of I. By Lemma 3.10, I is a $Q \cap A$ -ideal of A. But by Theorem 1.3 and Theorem 2.7(4), A is not a subtractive ideal of S.

Theorem 3.14. Let I be a Q-ideal of a ternary semiring S. Then L is an ideal of $S/I_{(Q)}$ if and only if there exists an ideal A of S such that A is a subtractive extension of I and $A/I_{(Q\cap A)} = L$.

Proof. Let L be an ideal of a ternary semiring $S/I_{(Q)}$. Denote $A = \{x \in S :$ there exist a unique $q \in Q$ such that $x + I \subseteq q + I \in L\}$.

(1) Let $a \in I$. Then $a + I \subseteq I = q_0 + I \in L$, so $a \in A$. Now $I \subseteq A$.

(2) Let $x, y \in A$. Then there exist unique $q_1, q_2 \in Q$ such that $x + I \subseteq q_1 + I \in L$ and $y+I \subseteq q_2+I \in L$. Again there exists unique $q_3 \in Q$ such that $(q_1+I)\oplus(q_2+I) = q_3 + I \in L$ where $q_1 + q_2 + I \subseteq q_3 + I$. By Lemma 1.4, $x + I \subseteq q_1 + I$ and $y+I \subseteq q_2+I \Rightarrow x+y+I \subseteq q_1+y+I \subseteq q_1+q_2+I \subseteq q_3+I \in L$. Now $x+y \in A$. Similarly, if $x \in A$ and $r, s \in S$, then $rsx, rxs, xrs \in A$. Hence A is an ideal of S. (3) Let $x \in I, x+y \in A, y \in S$. So $x+y \in q+I \in L$. Since I is a Q-ideal of S, there exists a unique $q' \in Q$ such that $y \in q' + I$. Since $x \in I, x+y \in q' + I$. So $(q+I) \cap (q'+I) \neq \emptyset$ implies q = q'. Now $y \in q' + I = q + I \in L$. Thus $y \in A$. Hence A is a subtractive extension of I.

(4) Clearly, $A/I_{(Q\cap A)} \subseteq L$. Now if $q + I \in L$, then $q \in A$. So $L \subseteq A/I_{(Q\cap A)}$. Thus $A/I_{(Q\cap A)} = L$.

Conversely, suppose that A is a subtractive extension of I and $A/I_{(Q\cap A)} = L$. Then by Theorem 3.11, L is an ideal of $S/I_{(Q)}$.

Theorem 3.15. Let S be a ternary semiring, I a Q-ideal of S and P a subtractive extension of I. Then P is a prime ideal of S if and only if $P/I_{(Q\cap P)}$ is a prime ideal of $S/I_{(Q)}$.

Proof. Let *P* be a prime ideal of *S*. Suppose that $q_1 + I, q_2 + I, q_3 + I \in S/I_{(Q)}$ and $(q_1 + I) \odot (q_2 + I) \odot (q_3 + I) = q_4 + I \in P/I_{(Q \cap P)}$ where $q_4 \in Q \cap P$ is a unique element such that $q_1q_2q_3 + I \subseteq q_4 + I$. So $q_1q_2q_3 = q_4 + i$ for some $i \in I$. Now $q_1q_2q_3 \in P$ implies $q_1 \in P$ or $q_2 \in P$ or $q_3 \in P$. Hence $q_1 + I \in P/I_{(Q \cap P)}$ or $q_2 + I \in P/I_{(Q \cap P)}$ or $q_3 + I \in P/I_{(Q \cap P)}$. Conversely, suppose that $P/I_{(Q \cap P)}$ is a prime ideal of $S/I_{(Q)}$. Let $abc \in P$ where $a, b, c \in S$. Since *I* is a *Q*-ideal of *S*, there exist unique $q_1, q_2, q_3, q_4 \in Q$ such that $a \in q_1 + I, b \in q_2 + I, c \in q_3 + I$ and $abc \in (q_1 + I) \odot (q_2 + I) \odot (q_3 + I) = q_4 + I$ where $q_1q_2q_3 + I \subseteq q_4 + I$. So $abc = q_4 + i'$ for some $i' \in I$. Since *P* is a subtractive extension of *I*, $q_4 \in P$. So $(q_1 + I) \odot (q_2 + I) \odot (q_3 + I) = q_4 + I \in P/I_{(Q \cap P)}$. Since $P/I_{(Q \cap P)}$ is a prime ideal, we may assume $q_1 + I \in P/I_{(Q \cap P)}$. Now $a \in q_1 + I \Rightarrow a = q_1 + i''$ for some $i'' \in I \Rightarrow a \in P$ as $q_1 \in Q \cap P \subseteq P$. □

Theorem 3.16. Let S be a ternary semiring, I a Q-ideal of S and P a subtractive extension of I. Then P is a semiprime ideal of S if and only if $P/I_{(Q\cap P)}$ is a semiprime ideal of $S/I_{(Q)}$.

Proof. Let *P* be a semiprime ideal of *S*. Suppose that $q + I \in S/I_{(Q)}$ and $(q + I) \odot (q + I) \odot (q + I) = q' + I \in P/I_{(Q \cap P)}$ where $q' \in Q \cap P$ is a unique element such that $q^3 + I \subseteq q' + I$. So $q^3 = q' + i$ for some $i \in I$. Now $q^3 \in P$ implies $q \in P$. Hence $q + I \in P/I_{(Q \cap P)}$. Conversely, suppose that $P/I_{(Q \cap P)}$ is a semiprime ideal of $S/I_{(Q)}$. Let $a^3 \in P$ where $a \in S$. Since *I* is a *Q*-ideal of *S*, there exist unique $q, q' \in Q$ such that $a \in q + I$ and $a^3 \in (q + I) \odot (q + I) \odot (q + I) = q' + I$. So $a^3 = q' + i'$ for some $i' \in I$. Since *P* is a subtractive extension of *I*, $q' \in P$ where $q^3 + I \subseteq q' + I$. So $(q + I) \odot (q + I) \odot (q + I) = q' + I \in P/I_{(Q \cap P)}$. Since $P/I_{(Q \cap P)}$ is a semiprime ideal, $q + I \in P/I_{(Q \cap P)}$. Now $a \in q + I \Rightarrow a = q + i''$ for some $i'' \in I \Rightarrow a \in P$ as $q \in Q \cap P \subseteq P$. □

Chaudhari and Ingale [5, Theorem 3.4], proved that if I, J are subtractive ideals of a ternary semiring S, then $I \cup J$ is an ideal of S if and only if $I \subseteq J$ or $J \subseteq I$. For subtractive extensions we have:

Example 3.17. Let $I = \langle -4 \rangle \times \{0\}, A = \langle -2 \rangle \times \langle -2 \rangle, B = \langle -4 \rangle \times T$ be ideals in the ternary semiring $S = \mathbb{Z}_0^- \times \mathbb{Z}_0^-$ where $T = \{n \in \mathbb{Z}_0^- : n \leq -3\} \cup \{0\}$. By Theorem 2.4, $\langle -2 \rangle$ and $\langle -4 \rangle$ are subtractive extensions of $\langle -4 \rangle$. Also $\langle -2 \rangle, T$ are subtractive extensions of $\{0\}$. Hence by Theorem 2.9, A, B are subtractive extensions of I. By Example 3.13, $A \cup B = \langle -2 \rangle \times \langle -2, -3 \rangle$ is a subtractive extension of I. But $A \notin B$ and $B \notin A$.

Acknowledgement. The authors are highly grateful to referees for severable valuable comments and suggestions which improved the manuscript.

References

- [1] W. G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37 55.
- [2] T.K. Dutta, S. Kar, On regular ternary semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific (2003) 343 - 355.
- [3] J.N. Chaudhari, K.J. Ingale, On partitioning and subtractive ideals of ternary semirings, Kyungpook Math. Journal 51 (1) (2011) 69-76.
- [4] S. Kar, Ideal theory in the ternary semiring Z₀[−], Bull. Malays. Math. Sci. Soc. 34 (1)(2) (2011) 69-77.
- [5] J.N. Chaudhari, K.J. Ingale, Prime avoidance theorem for ternary semirings, Journal of Advanced Research in Pure Mathematics 5 (1) (2013) 80-85.
- [6] T.K. Dutta, S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Calcutta Math. Soc. 97 (5) (2005) 445-454.
- [7] J.N. Chaudhari, D.R. Bonde, Ideal theory in quotient semirings, Thai J. Math. (To appear).

[8] Paul J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412-416.

(Received 19 September 2012) (Accepted 8 April 2014)

 $\mathbf{T}_{\mathrm{HAI}} \; \mathbf{J.} \; \mathbf{M}_{\mathrm{ATH.}} \; \mathrm{Online} \; @ \; \texttt{http://thaijmath.in.cmu.ac.th}$