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Abstract : In this paper, we introduce the concept of subtractive extension of an
ideal of a ternary semiring. Further, 1) A characterization of subtractive extensions
of ideals in the ternary semiring of non-positive integers is investigated. 2) The
relation between subtractive extensions of a Q-ideal I in a ternary semiring S
and the ideals in the quotient ternary semiring S/I(Q) is obtained. 3) We show
that a subtractive extension P of a Q-ideal I in a ternary semiring S is a prime
(semiprime) ideal if and only if P/I(Q∩P ) is a prime (semiprime) ideal in the
quotient ternary semiring S/I(Q).
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1 Introduction

Generalizing the notion of ternary ring introduced by Lister [1], Dutta and
Kar [2] introduced the notion of ternary semiring. A non-empty set S together
with a binary operation called addition (+) and a ternary operation called ternary
multiplication (·) is called ternary semiring if it satisfies the following conditions
for all a, b, c, d, e ∈ S:

1. (a+ b) + c = a+ (b+ c);

2. a+ b = b+ a;
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3. (a · b · c) · d · e = a · (b · c · d) · e = a · b · (c · d · e);

4. there exists 0 ∈ S such that a+0 = a = 0+a, a · b ·0 = a ·0 · b = 0 ·a · b = 0;

5. (a+ b) · c · d = a · c · d+ b · c · d;

6. a · (b + c) · d = a · b · d+ a · c · d;

7. a · b · (c+ d) = a · b · c+ a · b · d.

Clearly, every semiring is a ternary semiring. Denote the sets of all non-positive,
negative, non-negative, and positive integers respectively by Z−

0 , Z
−, Z+

0 , and N.
The set Z−

0 is a ternary semiring under usual addition and ternary multiplication
of non-positive integers but it is not a semiring.

If there exists an element e in a ternary semiring S such that eex = exe = xee
= x for all x ∈ S, then e is called the identity element of S. A ternary semiring
S is said to be commutative if abc = acb = cab for all a, b, c ∈ S. The ternary
semiring (Z−

0 ,+, ·) is commutative with identity element −1. A non-empty subset
I of a ternary semiring S is called an ideal of S if the following conditions are
satisfied:

1. a, b ∈ I implies a+ b ∈ I;

2. a ∈ I, r, s ∈ S implies rsa, ras, ars ∈ I.

An ideal I of a ternary semiring S is called a subtractive ideal (= k-ideal) if x,
x+ y ∈ I, y ∈ S, then y ∈ I. If S is a commutative ternary semiring with identity
element, then a proper ideal I of S is called i) prime if abc ∈ I, a, b, c ∈ S implies
a ∈ I or b ∈ I or c ∈ I; ii) semiprime if a3 ∈ I, a ∈ S implies a ∈ I. Clearly, every
prime ideal is a semiprime ideal. An ideal I of a ternary semiring S is called a
Q-ideal (= partitioning ideal) if there exists a subset Q of S such that

1. S = ∪{q + I : q ∈ Q};

2. if q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) 6= ∅ ⇔ q1 = q2.

Let I be a Q-ideal of a ternary semiring S. Then S/I(Q) = {q+ I : q ∈ Q} forms a
ternary semiring under the following addition “⊕”and ternary multiplication “⊙”,
(q1 + I) ⊕ (q2 + I) = q

′

+ I where q
′

∈ Q is a unique element such that q1 + q2
+ I ⊆ q

′

+ I and (q1 + I)⊙(q2 + I)⊙(q3 + I) = q4 + I where q4 ∈ Q is a unique
element such that q1q2q3 + I ⊆ q4 + I. This ternary semiring is called a quotient
ternary semiring of S by I and denoted by (S/I(Q) , ⊕ , ⊙) or just S/I(Q). If q0
∈ Q is a unique element such that q0 + I = I, then q0 + I is the zero element of
S/I(Q) [3, Lemma 2.3].

For a, b ∈ (Z−

0 ,+, ·) and a 6= 0, we define a | b if and only if b = αβa for
some α, β ∈ Z−

0 . An ideal I of (Z−

0 ,+, ·) is said to be generated by a subset
A = {a1, a2, · · · , an} of Z−

0 if for every x ∈ I, there exist αi, βi ∈ Z−

0 such that
x =

∑n
i=1 αiβiai. If A = {a}, then Z−

0 Z
−

0 a is called a principal ideal generated
by a. For a1, a2, · · · , ak ∈ Z−

0 , we denote i) 〈a1, a2, · · · , ak〉 = the ideal gener-
ated by a1, a2, · · · , ak in the ternary semiring Z−

0 ; ii) (a1, a2, · · · , ak) = g.c.d. of
a1, a2, · · · , ak. For example, (−4,−6) = 2.
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The concept of subtractive extension of ideals in semirings is recently intro-
duced by Chaudhari and Bonde [7]. In section 2, we extend this concept of sub-
tractive extension of an ideal to ternary semirings and obtain a characterization
of subtractive extension of ideals in the ternary semiring (Z−

0 ,+, ·). In section 3,
we obtain the relation between subtractive extensions of a Q-ideal I in a ternary
semiring S and the ideals in the quotient ternary semiring S/I(Q) and hence prove
that a subtractive extension P of a Q-ideal of a ternary semiring S is a prime
(semiprime) ideal if and only if P/I(Q∩P ) is a prime (semiprime) ideal of the quo-
tient ternary semiring S/I(Q).

Here we list some results that we need throughout the paper.

Lemma 1.1. [4, Lemma 3.12] Let I = 〈a1, a2, · · · , an〉 ⊆ Z−

0 . If (a1, a2, · · · , an)
= d, then there exists a largest r ∈ Z−

0 such that (−1)(−d)k ∈ I for all k ≤ r.

Theorem 1.2. [5, Theorem 2.7] Every ideal of Z−

0 is finitely generated.

Theorem 1.3. [6, Theorem 5.5] An ideal I of Z−

0 is a subtractive ideal if and only
if I is a principal ideal.

Lemma 1.4. [3, Lemma 1.4] Let I be an ideal of a ternary semiring S and a, x
∈ S such that a + I ⊆ x + I. Then

1. a + r + I ⊆ x + r + I;

2. rsa + I ⊆ rsx + I;

3. ras + I ⊆ rxs + I;

4. ars + I ⊆ xrs + I for all r, s ∈ S.

Lemma 1.5. [3, Lemma 2.2] Let I be a Q-ideal of a ternary semiring S. If x ∈ S,
then there exists a unique q ∈ Q such that x + I ⊆ q + I. Hence x = q + a for
some a ∈ I.

2 Subtractive Extension of Ideals in the Ternary

Semiring Z−
0

In this section, we extend the concept of subtractive extension of an ideal
for semirings to ternary semirings and obtain a characterization of subtractive
extension of ideals in the ternary semiring (Z−

0 ,+, ·).

Definition 2.1. Let I be an ideal of a ternary semiring S. An ideal A of S with
I ⊆ A is said to be a subtractive extension of I if x ∈ I, x + y ∈ A, y ∈ S, then
y ∈ A.

Clearly, every subtractive ideal of a ternary semiring S containing an ideal
I of S is a subtractive extension of I. Also every ideal of a ternary semiring S
is a subtractive extension of {0}. Let (Z− ∪ {−∞}, max , ·), the commutative
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ternary semiring with zero element −∞ and identity −1. For n ∈ Z−, we denote
In = {r ∈ Z− : r ≤ n} ∪ {−∞}. Clearly, In is an ideal in the ternary semiring
(Z− ∪ {−∞}, max , ·). The following lemma can be proved easily.

Lemma 2.2. Let I ⊆ A be non-zero ideals of the ternary semiring S = (Z− ∪
{−∞}, max , ·). Then

1) I is a subtractive ideal of S if and only if I = In for some n ∈ Z−;

2) A is a subtractive extension of I if and only if I ⊆ In ⊆ A for some n ∈ Z−.

Example 2.3. Let I = {−6} ∪ I−8, A = {−4} ∪ I−6 be ideals in the ternary
semiring S = (Z− ∪ {−∞}, max , ·). Then by Lemma 2.2, A is a subtractive
extension of I but not a subtractive ideal.

By Theorem 1.2, every ideal of (Z−

0 , + , ·) is finitely generated. Now the
following theorem gives a characterization of subtractive extensions of non-zero
ideals in the ternary semiring (Z−

0 , + , ·):

Theorem 2.4. Let I = 〈b1, b2, ..., bm〉 be a non-zero ideal of S = (Z−

0 , + , ·) and
d = (b1, b2, ..., bm). Then an ideal A of S is a subtractive extension of I if and
only if A = 〈a〉 where a | −d.

Proof. Let A be a subtractive extension of I. Suppose that A is not a principal
ideal. Then by Theorem 1.2, A = 〈a1, a2, ..., an〉 where an < an−1 < ... < a1 < −1,
ai ∤ aj for all i < j, j = 2, 3, ..., n, n ≥ 2. Let d

′

= (a1, a2, ..., an). By Lemma

1.1, there exist r1, r2 ∈ Z− such that (−1)(−d)k ∈ I and (−1)(−d
′

)s ∈ A for
all k ≤ r1, s ≤ r2. Hence (−1)(−d)k ∈ I and (−1)(−d

′

)k ∈ A for all k ≤ r
where r = min{r1, r2} ...(1). Since −d,−d

′

< 0, (−1)(−d
′

)r, (−1)(−d)r + (−1) ≤
r. So by (1), (−d)(−d

′

)r = (−1)(−d)(−1)(−d
′

)r ∈ I and (−d)(−d
′

)r + (−d
′

)
= (−1)(−d

′

)((−1)(−d)r + (−1)) ∈ A. Since A is a subtractive extension of I,
−d

′

∈ A. Hence −d
′

= a1. So a1 | a2, a contradiction. Now A = 〈a〉 for some
a ∈ Z−

0 . Since I ⊆ A, a | −d. Conversely, suppose that A = 〈a〉 where a | −d.
Clearly, I ⊆ A. By Theorem 1.3, A is a subtractive ideal of S and hence A is a
subtractive extension of I.

The following example shows that the sum (union) of two subtractive exten-
sions of I need not be a subtractive extension of I.

Example 2.5. Let I = 〈−12,−18〉, A = 〈−2〉 and B = 〈−3〉 be ideals in the
ternary semiring Z−

0 . By Theorem 2.4, A, B are subtractive extensions of I, but
A + B = {0,−2,−3,−4,−5,−6, ...} = 〈−2,−3〉, is not a subtractive extension of
I. An inspection will show that A ∪ B is not an ideal of Z−

0 and hence A ∪ B is
not a subtractive extension of I.

Denote Z+
0 ×Z+

0 = (Z+
0 , + , ·)×(Z+

0 , + , ·), the semiring with pointwise addition
and pointwise multiplication. Also denote Z−

0 × Z−

0 = (Z−

0 , + , ·) × (Z−

0 , + , ·),
the ternary semiring with pointwise addition and pointwise ternary multiplication.
For a subset A of Z−

0 ×Z−

0 , we denote A∗ = {(n,m) ∈ Z+
0 ×Z+

0 : (−n,−m) ∈ A}.
The following lemma can be proved easily.
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Lemma 2.6. Let I be a subset of Z−

0 × Z−

0 . Then

1) I is an ideal if and only if I∗ is an ideal of Z+
0 × Z+

0 .

2) I is a Q-ideal if and only if I∗ is a Q∗-ideal of Z+
0 × Z+

0 .

3) I is a subtractive ideal if and only if I∗ is a subtractive ideal of Z+
0 × Z+

0 .

4) If I ⊆ A are ideals of Z−

0 ×Z−

0 , then A is a subtractive extension of I if and
only if A∗ is a subtractive extension of I∗ in Z+

0 × Z+
0 .

Theorem 2.7. Let I be a subset of Z−

0 × Z−

0 . Then

1) I is an ideal if and only if I = J1×J2 where J1, J2 are ideals of the ternary
semiring Z−

0 .

2) I is a principal ideal if and only if I = J1 × J2 where J1, J2 are principal
ideals in the ternary semiring Z−

0 .

3) I is a Q-ideal if and only if I = J1 × J2 where J1, J2 are Q1, Q2-ideals
respectively in the ternary semiring Z−

0 with Q = Q1 ×Q2.

4) I is a subtractive ideal if and only if I = J1×J2 where J1, J2 are subtractive
ideals in the ternary semiring Z−

0 .

Proof. Follows from Lemma 2.6, [7, Lemma 2.1 and Lemma 2.2] and [5, Lemma
2.3 and Lemma 2.4].

Theorem 2.8. Let I be an ideal of Z−

0 × Z−

0 . Then the following statements are
equivalent:

1) I is a principal ideal;

2) I is a Q-ideal;

3) I is a subtractive ideal.

Proof. Follows from Theorem 2.7 and [5, Theorem 2.6].

Theorem 2.9. Let I ⊆ A be ideals of the ternary semiring Z−

0 × Z−

0 . Then A
is a subtractive extension of I if and only if A = A1 × A2 where an ideal Ai is a
subtractive extension of an ideal Ji (i = 1, 2) in the ternary semiring Z−

0 with I
= J1 × J2.

Proof. Let A be a subtractive extension of I. By Theorem 2.7, A = A1×A2 and I
= J1 × J2 where A1, A2, J1, J2 are ideals of the ternary semiring Z−

0 . Let x ∈ J1,
x+y ∈ A1, y ∈ Z−

0 . Then (x, 0) ∈ I and (x, 0)+(y, 0) = (x+y, 0) ∈ A1×A2 = A.
Since A is a subtractive extension of I, (y, 0) ∈ A and hence y ∈ A1. Now A1

is a subtractive extension of J1. Similarly, A2 is a subtractive extension of J2.
Conversely, suppose that A = A1 × A2 where Ai is a subtractive extension of Ji
(i = 1, 2) with I = J1 × J2. Since Ai is a subtractive extensions of Ji (i = 1, 2),
A1 ×A2 = A is a subtractive extension of J1 × J2 = I.
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Corollary 2.10. Let I ⊆ A be ideals of the semiring Z+
0 × Z+

0 . Then A is a
subtractive extension of I if and only if A = A1 × A2 where an ideal Ai is a
subtractive extension of an ideal Ji (i = 1, 2) with I = J1 × J2.

Proof. Follows from Lemma 2.6 (4) and Theorem 2.9.

3 Ideal Theory in Quotient Ternary Semirings

Let I ⊆ A be ideals of a ternary semiring S. Then we denote

1) AI = {x ∈ S : x+ i ∈ A for some i ∈ I}, and will be called the closure of
A with respect to I;

2) Ã = {x ∈ S : there exists q + I ∈ S/I(Q) such thatx ∈ q + I and (q +
I) ∩ A 6= ∅}, and will be called the closure of A with respect to I(Q) where
I is a Q-ideal of S;

3) A = {x ∈ S : x+ y ∈ A for some y ∈ A}, is called the k-closure of A [6].

We can easily show that i) I ⊆ I ⊆ AI ⊆ A; ii) AA =A where I ⊆ A are ideals of
S.

Example 3.1. Let I = {−8} ∪ I−10, A = {−6} ∪ I−8 be ideals in the ternary
semiring S = (Z−∪{−∞}, max , ·). An inspection will show that AI = {−6}∪I−8,
I = I−8 and A = I−6. Now I ( I ( AI ( A.

Theorem 3.2. Let I ⊆ A be ideals of a ternary semiring S. Then AI is the
smallest subtractive extension of I containing A.

Proof. 1) Let a1, a2 ∈ AI and r, s ∈ S. Then there exist i1, i2 ∈ I such that
a1 + i1, a2 + i2 ∈ A. Hence (a1 + a2) + (i1 + i2) = a1 + i1 + a2 + i2 ∈ A where
i1 + i2 ∈ I. So a1 + a2 ∈ AI . Similarly, rsa1, ra1s, a1rs ∈ AI . Hence AI is an
ideal of S.
2) Clearly, A ⊆ AI .
3) Let i ∈ I, a+ i ∈ AI , a ∈ S. Then there exists i

′

∈ I such that a+ i + i
′

∈ A.
Now i+ i

′

∈ I implies a ∈ AI . Hence AI is a subtractive extension of I.
4) Let J be a subtractive extension of I containing A and let x ∈ AI . Then there
exists i ∈ I such that x+ i ∈ A ⊆ J . Since J is a subtractive extension of I, x ∈ J .
Hence AI ⊆ J .

Corollary 3.3. Let I ⊆ A be ideals of a ternary semiring S. Then

AI = ∩{J : J is a subtractive extension of I containing A}.

Now we have the following:

Theorem 3.4. Let I, A, B be ideals of a ternary semiring S such that I ⊆ A,B.
Then
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1) A is a subtractive extension of I ⇔ AI = A.

2) (AI)I = AI .

3) A ⊆ B ⇒ AI ⊆ BI .

4) (A ∩B)I = AI ∩BI .

5) If A, B are subtractive extensions of I, then A∩B is a subtractive extension
of I.

6) If J is an ideal of S such that I ⊆ J ⊆ A, then AI ⊆ AJ .

Now by Theorem 3.4, we have i) A is a subtractive ideal of S ⇔ A = A. ii) A
= A. iii) A ⊆ B ⇒ A ⊆ B.

Corollary 3.5. Let A, B be ideals of a ternary semiring S. Then A ∩B ⊆ A∩B.

Proof. By Theorem 3.4 (3), A ∩B = (A ∩B)(A∩B) ⊆ A(A∩B). Since A ∩ B ⊆ A,

by Theorem 3.4 (6), A(A∩B) ⊆ AA = A. Hence A ∩B ⊆ A. Similarly, A ∩B ⊆ B.

Now A ∩B ⊆ A ∩B.

The following example shows that equality in Corollary 3.5 may not hold.

Example 3.6. Let A = {−4}∪ I−8, B = {−6,−7}∪ I−10 be ideals in the ternary
semiring S = (Z− ∪ {−∞}, max , ·). Then A ∩B = I−10. By Lemma 2.2, A ∩B
is a subtractive ideal of S and hence A ∩B = I−10. An inspection will show that
A = I−4 and B = I−6. Hence A ∩B = I−6. Now A ∩B ( A ∩B.

In the next lemma we give the relation between AI and Ã.

Lemma 3.7. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S
with I ⊆ A. Then AI = Ã.

Proof. Let x ∈ AI . Then there exists i1 ∈ I such that x+ i1 ∈ A...(1). By Lemma
1.5, there exists q ∈ Q such that x ∈ q + I. Then x = q + i2 for some i2 ∈ I. So
x+ ii = q+ i2+ i1 ∈ q+ I. Thus (q+ I)∩A 6= ∅. Hence x ∈ Ã. Now AI ⊆ Ã. For

other inclusion, let z ∈ Ã. Then there exists q + I ∈ S/I(Q) such that z ∈ q + I

and (q + I) ∩ A 6= ∅. So z = q + i
′

for some i
′

∈ I. Let y = q + i
′′

∈ (q + I) ∩ A
where i

′′

∈ I. Since i
′

∈ I ⊆ A and A is an ideal of S, z + i
′′

= q + i
′′

+ i
′

∈ A.
Hence z ∈ AI . Now Ã ⊆ AI .

Theorem 3.8. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S
with I ⊆ A. Then Ã is the smallest subtractive extension of I containing A.

Proof. Follows from Lemma 3.7 and Theorem 3.2.

Corollary 3.9. [7, Proposition 2.16] Let I be a Q-ideal of a semiring S and A

be an ideal of S with I ⊆ A. Then Ã is the smallest subtractive extension of I
containing A.
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Now we extend results of Chaudhari and Bonde [7, Lemma 2.6 and Theorems
2.7, 2.10, 2.12] for semirings to ternary semirings. For the sake of completeness
we give the proof of the following lemma which is exactly similar to the proof of
[7, Lemma 2.6].

Lemma 3.10. Let I be a Q-ideal of a ternary semiring S and A be an ideal of S
with I ⊆ A. Then A is a subtractive extension of I if and only if I is a Q∩A-ideal
of A.

Proof. Let A be a subtractive extension of I. Let a ∈ A. Then there exists a
unique q ∈ Q such that a ∈ q + I. So a = q + i for some i ∈ I. Since A is a
subtractive extension of I, q ∈ A. Hence q ∈ Q ∩ A. If (q1 + I) ∩ (q2 + I) 6= ∅
for some q1, q2 ∈ Q ∩ A, then q1 = q2 because I is a Q-ideal of S. Thus I is a
Q ∩ A-ideal of A. Conversely, suppose that I is a Q ∩ A-ideal of A and x ∈ I,
x+ y ∈ A, y ∈ S. Since I is a Q ∩ A-ideal of A, there exists a unique q1 ∈ Q ∩ A
such that x+ y + I ⊆ q1 + I. Also since I is a Q-ideal of S, there exists a unique
q2 ∈ Q such that y+I ⊆ q2+I. By using Lemma 1.4, x+y+I ⊆ x+q2+I ⊆ q2+I
as x ∈ I. So (q1 + I) ∩ (q2 + I) 6= ∅. Since I is a Q-ideal of S, q2 = q1 ∈ A. Now
y ∈ q2 + I ⊆ A. Hence A is a subtractive extension of I.

Theorem 3.11. Let I ⊆ A be ideals of a ternary semiring S and I a Q-ideal of
S. Then following statements are equivalent:

1) A is a subtractive extension of I;

2) I is a Q ∩A-ideal of A;

3) A/I(Q∩A) is an ideal of a ternary semiring S/I(Q);

4) A/I(Q∩A) ⊆ S/I(Q).

Proof. (1) ⇒ (2) Follows from Lemma 3.10.
(2) ⇒ (3) As A is an ideal of S, A/I(Q∩A) is an ideal of ternary semiring S/I(Q).
(3) ⇒ (4) Trivial.
(4) ⇒ (1) Let x ∈ I, x + y ∈ A, y ∈ S. Then x ∈ I = q0 + I where q0 + I is
the zero element of S/I(Q). Now by definition of quotient ternary semiring, there
exists a unique q1 + I ∈ A/I(Q∩A) ⊆ S/I(Q) and a unique q2 + I ∈ S/I(Q) such
that x+ y ∈ q1 + I and y ∈ q2 + I. Here x+ y ∈ (q0 + I)⊕ (q2 + I) = q2 + I. So
(q1 + I) ∩ (q2 + I) 6= ∅. Hence q2 = q1 ∈ A. Now y ∈ q2 + I ⊆ A.

Corollary 3.12. [3, Lemma 3.4] Let I a Q-ideal of a ternary semiring S and A
a subtractive ideal of S with I ⊆ A. Then I is a Q ∩ A-ideal of A.

The following example shows that the converse of Corollary 3.12 is not true.

Example 3.13. Let I = 〈−4〉×{0}, A = 〈−2〉×〈−2,−3〉 be ideals in the ternary
semiring S = Z−

0 × Z−

0 . By [8, Example 6], [5, Lemma 2.4] and Theorem 2.7, I is
a Q-ideal of S where Q = {0,−1,−2,−3}×Z−

0 . Clearly, I ⊆ A. By Theorem 2.4,
〈−2〉 is a subtractive extension of 〈−4〉. Also 〈−2,−3〉 is a subtractive extension
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of {0}. Hence by Theorem 2.9, A is a subtractive extension of I. By Lemma 3.10,
I is a Q ∩ A-ideal of A. But by Theorem 1.3 and Theorem 2.7(4), A is not a
subtractive ideal of S.

Theorem 3.14. Let I be a Q-ideal of a ternary semiring S. Then L is an ideal
of S/I(Q) if and only if there exists an ideal A of S such that A is a subtractive
extension of I and A/I(Q∩A) = L.

Proof. Let L be an ideal of a ternary semiring S/I(Q). Denote A = {x ∈ S :
there exist a unique q ∈ Q such that x+ I ⊆ q + I ∈ L}.
(1) Let a ∈ I. Then a+ I ⊆ I = q0 + I ∈ L, so a ∈ A. Now I ⊆ A.
(2) Let x, y ∈ A. Then there exist unique q1, q2 ∈ Q such that x+ I ⊆ q1 + I ∈ L
and y+I ⊆ q2+I ∈ L. Again there exists unique q3 ∈ Q such that (q1+I)⊕(q2+I)
= q3 + I ∈ L where q1 + q2 + I ⊆ q3 + I. By Lemma 1.4, x + I ⊆ q1 + I and
y+ I ⊆ q2+ I ⇒ x+ y+ I ⊆ q1+ y+ I ⊆ q1+ q2+ I ⊆ q3+ I ∈ L. Now x+ y ∈ A.
Similarly, if x ∈ A and r, s ∈ S, then rsx, rxs, xrs ∈ A. Hence A is an ideal of S.
(3) Let x ∈ I, x + y ∈ A, y ∈ S. So x + y ∈ q + I ∈ L. Since I is a Q-ideal of S,
there exists a unique q

′

∈ Q such that y ∈ q
′

+ I. Since x ∈ I, x+ y ∈ q
′

+ I. So
(q + I) ∩ (q

′

+ I) 6= ∅ implies q = q
′

. Now y ∈ q
′

+ I = q + I ∈ L. Thus y ∈ A.
Hence A is a subtractive extension of I.
(4) Clearly, A/I(Q∩A) ⊆ L. Now if q+ I ∈ L, then q ∈ A. So L ⊆ A/I(Q∩A). Thus
A/I(Q∩A) = L.
Conversely, suppose that A is a subtractive extension of I and A/I(Q∩A) = L.
Then by Theorem 3.11, L is an ideal of S/I(Q).

Theorem 3.15. Let S be a ternary semiring, I a Q-ideal of S and P a subtractive
extension of I. Then P is a prime ideal of S if and only if P/I(Q∩P ) is a prime
ideal of S/I(Q).

Proof. Let P be a prime ideal of S. Suppose that q1 + I, q2 + I, q3 + I ∈ S/I(Q)

and (q1 + I) ⊙ (q2 + I) ⊙ (q3 + I) = q4 + I ∈ P/I(Q∩P ) where q4 ∈ Q ∩ P is a
unique element such that q1q2q3 + I ⊆ q4 + I. So q1q2q3 = q4 + i for some i ∈ I.
Now q1q2q3 ∈ P implies q1 ∈ P or q2 ∈ P or q3 ∈ P . Hence q1 + I ∈ P/I(Q∩P )

or q2 + I ∈ P/I(Q∩P ) or q3 + I ∈ P/I(Q∩P ). Conversely, suppose that P/I(Q∩P )

is a prime ideal of S/I(Q). Let abc ∈ P where a, b, c ∈ S. Since I is a Q-ideal of
S, there exist unique q1, q2, q3, q4 ∈ Q such that a ∈ q1 + I, b ∈ q2 + I, c ∈ q3 + I
and abc ∈ (q1 + I) ⊙ (q2 + I) ⊙ (q3 + I) = q4 + I where q1q2q3 + I ⊆ q4 + I. So
abc = q4 + i

′

for some i
′

∈ I. Since P is a subtractive extension of I, q4 ∈ P . So
(q1 + I) ⊙ (q2 + I) ⊙ (q3 + I) = q4 + I ∈ P/I(Q∩P ). Since P/I(Q∩P ) is a prime

ideal, we may assume q1 + I ∈ P/I(Q∩P ). Now a ∈ q1 + I ⇒ a = q1 + i
′′

for some

i
′′

∈ I ⇒ a ∈ P as q1 ∈ Q ∩ P ⊆ P .

Theorem 3.16. Let S be a ternary semiring, I a Q-ideal of S and P a subtractive
extension of I. Then P is a semiprime ideal of S if and only if P/I(Q∩P ) is a
semiprime ideal of S/I(Q).
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Proof. Let P be a semiprime ideal of S. Suppose that q + I ∈ S/I(Q) and (q +

I)⊙ (q + I) ⊙ (q + I) = q
′

+ I ∈ P/I(Q∩P ) where q
′

∈ Q ∩ P is a unique element

such that q3+ I ⊆ q
′

+ I. So q3 = q
′

+ i for some i ∈ I. Now q3 ∈ P implies q ∈ P .
Hence q + I ∈ P/I(Q∩P ). Conversely, suppose that P/I(Q∩P ) is a semiprime ideal
of S/I(Q). Let a3 ∈ P where a ∈ S. Since I is a Q-ideal of S, there exist unique

q, q
′

∈ Q such that a ∈ q + I and a3 ∈ (q + I) ⊙ (q + I) ⊙ (q + I) = q
′

+ I. So
a3 = q

′

+ i
′

for some i
′

∈ I. Since P is a subtractive extension of I, q
′

∈ P where
q3+ I ⊆ q

′

+ I. So (q+ I)⊙ (q+ I)⊙ (q+ I) = q
′

+ I ∈ P/I(Q∩P ). Since P/I(Q∩P )

is a semiprime ideal, q + I ∈ P/I(Q∩P ). Now a ∈ q + I ⇒ a = q + i
′′

for some

i
′′

∈ I ⇒ a ∈ P as q ∈ Q ∩ P ⊆ P .

Chaudhari and Ingale [5, Theorem 3.4], proved that if I, J are subtractive
ideals of a ternary semiring S, then I ∪ J is an ideal of S if and only if I ⊆ J or
J ⊆ I. For subtractive extensions we have:

Example 3.17. Let I = 〈−4〉 × {0}, A = 〈−2〉 × 〈−2〉, B = 〈−4〉 × T be ideals
in the ternary semiring S = Z−

0 × Z−

0 where T = {n ∈ Z−

0 : n ≤ −3} ∪ {0}. By
Theorem 2.4, 〈−2〉 and 〈−4〉 are subtractive extensions of 〈−4〉. Also 〈−2〉, T
are subtractive extensions of {0}. Hence by Theorem 2.9, A, B are subtractive
extensions of I. By Example 3.13, A ∪ B = 〈−2〉 × 〈−2,−3〉 is a subtractive
extension of I. But A * B and B * A.
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